3,704 research outputs found

    A Key Establishment Scheme for Mobile Wireless Sensor Networks Using Post-Deployment Knowledge

    Full text link
    Establishment of pairwise keys between sensor nodes in a sensor network is a difficult problem due to resource limitations of sensor nodes as well as vulnerability to physical captures of sensor nodes by the enemy. Public-key cryptosystems are not much suited for most resource-constrained sensor networks. Recently, elliptic curve cryptographic techniques show that public key cryptosystem is also feasible for resource-constrained sensor networks. However, most researchers accept that the symmetric key cryptosystems are viable options for resource-constrained sensor networks. In this paper, we first develop a basic principle to address the key pre-distribution problem in mobile sensor networks. Then, using this developed basic principle, we propose a scheme which takes the advantage of the post-deployment knowledge. Our scheme is a modified version of the key prioritization technique proposed by Liu and Ning. Our improved scheme provides reasonable network connectivity and security. Moreover, the proposed scheme works for any deployment topology.Comment: Published in International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.4, July 201

    A Mobile Ambients-based Approach for Network Attack Modelling and Simulation

    Get PDF
    Attack Graphs are an important support for assessment and subsequent improvement of network security. They reveal possible paths an attacker can take to break through security perimeters and traverse a network to reach valuable assets deep inside the network. Although scalability is no longer the main issue, Attack Graphs still have some problems that make them less useful in practice. First, Attack Graphs remain difficult to relate to the network topology. Second, Attack Graphs traditionally only consider the exploitation of vulnerable hosts. Third, Attack Graphs do not rely on automatic identification of potential attack targets. We address these gaps in our MsAMS (Multi-step Attack Modelling and Simulation) tool, based on Mobile Ambients. The tool not only allows the modelling of more static aspects of the network, such as the network topology, but also the dynamics of network attacks. In addition to Mobile Ambients, we use the PageRank algorithm to determine targets and hub scores produced by the HITS (Hypertext Induced Topic Search) algorithm to guide the simulation of an attacker searching for targets

    Virtual Exploration of Underwater Archaeological Sites : Visualization and Interaction in Mixed Reality Environments

    Get PDF
    This paper describes the ongoing developments in Photogrammetry and Mixed Reality for the Venus European project (Virtual ExploratioN of Underwater Sites, http://www.venus-project.eu). The main goal of the project is to provide archaeologists and the general public with virtual and augmented reality tools for exploring and studying deep underwater archaeological sites out of reach of divers. These sites have to be reconstructed in terms of environment (seabed) and content (artifacts) by performing bathymetric and photogrammetric surveys on the real site and matching points between geolocalized pictures. The base idea behind using Mixed Reality techniques is to offer archaeologists and general public new insights on the reconstructed archaeological sites allowing archaeologists to study directly from within the virtual site and allowing the general public to immersively explore a realistic reconstruction of the sites. Both activities are based on the same VR engine but drastically differ in the way they present information. General public activities emphasize the visually and auditory realistic aspect of the reconstruction while archaeologists activities emphasize functional aspects focused on the cargo study rather than realism which leads to the development of two parallel VR demonstrators. This paper will focus on several key points developed for the reconstruction process as well as both VR demonstrators (archaeological and general public) issues. The ?rst developed key point concerns the densi?cation of seabed points obtained through photogrammetry in order to obtain high quality terrain reproduction. The second point concerns the development of the Virtual and Augmented Reality (VR/AR) demonstrators for archaeologists designed to exploit the results of the photogrammetric reconstruction. And the third point concerns the development of the VR demonstrator for general public aimed at creating awareness of both the artifacts that were found and of the process with which they were discovered by recreating the dive process from ship to seabed

    A Mobile Ambients-based Approach for Network Attack Modelling and Simulation

    Get PDF
    Attack Graphs are an important support for assessment and subsequent improvement of network security. They reveal possible paths an attacker can take to break through security perimeters and traverse a network to reach valuable assets deep inside the network. Although scalability is no longer the main issue, Attack Graphs still have some problems that make them less useful in practice. First, Attack Graphs remain difficult to relate to the network topology. Second, Attack Graphs traditionally only consider the exploitation of vulnerable hosts. Third, Attack Graphs do not rely on automatic identification of potential attack targets. We address these gaps in our MsAMS (Multi-step Attack Modelling and Simulation) tool, based on Mobile Ambients. The tool not only allows the modelling of more static aspects of the network, such as the network topology, but also the dynamics of network attacks. In addition to Mobile Ambients, we use the PageRank algorithm to determine targets and hub scores produced by the HITS (Hypertext Induced Topic Search) algorithm to guide the simulation of an attacker searching for targets

    Carbon Dioxide Capture and Air Quality

    Get PDF
    Carbon dioxide (CO2) is one of the most important greenhouse gases (GHG). The most dominant source of anthropogenic CO2 contributing to the rise in atmospheric concentration since the industrial revolution is the combustion of fossil fuels. These emissions are expected to result in global climate change with potentially severe consequences for ecosystems and mankind. In this context, these emissions should be restrained in order to mitigate climate change. Carbon Capture and Storage (CCS) is a technological concept to reduce the atmospheric emissions of CO2 that result from various industrial processes, in particular from the use of fossil fuels (mainly coal and natural gas) in power generation and from combustion and process related emissions in industrial sectors. The Intergovernmental Panel on Climate Change (IPCC) regards CCS as “an option in the portfolio of mitigation actions” to combat climate change (IPCC 2005). However, the deployment of CO2 capture at power plants and large industrial sources may influence local and transboundary air pollution, i.e. the emission of key atmospheric emissions such as SO2, NOX, NH3, Volatile Organic Compounds (VOC), and Particulate Matter (PM2.5 and PM10). Both positive as negative impacts on overall air quality when applying CCS are being suggested in the literature. The scientific base supporting both viewpoints is rapidly advancing. The potential interaction between CO2 capture and air quality targets is crucial as countries are currently developing GHG mitigation action plans. External and unwanted trade-offs regarding air quality as well as co-benefits when implementing CCS should be known before rolling out this technology on a large scale. The goal of this chapter is to provide an overview of the existing scientific base and provide insights into ongoing and needed scientific endeavours aimed at expanding the science base. The chapter outline is as follows. We first discuss the basics of CO2 capture, transport and storage in section 2. In section 3, we discuss the change in the direct emission profile of key atmospheric pollutants when equipping power plants with CO2 capture. Section 4 expands on atmospheric emissions in the life cycle of CCS concepts. We provide insights in section 5 into how air quality policy and GHG reduction policy may interact in the Netherlands and the European Union. Section 6 focuses on atmospheric emissions from post-combustion CO

    RADIS: Remote Attestation of Distributed IoT Services

    Get PDF
    Remote attestation is a security technique through which a remote trusted party (i.e., Verifier) checks the trustworthiness of a potentially untrusted device (i.e., Prover). In the Internet of Things (IoT) systems, the existing remote attestation protocols propose various approaches to detect the modified software and physical tampering attacks. However, in an interoperable IoT system, in which IoT devices interact autonomously among themselves, an additional problem arises: a compromised IoT service can influence the genuine operation of other invoked service, without changing the software of the latter. In this paper, we propose a protocol for Remote Attestation of Distributed IoT Services (RADIS), which verifies the trustworthiness of distributed IoT services. Instead of attesting the complete memory content of the entire interoperable IoT devices, RADIS attests only the services involved in performing a certain functionality. RADIS relies on a control-flow attestation technique to detect IoT services that perform an unexpected operation due to their interactions with a malicious remote service. Our experiments show the effectiveness of our protocol in validating the integrity status of a distributed IoT service.Comment: 21 pages, 10 figures, 2 table
    corecore