
A Mobile Ambients-based Approach for Network

Attack Modelling and Simulation

Virginia N. L. Franqueira*, Pascal van Eck, Roel Wieringa

University of Twente

Enschede, The Netherlands

Email: {franqueirav, p.a.t.vaneck, r.j.wieringa}@ewi.utwente.nl

Raul H. C. Lopes

Brunel University

London, England

Email: raul.lopes@brunel.ac.uk

Abstract—Attack Graphs are an important support for assess-
ment and subsequent improvement of network security. They
reveal possible paths an attacker can take to break through
security perimeters and traverse a network to reach valuable
assets deep inside the network. Although scalability is no longer
the main issue, Attack Graphs still have some problems that
make them less useful in practice. First, Attack Graphs remain
difficult to relate to the network topology. Second, Attack Graphs
traditionally only consider the exploitation of vulnerable hosts.
Third, Attack Graphs do not rely on automatic identification of
potential attack targets. We address these gaps in our MsAMS
(Multi-step Attack Modelling and Simulation) tool, based on
Mobile Ambients. The tool not only allows the modelling of more
static aspects of the network, such as the network topology, but
also the dynamics of network attacks. In addition to Mobile
Ambients, we use the PageRank algorithm to determine targets
and hub scores produced by the HITS (Hypertext Induced
Topic Search) algorithm to guide the simulation of an attacker
searching for targets.

Index Terms—Network Security, Vulnerability Assessment,
Attack Modelling, PageRank, HITS.

I. INTRODUCTION

A computer network is an ever changing environment. New

business agreements trigger changes in firewall rules. New net-

work functionalities trigger the configuration of new servers,

new network services, and new users increasing the chance of

introducing mis-configurations in the network. Additionally,

patches are not always available and, even when they are, it

may not be cost-effective to patch all vulnerabilities present in

a network. Hence, a network is hardly free from opportunities

for attackers, and needs to be assessed constantly.

Attackers take advantage of reachable vulnerabilities in

COTS (Commercial-Of-The-Shelf) and open source software

components and of exposures 1 as stepping stones to penetrate

a network. Each step opens further opportunities by exposing

more hosts, and attackers can progress this way until targets

are reached. Early Model Checker approaches [2], [3] suffered

from severe scalability problems due to the state explosion

problem [4]. Since then, Attack Graphs algorithms have

evolved to exploit-based approaches which take advantage of

*Supported by the research program Sentinels (www.sentinels.nl), under
contract 06679

1A vulnerability is a mistake in software which hackers can use directly to
access protected data, while an exposure provides information or capabilities
that can function as stepping-stones for direct access to protected data [1].

dependencies between vulnerabilities, later simplified by the

access-to-effect paradigm [5], [6]. Exploit-based approaches

are supported by the assumption of monotonicity [7] which

means that once a resource is acquired by an attacker it is

never released. Several customised Attack Graph algorithms

by researchers [5]–[11] and commercial initiatives [12] have

been proposed, some scaling to thousands of hosts [5], [10].

However, although scalability is no longer the main issue, there

are three other areas where improvement is still needed:

1) Attack graphs are still difficult to understand by people

since they do not fully represent the network topology

needed to relate attack paths identified in the graph

to the network itself, and to support decisions about

countermeasures. Approaches to this problem rely on

Aggregation [13], [14] or Clusterization [15] of graph

nodes, but these approaches still suffer from the problem

that firewalls are only used for calculation of reachability

and not clearly represented in the graph. Therefore, if

several firewalls are traversed by an attacker it may be

difficult, e.g., to identify which ones should be changed.

2) Steps in an attack graph are typically generated by

matching post- and preconditions of subsequent attack

steps [5]–[11] but (i) acquisition, movement or replica-

tion of resources cannot always be represented in terms

of pre/postcondition pairs, and (ii) pre/postcondition

pairs are memoryless whereas attackers may gain access

due to resources acquired more than one step ago. There

is a need for attack dynamics.

3) Some algorithms to generate attack graphs consider all

possible attack paths. Hence, it is if every node in the

network would be a potential target [5]. Other algo-

rithms require the explicit indication of targets, either

by naming a specific target [10], [12] or by assuming

that asset values are given [16]. In line with this last

approach, we assume, like other researchers (e.g. [17]),

that attackers are rational and search for assets which

represent some value. However, business valuation of

assets is a complex, time-consuming process. Therefore,

for large networks, asset values are usually not available.

From these observations we derive a list of requirements we

would like to address in our proposed solution:

R1 The network topology should be fully represented in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CLoK

https://core.ac.uk/display/9632606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


attack graph.

R2 The algorithm should allow for attack dynamics.

R3 The algorithm should make reasonable automatic estima-

tion of which network nodes are targets.

A. Contribution

We address these current deficiencies in Attack Graphs

by proposing MsAMS, a tool for modelling and simulation

of network attacks, the design of which draws heavily on

Cardelli’s work on Mobile Ambients [18], [19] and formal biol-

ogy [20], and on Milner’s work on bigraphs [21]. Specifically,

we address R1 and R2 by applying the concept of Mobile

Ambients to the domain of networks, and R3 with Google’s

PageRank algorithm [22].

We have chosen Ambients because they allow the represen-

tation of a network as a graph of nested nodes. They also

allow the representation of any type of resources, such as

firewalls, routers, hosts, services, vulnerabilities, privileges,

users, attackers, and credentials. This way, we are able to

fully represent the topology of a network since hierarchy and

grouping is intrinsic to Mobile Ambients. Ambients have capa-

bilities which allow them to move. Furthermore, ambients can

interact with other ambients depending on their capabilities.

These two features allow the representation of attack dynamics

without compromising scalability. Finally, by replacing asset

value by asset connectivity we are able to define automatically

a set of targets without relying on valuations of all assets in a

network, which is not readily available, as we observed above.

PageRank algorithm returns high authority scores for graph

nodes with many inlinks. If a network node with high number

of inlinks is compromised it may affect a high number of other

nodes which depend on it. Therefore, based on this rationale,

we assume that high authority nodes are network nodes to be

protected, i.e. they are targets.

In this paper, we extend [23] in many ways. We review the

modelling of the running example, introduce a new example,

and provide more details on how we achieve requirements

R1, R2 and R3, such as, how we capture network locality

and connectivity (Section VI), how virtual links are processed

(Section VIII), and how we use ranking algorithms (Sec-

tion IX).

II. OVERVIEW OF MSAMS (MULTI-STEP ATTACK

MODELLING AND SIMULATION)

MsAMS is a tool which requires as input (i) the network

configuration, including filtering rules, (ii) vulnerabilities in

COTS present in the network, which can be obtained automat-

ically from vulnerability scanning tools, (iii) their attributes,

which can be obtained from vulnerability databases such as

the National Vulnerability Database (NVD) [24], and (iv) the

location of the attacker (e.g. inside or outside the network).

Additionally, and at the discretion of the network administra-

tor, Access Control Lists (ACLs) from services can also be

used, to assess potential attacks which exploit credential theft

and trust relationships. These input allow the tool to build

an ambient-based model of the network. After the model is

complete, MsAMS simulates an attacker (also an Ambient )

dynamically acquiring resources and searching for attack paths

allowed by the modelled ambients and their embedded rules.

Therefore, MsAMS produces attack traces which represent

possible multi-step attack paths, as output.

III. CONCEPTUAL MODEL OF A NETWORK

We borrow from the concept of Mobile Ambients, which

is a calculus that allows us to define places (i.e. ambients)

where computation happens and to express movement of

processes [18]. We view a network as an Ambient which

contains other Ambients i.e hosts, subnets and firewalls, which

recursively may contain other Ambients. Therefore, a subnet is

an ambient which contains several other ambients representing

hosts; a firewall is also an ambient which protects ambients by

filtering communication between ambients outside its bound-

aries and protected ambients contained within its boundaries.

A host contains interfaces which allow interactions with other

hosts, internal or external to the network. Interfaces may be

ports allowing access to services, or application interfaces,

such as login to the Operating System (OS) or web browsers;

these interfaces may contain vulnerabilities. According to pre-

vious study of the NVD [25] only an insignificant percentage

of vulnerabilities require credentials, hence, we assume that

vulnerabilities represent an opportunity for attackers to enter a

host without the need for credentials (e.g. password or private

session key). However, some interfaces require themselves

credentials, e.g., SSH service and OS login.

We use a simple vulnerability model based on access

required for its exploitation and effect resulting from its

successful exploitation. Thus, the access can be either of

the type “network” which means the vulnerability can be

exploited remotely, opposed to the type “local” which means

the vulnerability can only be exploited if the attacker is

authenticated, via an interface, on the host. The effect of a

vulnerability can be of the type Privilege Gained (i.e. “user”

or “admin” privilege over the OS) or Impact. In this paper, we

restrict ourselves to the use of vulnerabilities which result in

privilege acquisition.

We use exposures to represent stealthy ways to acquire

credentials. An attacker can get remote or local access to

a host by means of vulnerabilities but, most of the time,

he does not automatically obtain credentials for that host.

Thus, an exposure is an abstraction to model the availability

of credentials by means e.g. of social engineering, clear-text

passwords saved locally, or via key stroke mechanisms. A

credential obtained from an exposure in one host may allow an

attacker to further access non-vulnerable hosts in the network.

IV. ABSTRACTING A NETWORK AS AMBIENTS

As defined by Cardelli [18]–[20] an ambient has a name,

a list of ambients contained within it, and a list of processes

running in it. Therefore, an ambient could contain non-ambient

processes and sub-ambients. We simplify this approach for the

domain of network attacks by considering that an ambient only

contains sub-ambients and each (sub-)ambient may contain



a list of processes running on its boundaries which execute

actions. A process may execute (i) movement actions, (ii)

communication actions, (iii) resource-acquisition actions, and

(iv) replication action. We consider that each action executed

on an ambient provides the ambient with a capability, which

happens at the level of ambient, not at the level of process.

Thus, although in Cardelli’s work only movement actions are

regulated by capabilities, we take that all actions are regulated

by capabilities, and actions are always inter-ambients. Besides,

there are action-rules which define how the execution of

actions should happen; by default all actions are executed in

parallel and only once, otherwise when specified, they can be

executed sequentially (called “paths” in [19]) and repeatedly.

We define Ambient as follows.

Definition 1: An ambient named Amb is defined as

Amb:[AmbientList][ActRuleList], where AmbientList is a

list of ambients, and ActRuleList is a list of action-rules

executed in parallel at the boundaries of Amb.

Definition 2: An action-rule ActRule is an expression of

the following form.

1) Repeat Act: this action-rule repeats action Act indefi-

nitely.

2) Seq Acti Actj : this action-rule performs Acti followed

by Actj .

Definition 3: An action Act is an expression of the follow-

ing form.

1) Movement Actions

a) Enter Ambi: an ambient Amb with this capabil-

ity is able to enter in ambient Ambi; potentially

acquiring access to ambients contained in Ambi.

b) Accept Ambi: an ambient Amb with this capa-

bility is able to accept the entry of Ambi in its

boundaries; potentially allowing Ambi to acquire

access to ambients contained in it.

c) AllowIn Ambi Ambj : an ambient Amb with this

capability allows that Ambi moves through its

boundaries to gain access to Ambj .

2) Communication Actions

a) Out Ambi: an ambient Amb with this capability is

able to send messages/requests to ambient Ambi.

b) In Ambi: an ambient Amb with this capability is

able to respond to messages/requests from ambient

Ambi.

3) Resource-Acquisition Actions

a) ReleaseCred Ambi: an ambient Amb with this ca-

pability is able to release the credential represented

by ambient Ambi.

b) AcquireCred Ambi: an ambient Amb with this

capability is able to request acquisition of the

credential represented by ambient Ambi.

4) Replication Action

a) Replicate: an ambient Amb with this capability

is able to produce one replica of itself, generating

another ambient Amb′ identical to ambient Amb.

Note that Cardelli’s primitive capabilities, “in” (corresponds

to an Enter Amb), “open”, “exit”, and later “accept” [20] can

be used to derive composed capabilities, such as “allow in”,

“acquire” and “release” [18]. Thus, AllowIn is derived from

“in” which causes active ambients to move, plus “open” which

dissolves Amb from the outside revealing its content. We

adapted Cardelli’s “acquire” and “release” which in his work is

derived from “open” to the domain of network attacks. As we

will see on Section XI, our “AcquireCred” and “ReleaseCred”

is a composition of “Enter” and “Accept”. Note also that we

did not identify the need for capabilities “open” and “exit”

yet, that is why it was not incorporated into MsAMS. Thus,

we assume that exit of an ambient is by default permitted, and

that ambients’ boundaries are never dissolved.

A. Matching Capabilities

The actions which potentially allow movement, communi-

cation and resource-acquisition (described above) will only

happen if a match between Capabilities occur. Similar to

ambients applied to biology [20], these actions require syn-

chronisation between two ambients, in our case, determined

by a common ambient name. This synchronisation is achieved

by means of reduction rules between: (i) Enter and Accept, (ii)

Out and In, (iii) ReleaseCred and AcquireCred, and (iv) Enter

and AllowIn. Fig. 1 illustrates an Enter/Accept reduction rule

resulting in ambient m successfully entering inside ambient

n. We use our notation and a graphical notation inspired by

BioAmbients [20].

m n n

Enter n Accept m m

m: [] [Enter "n"] n: ["m"][]n: [] [Accept "m"]|

Fig. 1. Enter/Accept reduction rule which allows ambient move

V. RUNNING EXAMPLE

We use the network illustrated in Fig. 2 from Ingols et al. [5]

as the basis for introducing core concepts and the method used

by the MsAMS tool.

In this example network the attacker is initially located on

host A and wants to reach either host E or F. The firewall

only allows traffic from host C or D to host E. Additionally,

all hosts have a single open port with a vulnerable service

running. Each vulnerability is remotely exploitable and allows

the attacker to gain privileged access to the host.

The example network can be represented in terms of Am-

bient as illustrated in Fig. 3(a).

Fig. 2. An example network



The figure shows ambient net, containing five ambients

A,B,C,D, FW , which represent hosts A to D and firewall

FW . The firewall is viewed as a membrane protecting am-

bients, i.e. hosts E and F . Fig. 3(b) provides a zoom view

of host A, which contains an ambient representing a listening

service sv A, which in turn contains an ambient representing

a vulnerability v A on that service. Additionally, ambient

A contains (i) an ambient admin A representing privilege

of root (unix-based hosts) or administrator (windows-based

hosts), and (ii) an ambient OS A representing the host OS

or kernel. The choice of entities to represent depends on

what is relevant to model. For example, in this case v A
is a vulnerability of the type remote-to-admin, that is why

admin A is relevant.

B D E FA C

FW

net

(a) The example network

A

OS_A

sv_A

v_A

admin_A

(b) Zoom in host A

Fig. 3. Modelling the example network as Ambients

VI. CAPTURING NETWORK LOCALITY AND

CONNECTIVITY

This section describes how we fulfil requirement R1.

The topology of the example network illustrated as Ambi-

ents in Fig. 3 is now represented in a tree structure, shown

in Fig. 4. It defines the locality of ambients in Milner’s

terminology [21], henceforth called Locality Tree. Children

nodes of ambients B−D and F , although not fully represented

in the figure, are similar to A.

The connectivity of the network defines a hypergraph H =
{N,E}, the Connectivity Hypergraph, where N is the set of

nodes:

N = {net,A,B,C,D,E, F, FW, sv A, admin A, ...}
and E is the set of hyperedges:

E = {e1 = {net,A,B,C,D, FW}, e2 = {E,F},
e3 = {A, sv A, admin A,OS A}, e4 = {v A}, ...}
Hyperedges referring to hosts B, C, D, E and F have been

omitted because they are similar to e3 and e4.

Note that the nesting of nodes, i.e. of Ambients, is captured

via the Locality Tree, while each hyperedge represents fully-

connected environments.

VII. CAPTURING NETWORK DYNAMICS

This section describes how we fulfil requirement R2.

We have seen in Section V the network topology of the

example network, i.e the ambients locality, and the hypergraph

corresponding to the connectivity of the network. So far, we

have addressed mostly the static aspect of the network. Now

we specify the Ambients with their action-rules which deter-

mine the dynamic behaviour of the ambients, how they can

interact. The ActRuleList, as defined in Section IV, is a list

Fig. 4. Locality Tree for example network shown in Fig. 3

of action-rules executed as parallel compositions. Therefore,

an ActRuleList of the type [Repeat Acti, Repeat Actj] means

repeat Acti indefinitely and repeat Actj indefinitely.

1 net: ["A" "B" "C" "D" "FW"] []

2 FW: ["E" "F"] [Repeat (AllowIn "C" "sv_E"),

Repeat (AllowIn "D" "sv_E")]

3 A: ["sv_A" "admin_A" "OS_A"]

[Repeat (AllowIn "net" "sv_A")]

4 sv_A: ["v_A"] [Repeat (Accept "net"),

Repeat (Out "OS_A")]

5 v_A: [] [Repeat (Accept "sv_A")]

6 admin_A: [] [Repeat (Accept "v_A"),

Repeat (Enter "OS_A")]

7 OS_A: [] [Repeat (Accept "admin_A"),

Repeat (In "sv_A")]

similar rules as 3-7 apply to ambients B-F

Rule 1 defines that ambient net contains ambients A, B,

C, D and FW , but no action-rules.

The Capability AllowIn used in the second rule captures the

firewall rules, restricting the traffic of messages from outside

to inside its boundaries. In the example, the firewall allows

only that ambients coming from hosts C and D access the

service in host E, i.e. sv E.

Rule 3 defines that host A allows any traffic from net to

its service sv A. The capability AllowIn in this case performs

the role of a port which gives access to its service. We can

also think that it represents a host-based firewall governing

traffic allowed into and out of the host.

As we have seen, host A contains a listening service sv A
which contains a vulnerability v A. This service accepts

ambients from net into its boundaries meaning that the

service accepts requests from the net, and possibly from the

internet if we had represented it here. Service requests give

the opportunity of exploiting v A. That’s why v A accepts

sv A, meaning that once in sv A, vulnerability v A becomes

available, as specified in rules 4 and 5.

Rule 4 also defines that service sv A can make requests to

OS A, which represents, e.g., the kernel of a Linux system

and all services it can provide for someone with admin

privileges over A. Thus, on the one hand service sv A can

make requests, represented by its capability Out “OS A” and,

on the other hand, OS A can answer service requests coming

from service sv A, represented by capability In “sv A” in



rule 7.

The ambient admin A represents the privilege of admin

(root or administrator) acquired over the host. The meaning

of this privilege is evident by the fact that an ambient in

admin A, e.g. an attacker, can Enter “OS A” (rule 6) and

OS A accepts it (rule 7), allowing the attacker to take full

advantage of host A OS.

All the other hosts have similar rules as 3-7 specified for

host A, including hosts E and F . Hence, all hosts have

one AllowIn “net” on their service action rules. These rules

characterise the network behaviour, i.e. all network traffic, for

the example network. Note that the action-rules for ambient

FW come from the firewall rules, and can be retrieved

automatically. Other ambients follow some patterns which

can be duplicated (automatically). For example, all services

containing the same type of vulnerability (e.g. remote-to-

admin) are defined the same way, and this information can be

retrieved from scanning tools and the NVD. Hence, in practise,

the majority of the ambients can be specified automatically,

and the network administrator has only to specify a few critical

servers manually.

VIII. PROCESSING VIRTUAL LINKS

So far, we have seen, in Section VI, how we capture a

network topology via (i) locality tree, and how we capture

network connectivity via (ii) connectivity hypergraph. Besides,

we have also seen how the dynamics of the network are

specified in terms of (iii) ambients action rules in Section VII.

In this section, we describe how we capture what we call

Virtual Links from (i) and (iii), introducing the concept of

Least Common Ancestor. Note that the computation of these

links allows us to build a matrix of links, as described in

Section IX.

Definition 4: There’s a directed Virtual Link from Ambi

to Ambj when: (i) Ambj has an Accept “Ambk” where Ambk

is an ancestor of Ambi, and (ii) there is an Allow path letting

Ambi into Ambk.

An Allow path letting Ambi into Ambk is a path that would

allow Ambi to exit to the Least Common Ancestor of Ambi

and Ambk, and let it enter through successive firewalls into

Ambk. Note that, as mentioned in Section IV, “exit” to an

ambient is by default permitted, and currently not incorporated

into MsAMS.

Definition 5: Least Common Ancestor of two ambients

lca(Ambi, Ambk) is the first ancestor that ambients Ambi

and Ambk have in common on the Locality Tree.

For example, according to Fig. 4, we have: lca(sv E, F ) ⇒
FW and lca(v A, admin E) ⇒ net.

A virtual link between ambients X and Y is created if X
can actually move into Y . Let’s take as an example the firewall

FW . Although sv E accepts traffic from net, meaning that

potentially an ambient coming from A − D can reach sv E,

the firewall restricts this possibility to ambients coming from

C or D. Hence, we have in fact two virtual (directed) links

C → sv E and D → sv E. The following algorithm

processes Virtual Links of a modelled network, according to

this rationale.

for each Y

for each ActRule in Y: Accept "X" or In "X"

follow the path from Y to lca(X,Y),

and test if X is allowed in through

each node in the path

IX. COMPUTING RANKS USING THE MATRIX OF

NETWORK LINKS

This section shows how we fulfil requirement R3.

So far, we can represent an attacker as an Ambient that

can travel through the network according to action-rules.

However, the attacker up to now moves at random, only bound

by permitted moves. In this section, we describe how we

determine targets automatically and how we calculate authority

and hub scores. This way, we are able to incorporate rationality

to attackers moves by guiding their search toward valuable

assets (i.e. targets) with preference to lower cost moves (i.e.

high hub scores) when more than one move is possible. More

in detail, we borrow from Link Analysis Ranking 2 for two

tasks which support the simulation of attackers, described in

Section X:

1) We use Google’s PageRank algorithm [22] to identify

a set of target nodes. Large authority scores returned

by the algorithm represent network nodes with large

number of inlinks, i.e. nodes that will affect a large

number of other nodes if compromised. We assume these

nodes should be protected, and thus, represent targets for

attackers. Note that our virtual links, described in the

previous section, are directed links. Hence, the notion

of inlinks and outlinks apply to them as it happens with

webpages.

2) We use HITS (Hypertext Induced Topic Search) algo-

rithm [26], basis of Teoma search engine, to compute

scores used for searching for attack paths. HITS relies

on the assumption that a webpage with many inlinks

has a high authority score and a webpage with many

outlinks has a high hub score. Besides, each page is

an authority and a hub to a certain extent, and as a

consequence, each page has both scores. It is further

assumed that “Good authorities are pointed to by good

hubs and good hubs point to good authorities” [27, Page

115]. We take advantage of HITS scores to simulate

a rational attacker giving preference for hubbiest steps,

whenever alternative moves are available.

From the virtual links obtained as shown in the previous

section, we create an adjacency matrix L where Lij is one,

if there is a link from ambient i to ambient j, and zero,

otherwise. This is a n×n, where n is the number of ambients

modelled, which is sparse since we only represent links which

are enabled via capabilities and locality, and do not represent

links resulting from connectivity.

2This field of research deals with the prioritization of search results using
the link structure of web pages.



A. PageRank for Computing Targets Automatically.

The PageRank value (PR) of an ambient Ambi is propor-

tional to the sum of PR values of its inlinking ambients Ambj .

The ~PR is obtained efficiently via power method [27, Chapter

4] applied to the matrix G, as shown in (1).

~PR
(k+1)T

= ~PR
(k)T

G, (1)

where G = αH + (α~a + (1 − α)~e)1/n ~eT

Thus, matrix G is computed by means of the sparse matrix

|n|×|n| of links H where Hij is 1
|Ambi|

if there is a link from

ambient i to ambient j and zero, otherwise. Note that matrix

H has the same structure as matrix L (as seen above), but

non-zero values are different; in L non-zero elements are ones,

while in H non-zero elements are probabilities. The parameter

α ∈ [0, 1] is the damping factor, which conveys the idea of

random walk. The damping factor α for an ambient-based

graph still represents this notion. Thus, α is the probability that

the attacker will follow one of the outlinks from the present

node, 1 − α being the probability that the attacker abandons

or starts the attack over again to follow another previously

unexplored path.

Vector ~a contains one if ambient i is a dangling node,

i.e. if it contains no outlinks, and zero otherwise. It corrects

dangling ambients (nodes) by given 1
|n| equal probability that

any ambient is selected from it. Vector ~e is a column vector

of ones, ~eT is the transpose of vector e, n is the number of

ambients while PRT is a row vector containing the PageRank

scores, after convergence.

The PageRank vector for the running example illustrated

in Fig. 3 is obtained after 13 iterations (α = 0.6). From this

vector, we select t ambients with the higher scores for the

target set. Note that the top two scores (t = 2) are OS E
(0.05820134) and admin E (0.06054866), which correspond

to the intuition of asset value since the compromise of host

E turns impossible the communication from net to the hosts

protected by the firewall.

B. HITS for Computation of Hubs.

Authority ~xk and hub ~yk scores, used to simulate a rational

attacker, are calculated using (2) and (3), respectively, where

IN is the set of inlinks of ambient Ambi, OUT is the set of

outlinks of Ambi, and k is the iteration counter.

~xk(Ambi) =
∑

Ambj∈INAmbi

~y(k−1)(Ambj) (2)

~yk(Ambi) =
∑

Ambj∈OUTAmbi

~xk(Ambj) (3)

The summations (2) and (3) are also resolved by power

method [27, Chapter 11] applied to the matrix resulting

from the multiplication of matrix L and its transpose LT :

LT L (called authority matrix) or LLT (called hub matrix).

Authority scores are obtained resolving (4) and hub scores

are obtained resolving (5), where L is the matrix of zeros

and ones containing the virtual links between every pair of

ambients Ambi and Ambj , as described in Section VIII.

~xk = ~yk−1LT L (4)

~yk = ~xk−1LLT (5)

X. SIMULATION OF ATTACKERS

The simulation engine is in reality the execution of com-

puting agents, i.e. ambients which actively move through the

Locality Tree according to the Matrix of Network Links L,

defined in Section VIII, and the Connectivity Hypergraph,

defined in Section VI. These agents search for valuable assets

(i.e. high PageRank scores) giving preference to lower cost

moves (i.e. high hub scores).

An attacker Ambient can be assigned as a computing Agent,

more precisely “they [agents] are confined to ambients” as

defined by Cardelli [18]. A computation is run by executing

in parallel a list of actions defined by the Ambient of each

computing Agent. Thus, at each step, a computing Agent

executes one Action (non-deterministic choice) defined by its

action-rule list. Each of these steps can either be accepted, if

the attacker (ambient) actions and the other ambients actions

match, as described in Section IV-A, or rejected if the actions

do not match. A match means that the attacker can actually

perform the step, and this is recorded by the simulation engine

as a move from the attacker. In the end, the engine provides the

attacker complete trace up to a target. This trace is a possible

multi-step attack on the modelled network. An attacker trace

for the running example (see Fig. 3) is illustrated next.

Enter "sv_D"

Enter "sv_E" (through FW:[AllowIn "D" "sv_E"]

through E:[AllowIn "net" "sv_E"]

through sv_E:[Accept "net"])

Enter "v_E"

Enter "admin_E"

This trace shows the possible attack ADE. Note that the

trace indicates if a firewall is traversed to facilitate relating

the output path with the actual network path. Note also that

vulnerabilities V A and v D were not exploited because the

attacker had more incentive to look for vulnerability v E
which leads to admin E.

XI. MODIFIED RUNNING EXAMPLE:

REQUESTING/ACQUIRING CREDENTIALS

This section aims to show how the acquisition of credentials

by an attacker happens. For this purpose, we now consider

the running example, illustrated in Fig. 2, with hosts A and

C modified. A has a vulnerability remote-to-user and has an

exposure which reveals the admin password (pAdmin A) of

host A for any ambient which enters it. Host C is no longer

vulnerable, and it has a service running, let’s say SSH , used

to administer the host remotely. Administrator Bob is able to

do so from host A. Fig. 5(a) and 5(b) illustrate these changes.

The modified host A is specified as follows.

1 A: ["sv_A" "user_A" "admin_A" "OS_A"



A

sv_A

v_A

admin_A

OS_A

user_A

exp_A

Bob pAdmin_A

(a) Zoom in host A

C

sv_C

admin_C

OS_C

pAdmin_C

(b) Zoom in host C

Fig. 5. Modified running example shown in Fig. 2

"exp_A"]

[Repeat (AllowIn "net" "sv_A")]

2 sv_A: ["v_A"] [Repeat (Accept "net"),

Repeat (Out "OS_A")]

3 v_A: [] [Repeat (Accept "sv_A")]

4 exp_A: [] [Repeat (Accept "user_A"),

Repeat (ReleaseCred "pAdmin_A")]

5 user_A: [] [Repeat (Accept "v_A"),

Repeat (Out "OS_A"]

6 admin_A: [] [Repeat (Accept "pAdmin_A"),

Repeat (Enter "OS_A")]

7 OS_A: [] [Repeat (In "user_A"),

Repeat (In "sv_A"),

Repeat (Accept "admin_A")]

8 Bob: [] [Repeat (Enter "pAdmin_A")]

9 pAdmin_A: [] [Repeat (Accept "Bob")]

And the modified host C as follows.

1 C: ["sv_A" "OS_C" "admin_C"]

[Repeat (AllowIn "net" "sv_C")]

2 sv_C: [] [Repeat (Accept "pAdmin_C"),

Repeat (Accept "pAdmin_A"),

Repeat (Out "OS_C")]

3 admin_C: [] [Repeat (Accept "sv_C"),

Repeat (Enter "OS_C")]

4 OS_C: [] [Repeat (Accept "admin_C"),

Repeat (In "sv_C")]

5 pAdmin_C: [] []

The SSH service in host C (sv C) now requires passwords

represented by ambients pAdmin C and pAdmin A (rule 2),

while before (as shown in Section VII) it accepted any ambient

within ambient net.
If a computing agent, ambient attacker, happens to issue (at

simulation time) an action rule AcquireCred ”pAdmin A”,

then a reduction rule between ReleaseCred and AcquireCred

occurs, as illustrated in Fig. 6.

attacker: [] [AcquireCred "pAdmin_A"]

attacker: [] [Enter "pAdmin_A"]

exp_A: [] [ReleaseCred "pAdmin_A"]

pAdmin_A: [] [Accept "attacker"]

|

Fig. 6. Reduction rule between actions ReleaseCred and AcquireCred

Note that the acquisition of Action Enter “pAdmin A” by

the ambient attacker allows the attacker to use credential

pAdmin A for the remaining of the computation, i.e. until

the engine stops when a target is reached. This is an advantage

over approaches which rely on pre/postconditions.

XII. EXPERIMENTAL RESULTS

The time for computing an attack is dominated by the

computation of assets’ ranks and hub scores. This is performed

by an algorithm based on the PageRank algorithm [27],

and the query-independent HITS algorithm [26]. A naı̈ve

implementation of either PageRank or HITS can take O(n3),
demanding a O(n2) matrix multiplication in each cycle. A

more efficient implementation, however, takes into account the

fact that the adjacency matrix is sparse and that the matrix

multiplication performed in each cycle can be executed in

O(n). Assuming that n is the number of ambients represented,

our implementation precomputes the matrix in O(n2), and

then applies ranking algorithm in time that ranges from O(kn)
to O(kn2), depending on the density of the adjacency matrix

and on k, the number of iterations necessary for convergence

of the power method applied to the computation of either

PageRank or HITS. It is important to notice that even for

a matrix with billions of nodes the PageRank algorithm tends

to converge in less than a hundred iteration. In our tests

it converged in less than 60 cycles for a test with 8000

nodes. In a previous implementation [28] we used a full

matrix multiplication and fixed k, obtaining running times

of O(n3) when using more than 8000 nodes. Currently, we

have an implementation in Haskell using a sparse matrix

multiplication and a matrix akin to the Google matrix [27].

The whole process of both ranking (with HITS and PageRank)

and searching for an attack executes in less than 30 seconds

for a network with more than 8000 nodes.

We modified the running example illustrated in Fig. 3 for

our experiments. Thus, we used the following configuration

of nodes to the left and right of the firewall, respectively:

(4,512), (8,1024), (16,2048), (32,4096), and (64,8192). That

choice generates a dense adjacency sub-matrix for the part

of the model representing the right side of the firewall. All

experiments assumed the attacker positioned initially inside

host A. Fig. 7 shows the computing time for these experiments,

performed on machine with Intel Core 2 Duo T5250, 1.5GHz

processor, 2GB RAM.

We express the network models input of our tool in a

dedicated language that has also been implemented in Haskell.

The 8256 nodes’ network used in the experiments, e.g., is

described in this language with just 46 lines. It takes 7.18

seconds to compile those lines into the internal representation

used by PageRank and HITS algorithms.

XIII. CONCLUSION AND FUTURE WORK

We presented MsAMS (Multi-step Attack Modelling and

Simulation), a tool which implements Mobile Ambients ap-

plied to the domain of network attacks, and two Link Analysis

Ranking algorithms: PageRank and HITS. MsAMS satisfies

the three requirements identified in Section I, since (i) it allows

capturing the exact topology of the network, fulfilling R1, as

seen in Section VI, (ii) it allows representing attack dynamics,

fulfilling R2, as seen in Sections VII, X and XI, and (iii)

it determines network targets automatically, fulfilling R3, as

seen in Section IX. This is achieved without compromising



0 2000 4000 6000 8000

0
5

1
0

1
5

2
0

2
5

3
0

Number of Hosts

C
o

m
p

u
ti
n

g
 T

im
e

 (
s
e

c
o

n
d

s
)

Fig. 7. Performance of the MsAMS tool

performance, as seen in Section XII. Besides, the approach

is flexible since the level of details modelled is left at the

discretion of the network administrator; he can focus on one

specific aspect or on the entire network.

We have many plans for future work. Among them, we

would like to have a graphical interface to show input and

output in terms of ambients, and would like to experiment

with weighted ranking algorithms (e.g. [29]). This way we

could cover the case of hosts with high business value but

low number of incoming links. Finally, our choice of attackers

actions is currently non-deterministic. However, stochastic

choice [20], based on risk indicators, would be even better.

REFERENCES

[1] R. A. Martin, “Managing Vulnerabilities in Networked Systems,” IEEE

Computer Society Computer Magazine, vol. 34, no. 11, pp. 32–38,
November 2001.

[2] O. Sheyner and J. Wing, “Tools for Generating and Analyzing Attack
Graphs,” in In Proc. of Workshop on Formal Methods for Components

and Objects, ser. LNCS 3188. Germany: Springer-Verlag, 2004, pp.
344–371.

[3] R. W. Ritchey and P. Ammann, “Using Model Checking to Analyze
Network Vulnerabilities,” in SP’00: Proc. of the 2000 IEEE Symposium

on Security and Privacy. Washington, DC, USA: IEEE Computer
Society, 2000, pp. 156–165.

[4] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen, Systems and software verification: Model-checking

techniques and tools. Berlin: Springer-Verlag, 2001.

[5] K. Ingols, R. Lippmann, and K. Piwowarski, “Practical attack graph
generation for network defense,” in ACSAC ’06: Proc. of the 22nd

Annual Computer Security Applications Conference on Annual Com-

puter Security Applications Conference. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 121–130.

[6] W. Li, R. B. Vaughn, and Y. S. Dandass, “An approach to model network
exploitations using exploitation graphs,” Simulation, vol. 82, no. 8, pp.
523–541, 2006.

[7] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based
network vulnerability analysis,” in CCS ’02: Proceedings of the 9th ACM

conference on Computer and communications security. New York, NY,
USA: ACM, 2002, pp. 217–224.

[8] S. Jajodia, S. Noel, and B. O’Berry, “Topological Analysis of Network
Attack Vulnerability,” in Managing Cyber Threats: Issues, Approaches

and Challenges. Germany: Springer-Verlag, 2005.

[9] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian, “Computer-
attack graph generation tool,” in DISCEX II’01: DARPA Information

Survivability Conference and Exposition Conference and Exposition,
vol. 2. Washington, DC, USA: IEEE Computer Society, June 2001,
pp. 307–321.

[10] X. Ou, W. F. Boyer, and M. A. McQueen, “A Scalable Approach to
Attack Graph Generation,” in CCS ’06: Proc. of the 13th ACM Conf. on

Computer and Communications Security. New York, NY, USA: ACM,
2006, pp. 336–345, people.cis.ksu.edu/∼xou/publications/ccs06.pdf.

[11] J. Dawkins and J. Hale, “A Systematic Approach to Multi-Stage
Network Attack Analysis,” in IWIA ’04: Proc. of the 2nd IEEE Int.

Information Assurance Workshop. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 48–56.

[12] “Skybox security inc.” 2008, http://www.skyboxsecurity.com/, accessed
16 Sept 2008.

[13] S. Noel and S. Jajodia, “Managing attack graph complexity through
visual hierarchical aggregation,” in VizSEC/DMSEC ’04: Proc. of the

2004 ACM workshop on Visualization and data mining for computer

security. New York, NY, USA: ACM, 2004, pp. 109–118, http://doi.
acm.org/10.1145/1029208.1029225.

[14] L. Williams, R. Lippmann, and K. Ingols, “An interactive attack graph
cascade and reachability display,” in VizSEC’07: Proc. of the Workshop

on Visualization for Computer Security. Springer-Verlag, October 2007,
pp. 221–235.

[15] S. Noel and S. Jajodia, “Understanding Complex Network Attack Graphs
through Clustered Adjacency Matrices,” in ACSAC ’05: Proceedings of

the 21st Annual Computer Security Applications Conference. Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 160–169.

[16] V. N. L. Franqueira and R. H. C. Lopes, “Vulnerability Assessment by
Learning Attack Specifications in Graphs,” in IAS’07: Proc. of the 3rd

Int. Symposium on Information Assurance and Security), August 2007,
pp. 161–164.

[17] M. Cremonini and D. Nizovtsev, “Understanding and Influencing At-
tackers Decisions: Implications for Security Investment Strategies,” in
WEIS06: 5th Workshop on the Economics of Information Security, June
2006, http://weis2006.econinfosec.org/docs/3.pdf.

[18] L. Cardelli and A. D. Gordon, “Mobile Ambients,” in Foundations

of Software Science and Computation Structures: First International

Conference, FOSSACS’98, ser. LNCS, vol. 1378. Berlin Germany:
Springer-Verlag, 1998, pp. 140–155.

[19] L. Cardelli, “Mobility and security,” in Proc. of the NATO Advanced

Study Institute on Foundations of Secure Computation, ser. NATO
Science Series, F. L. Bauer and R. Steinbrggen, Eds. Marktoberdorf,
Germany: IOS Press, 27 July - 8 August 2000, pp. 3–37, lecture notes
for Marktoberdorf Summer School 1999.

[20] A. Regev, E. M. Panina, W. Silverman, L.Cardelli, and E. Shapiro,
“BioAmbients: An abstraction for biological compartments,” Theoretical

Computer Science, Special Issue on Computational Methods in Systems

Biology, vol. 325, no. 1, pp. 141–167, September 2004.
[21] R. Milner, “Pure bigraphs,” University of Cambridge, Tech. Rep.

UCAM-CL-TR-614, January 2005.
[22] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web

search engine,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7, pp. 107–117,
1998.

[23] V. N. L. Franqueira, R. H. C. Lopes, and P. van Eck, “Multi-step Attack
Modelling and Simulation (MsAMS) Framework based on Mobile
Ambients,” in SAC’2009: Proc. of the 24th Annual ACM Symposium

on Applied Computing. New York, NY, USA: ACM Press, March
2009, accepted for publication.

[24] NVD, “National vulnerability database v2,” http://nvd.nist.gov/. Visited
10-July-2008.

[25] V. N. L. Franqueira and M. van Keulen, “Analysis of the NIST
database towards the composition of vulnerabilities in attack scenarios,”
Centre for Telematics and Information Technology (CTIT), University
of Twente, Enschede, The Netherlands, Tech. Rep. TR-CTIT-08-08, Feb.
2008.

[26] J. M. Kleinberg, “Authoritative Sources in a Hyperlinked Environment,”
in In Proc. Ninth Ann. ACM-SIAM Symp. Discrete Algorithms. New
York: ACM Press, 1998, pp. 668–677.

[27] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond: The

Science of Search Engine Rankings. Princeton Universty Press, 2006.
[28] V. N. L. Franqueira, R. H. C. Lopes, and P. van Eck, “Multi-step Attack

Modelling and Simulation (MsAMS) Framework based on Mobile
Ambients,” Centre for Telematics and Information Technology (CTIT),
University of Twente, Enschede, The Netherlands, Tech. Rep. TR-CTIT-
08-44, Jun. 2008.

[29] J. A. Tomlin, “A new paradigm for ranking pages on the world wide
web,” in WWW ’03: Proc. of the 12th Int. Conf. on World Wide Web.
New York, NY, USA: ACM, 2003, pp. 350–355.


