
RADIS: Remote Attestation of Distributed IoT
Services

Mauro Conti1, Edlira Dushku2, and Luigi Vincenzo Mancini2

1 Department of Mathematics, University of Padua, Padua, Italy
conti@math.unipd.it

2 Dipartimento di Informatica, Sapienza University of Rome, Rome, Italy
{dushku,mancini}@di.uniroma1.it

Abstract. Remote attestation is a security technique through which
a remote trusted party (i.e., Verifier) checks the trustworthiness of a
potentially untrusted device (i.e., Prover). In the Internet of Things (IoT)
systems, the existing remote attestation protocols propose various ap-
proaches to detect the modified software and physical tampering attacks.
However, in an interoperable IoT system, in which IoT devices interact
autonomously among themselves, an additional problem arises: a compro-
mised IoT service can influence the genuine operation of other invoked
service, without changing the software of the latter. In this paper, we
propose a protocol for Remote Attestation of Distributed IoT Services
(RADIS), which verifies the trustworthiness of distributed IoT services.
Instead of attesting the complete memory content of the entire interoper-
able IoT devices, RADIS attests only the services involved in performing
a certain functionality. RADIS relies on a control-flow attestation tech-
nique to detect IoT services that perform an unexpected operation due
to their interactions with a malicious remote service. Our experiments
show the effectiveness of our protocol in validating the integrity status of
a distributed IoT service.

Keywords: Remote attestation · Distributed IoT Services, Interoperable
IoT · Service Flow.

1 Introduction

The enormous expansion of the Internet of Things (IoT) devices induces the
necessity of interoperable IoT systems. The IoT interoperability will allow hetero-
geneous IoT devices to interoperate and ultimately to support the deployment
of large-scale IoT applications. However, due to the limited capabilities of the
IoT devices to adopt complex security techniques, IoT systems are increasingly
exposed to a huge number of potential attacks [14,15]. Hence, a security mecha-
nism that guarantees secure interoperation between devices plays a key role in
establishing trust in an interoperable IoT system.

Remote attestation is used as a security protocol that provides reliable
evidence about the trustworthiness of an untrusted device. Typically, the internal

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/322820976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Mauro Conti, Edlira Dushku, and Luigi Vincenzo Mancini

state of resource-constrained devices comprises the program binaries stored in the
program memory of the device and the run-time state of the software stored in
data memory. During a software execution, the content of the program memory
remains static, whereas the data memory’s contents always change. Most of
the existing remote attestation protocols attest only the program memory, thus
leaving undetected the run-time attacks, which target the data memory and do
not modify the program memory of a device. For instance, a code-reuse attacker
may exploit the Return-Oriented Programming (ROP) technique [17] to change
at run-time the control-flow of genuine sequences of code (i.e., gadgets) loaded
on the device’s memory and, consequently, produce a malicious code execution.
Other run-time attacks do not change the control-flow of a software, but only the
data of the software by manipulating the data pointer through Data-Oriented
Programming (DOP) [9] technique. As the run-time attacks can become pervasive
in IoT systems, some recent remote attestation approaches [11,1,19] have been
proposed in the literature to check the integrity of the data memory. However,
the existing run-time remote attestation schemes can perform attestation only on
single devices. Additional research works [4,3,13,2], which have proposed efficient
protocols that run attestation over a large number of devices, do not consider
the communication data exchanged among devices.

In this paper, we focus on distributed IoT services, and we show that due
to the communication data exchanged between services, a compromised service
can affect the integrity of the other legitimate invoked services that interact
with the compromised one. In particular, a compromised service may maliciously
deviate the control-flow of the legitimate invoked services towards a valid but
non-authorized state. The naive approach of running a control-flow attestation
protocol for each service would not detect such control-flow deviation because
the software of the invoked service is genuine and the deviation is caused due
to the corrupted input received. To this end, our work considers interoperable
IoT devices and aims to check the integrity of distributed IoT services that run
on these devices. We propose a remote attestation protocol that detects the
control-flow deviation of legitimate services, which is affected by an adversary
who has not directly compromised this service but has compromised another
service that interacts with the former.

Our Contribution: The contributions of this paper are threefold:

– We highlight the need for the attestation of distributed IoT services by
demonstrating that a compromised service in a distributed IoT service can
induce malicious behavior on genuine services.

– We define the required security properties for distributed IoT services and
describe the adversary model.

– We present RADIS, a remote attestation protocol for distributed IoT services
and provide the performance evaluation.

Outline: The remainder of the paper is organized as follows. In Section 2, we
provide an overview of the current state-of-the-art remote attestation approaches
and provide a comparison with our work. We describe the problem in Section 3. In
Section 4, we present the system model, and in Section 5, we describe the adversary

RADIS: Remote Attestation of Distributed IoT Services 3

model and the required security properties. We introduce the preliminary concepts
in Section 6 and provide our protocol details in Section 7. The evaluation of
protocol is shown in Section 8 and security analysis in Section 9. Finally, the
paper concludes in Section 10.

2 Related Works

In this section, we provide an overview of previous work related to remote
attestation protocols. We focus particularly on attestation of distributed services
in traditional systems and state-of-the-art remote attestation protocols in IoT
systems.

Attestation of distributed services. Shi et al. [18] propose BIND as a fine-
grained attestation scheme for traditional distributed systems. At the attestation
time, BIND attests only some selected piece of code for each service, following
the assumption that programmers annotate the most critical parts of the service
software. BIND measures a critical code immediately before entering in the code
execution and uses a sand-boxing mechanism to serve as a protection for ensuring
the untampered code execution. However, BIND does not address attacks that
happen in the intermediary code that is not predefined by programmers for
attestation. In our protocol, the runtime attestation takes into consideration the
entire sequence of the distributed services without limiting the attestation only
to a predefined section of code. The work presented by Gu et al. [8] propose an
integrity attestation that aims to check whether a subroutine of a program is
executed correctly. The proposed scheme leverages Trusted Computing Group
(TCG) attestation to build a trust chain rooted at Trusted Platform Module
(TPM) for function execution. The attestation schemes presented in [18] and [8]
are not designed for resource-constrained devices.

Collective attestation. In IoT systems, collective attestation schemes aim
to verify the internal state of a large group of devices in a more efficient way
than attesting each of devices individually. Asokan et al. [4] propose SEDA as an
attestation approach which constructs the interconnected network as a spanning-
tree. In this scheme, each device statically attests its children and reports back to
its parent the number of children that successfully passed the attestation protocol.
In the end, an aggregated report with the total number of the devices successfully
attested will be transmitted to the Verifier. The weakest point of this protocol is
that a compromised node can impact the integrity of the attestation result of
all its children nodes in the aggregation tree. This problem was later tackled in
the work presented by Ambrosin et al. [3]. There, the authors propose a scalable
attestation protocol with untrusted aggregators (SANA) which relies on the use
of a multi-signature scheme. In SANA, devices sign the attestation responses and
an aggregation of the signatures is used to validate the network in a constant time.
The basic assumption followed by both SEDA and SANA is that the network
is fully interconnected. Recently, Kohnhäuser et al. [13] and Ambrosin et al. [2]
rule out this assumption and propose an efficient protocol for highly dynamic
networks. In these proposals, each device performs the local attestation at the

4 Mauro Conti, Edlira Dushku, and Luigi Vincenzo Mancini

same point in time and shares the individual result with other devices in the
network. Then, devices use the consensus algorithm to gain knowledge about the
state of the other devices in the network. At the attestation time, the verifier can
perform the attestation over a random device, which will report the consensus
state of the entire network. Additionally, Ibrahim et al. [10] and Kohnhäuser
et al. [12] have presented collective attestation schemes that are able to detect
invasive physical attacks by following the assumption that an adversary needs to
shut a device down for a non-negligible amount of time in order to physically
tamper the device.
However, the collective attestation schemes do not consider the flow of the
interactions between devices and the communication data that go from one
device to another. Therefore, these schemes detect devices that are running a
modified software, but they do not check whether the devices with legitimate
software are executing a task on malicious data. We argue that, in a distributed
system, a service victim of a run-time attack can propagate malicious behaviour
to all the devices that requested that service, even though the software running
on those devices is legitimate. Additionally, the existing collective attestation
schemes verify only the integrity of the static program memory without providing
a validation mechanism for the data memory. Thus, runtime attacks remain
undetected.

Dynamic attestation. Dynamic attestation approaches aim to verify the
run-time state of the Prover during the normal software execution. Kil et al.
[11] propose ReDAS as an attestation protocol that verifies the properties of
the run-time behaviour of the Prover. When any of the properties is violated,
ReDAS stores the relevant evidence in a Trusted Platform Module (TPM).
ReDAS checks the system integrity only at system calls, and it traces only the
order of the launched modules in a system. Therefore, it does not detect the
malware presence between system calls, and it does not check the runtime flow
of the instructions of a specific module. Abera et al. [1] propose C-FLAT, a
complete attestation of the run-time state of the Prover. During the execution,
each software instruction is reported into a so-called “trusted anchor” and from
there, a hash engine mechanism accumulates the sequence of the instructions
into a single hash value that represents the entire control flow of the Prover’s
state. A Verifier, who has initially computed and stored a set of all the possible
valid hashes of the Prover, can detect control-flow attacks since a Prover targeted
with a control-flow run-time attack will report an unexpected hash value to the
Verifier. This work is extended by Dessouky et al. [6] which present a practical
version of C-FLAT named LO-FAT. Instead of the software instrumentation used
in C-FLAT, LO-FAT explores the features of the microcontroller to intercept
the instructions, providing in this way an implementation of C-FLAT with low
overhead. ATRIUM [19] proposes a hardware-based runtime attestation protocol
that is resilient against Time of Check Time of Use attacks. ATRIUM attests
both executed instructions and the control-flow.

RADIS: Remote Attestation of Distributed IoT Services 5

However, the existing dynamic attestation protocols follow the single-device-
attestation approach and do not provide a complete evidence of the integrity of
the distributed IoT services.

3 Problem Description

We consider an interoperable IoT system as shown in Figure 1, where different
IoT devices provide a set of services that interact together to perform a task. The
sequence of all the services involved in performing a task is called Service Flow,
and the notation for the Service Flow depicted in Figure 1 is Si1→ Sj3→ Sx2.
The set of services Si1→ Sj3→ Sx2 communicating with each other to support
the operation forms also a distributed service. Note that a given distributed
service can follow a different service flow based on different invocations, depending,
for example, on the input parameters.

Device i Device xDevice j

Si1 Sj1 Sx1 Sx2

Devices

Services

1 2 3

Input

Sj2 Sj3

Service flow

Fig. 1: Service Flow of IoT devices

As a motivating example, we consider a Smart Home IoT system enabled by
the interoperation between services of three IoT devices: an Outdoor Camera, a
central Security Monitor, and a Smart Door. A motion sensing Outdoor Camera
observes outside the main door of the home, and when any movement of objects
or people is detected, the camera captures an image and reports it to a Security
Monitor. Once the Security Monitor gets the captured image, it analyzes the
image, and if it identifies a family member, it sends an unlock command to
open the Smart Door, as shown in Figure 2. The service flow in this scenario is:
captureImage() → checkImage() → unlockDoor().

Devil’s Ivy attack [16] shows how an attacker exploits a vulnerability in a
widely used library to take control over a security camera. Here, the attacker
uses Return-Oriented Programming (ROP) technique [17] to change at runtime
the execution flow of genuine pieces of code loaded on the device’s memory, and
consequently, produce a malicious code. As these attacks can become pervasive in
IoT systems, a prominent requirement for the attestation schemes is the detection
of run-time attacks, which target the data memory and do not modify the
program memory of a device. The attestation of the data memory of individual
devices requires the execution of a single-device control-flow attestation protocol

6 Mauro Conti, Edlira Dushku, and Luigi Vincenzo Mancini

that detects subverted control flows. One possible example of such attestation
protocol is C-FLAT [1]. In the case the device is not compromised, a control-flow
attestation protocol, running on a single device, will report the benign state of
the device. For instance, when a single-device control-flow attestation protocol
attests a genuine Smart Door, it will ensure its correctness.

Now, consider an adversary that attacks another device of the distributed
service, e.g., the Security Monitor device. In particular, the adversary can corrupt
the security monitor’s data pointers at run-time or modify the communication
data yielded by the Security Monitor. After this attack, a single-device control-
flow attestation procedure executed on the Smart Door will report again the
correctness of the Smart Door. This is because the adversary has not changed
the software of Smart Door and has not deviated its control-flow. However, even
though the adversary is located only in the Security Monitor and the Smart Door
passes all the checks of the control-flow attestation procedure, we show that the
Smart Door can be forced into an incorrect state.

2

Outdoor camera

Adversary

Input from
Motion Sensor

checkImage() unlockDoor()
captureImage()

Security Monitor Smart Door

4 response5 response

Environment

1
3

Fig. 2: Device interaction in Smart Home IoT System

By compromising the Security Monitor device, the adversary is able to
generate malicious software executions on the Security Monitor that can produce
malicious data and can influence the current behavior of the other interconnected
devices. As a consequence, the state of the Smart Door may be corrupted by the
commands invoked maliciously from the Security Monitor to the Smart Door. For
example, an unlockDoor() command initiated as result of an attack in Security
Monitor can open the door even if the camera has not captured the image of a
family member. We thus argue that the Smart Door may have a genuine software,
but its behavior is not legitimate if it is performing an unexpected operation due
to the command or input that it received from a malicious code executed in the
Security Monitor device.

To detect this attack, one could think to run a single-device control-flow
attestation protocol on every device of the IoT system. Indeed, the control-flow

RADIS: Remote Attestation of Distributed IoT Services 7

attestation protocols, running on each individual IoT device, will detect the
devices which contain corrupted control-flow information on their data memory.
Since the adversary has modified only the value of one variable on the Security
Monitor and has not performed any control-flow attack to any device, the control-
flow attestation protocols, running on each of the three devices of our scenario,
would report all the devices in a legitimate state. Hence, the control-flow deviation
of the Smart Door remains undetected.

To clarify the effect of an attack on a distributed service, in Figure 3 we
illustrate the pseudo-code of the three services involved in the aforementioned
service flow: captureImage() → checkImage() → unlockDoor(). Based on the
instructions of this pseudo-code, for each service is constructed a Control Flow
Graph, where each node of the graph presents an instruction, as shown in Figure 4.
During the usual operation, each service follows the intended control-flow and
then invokes a service call to the next device.

Device i: Outdoor Camera Device j: Security Monitor Device x: Smart door

1: captureImage() {
2: motion← sensor.value();
3: if motion then
4: img ←

camera.capture();

5: checkImage(img);

6: end if
7: }

1: checkImage(img) {
2: member ←

searchFamily(img);

3: if member is false then
4: cmd← false;
5: else
6: cmd← true;
7: end if
8: unlockDoor(cmd);

9: }
10: service: searchFamily()

1: unlockDoor(cmd) {
2: if cmd is true then
3: unlock();
4: else
5: lock();
6: end if
7: }
8: service: lock()
9: service: unlock()

Fig. 3: Pseudo-code of the service flow in Figure 2

The adversary located in Security Monitor (Device j) performs an attack in
Nj4 to maliciously assign the variable cmd with the value “true”. The service
execution will then proceed to Node Nj8 to call the service unlockDoor (cmd),
as shown in Figure 4. Note that when the execution flow reached at Node Nj4,
the variable cmd was assigned as “false”. The compromised argument cmd,
produced by the adversary in Security Monitor, is used in node Nx2 of Smart
Door (Device x) as a decision-making variable that defines the further operations
of Smart Door. This means that Smart Door, even though is running a genuine
software, can maliciously run unlock () command in Node Nx3 because of the
compromised argument received (Nx2 goes into Nx3 instead of going into Nx5).

Consider now another type of adversary that does not change the software
of the services, but modifies the communication data between Security Monitor
and the Smart Door. For instance, an adversary that is able to carry out a
man-in-the-middle attack in the network can modify the data between node Nj8
and Sx2 to set cmd as “true”. Such adversary will still be able to deviate the
control-flow of the Smart Door even though the software of Security Monitor and
software of the Smart Door are both genuine. The attacks described above show

8 Mauro Conti, Edlira Dushku, and Luigi Vincenzo Mancini

Ni1

Ni2

Ni4

Ni5

Nj1

Nx1

Nx2

Nx3

Input 1

2
3

Device i Device j Device x

Control flow path
Service Request

Service init

Remote Service invocation
Control Flow Graph Nodes

Nx9

Nx5

Nx8

Nj10

Nj3

Nj4

Nx7

Nj2

Nj6

Ni3

Nj9
Ni7

45

Service Response

Sx2
Sj3Si1

Ni8

Fig. 4: Control flow of the distributed service in Figure 2

that a compromised device (Device j) induces a malicious control-flow deviation
into a subset of IoT devices, even though the software running on the subset
of the devices is not altered in any way by the attacker. Therefore, to produce
a correct attestation response of a distributed service, the attestation protocol
should not only detect the compromised services, but also the services that are
performing a non-intended operation due to their interactions with the infected
service.

Note. The goal of our work is to verify whether a distributed services is
performing an intended operation and we do not intend to check the integrity of
the entire data processed by each service. Considering that some data attacks can
have only an isolated impact on the overall operation of a distributed service, our
protocol does not consider the data attacks which impact neither the control-flow
of an individual service nor the control-flow of the invoked services.

4 System model

We consider a distributed IoT system, where each heterogeneous IoT device Di

provides a number ni of services. In a typical distributed IoT service, each service
invokes an explicit service request to another service according to a predefined
interaction model. A distributed IoT service may follow various service flows at
run-time,, thus, the aim of the attestation mechanism is to check the integrity
of a distributed service by verifying that a given service flow is legitimate. In
modelling the attestation scheme of a distributed IoT service, we consider the
presence of the following entities:

RADIS: Remote Attestation of Distributed IoT Services 9

– Device Di: a number of interconnected devices that compose a distributed
IoT system. Each device hosts ni different services, each uniquely identified
as Siu, for 1 ≤ u ≤ ni.

– System operator OP : responsible for the trusted deployment of the distributed
IoT system.

– Verifier V rf : a trusted external party who checks the integrity of a service
flow of the distributed IoT system. V rf may be different from OP . V rf
has access to the binaries of all the services deployed on the distributed IoT
system. The attestation runs periodically at an arbitrary time determined by
V rf .

 1
Build a Service
Flow Graph for
each service
flow

 2
Build the
Control Flow
Graph for
each service

 3
Generate the
measurement
for each service
flow

 4
Store
measurements
in a
database

Service measurement (One-time-only offline procedure)

Ch = {Siu, inputSiu}

callatt

respatt

Result

Service attestation procedure

 1

 7

 8 Verify Result with known measurements

Database with
valid

measurements

servatt 2
servatt

getrespatt6

Verifier

 3

 5
 4

Service:Siu Service:Sjv

Fig. 5: System model of remote attestation of a distributed IoT service, which
consists of two services Siu and Sjv.

Initially, an IoT system operator OP validates the identities of the devices,
authorizes their access, and verifies the correct version of the software and services
available on them. Then, a Verifier V rf , responsible for the integrity check of

10 Mauro Conti, Edlira Dushku, and Luigi Vincenzo Mancini

the distributed services, performs an offline procedure to measure all genuine
services that compose the distributed IoT system. During the service measurement
procedure, V rf considers the legitimate service flows and all possible legitimate
control-flows of the genuine services that compose a service flow. Next, V rf
generates the measurement for each service flow, and at the end of this procedure,
V rf stores in a database a single hash value for each legitimate service flow. A
conceptual overview of our system model is depicted in Figure 5.

At the attestation time, V rf sends an attestation request 1 to the device
hosting the first service of a given service flow. Upon receiving the attestation
request, the device initiates the attestation process for the intended service
2 . During the execution of the service, a run-time trace module traces all the

instructions of the services and invokes a hash module to compute an accumulative
hash for the entire control-flow path that the service follows at run-time. Then,
each service invocation comprises also the attestation result. This process binds
all the services attestation reports generated through the entire service flow 2 -

6 . After completion, the first service of the service flow sends to V rf the final

attestation report of the entire service flow 7 . In the end, V rf validates the
received result with the known measurements stored previously in the database
8 . If the final attestation result matches with one of the pre-calculated values,
V rf ensures that the distributed service is in the legitimate state. Otherwise,
the distributed service is compromised.

5 Adversary model and Security Requirements

In this section, first we describe an adversary model in a distributed IoT service
setting, and then we define the required security properties for a distributed
remote attestation protocol.

5.1 Adversary model

The main goal of an adversary Adv is to compromise the execution or the results
of a distributed IoT service. Thus, the aim of remote attestation is to detect the
distributed services which are compromised or maliciously influenced by Adv. We
consider the following possible actions of an Adv against distributed IoT services:

– Software adversary. Adv can compromise the binaries of the services, can
inject malicious code in the free space of the program memory of a device, or
can exploit at run-time a service vulnerability to manipulate the data memory
of a device (e.g., by corrupting control-flow pointers or data pointers).

– Communication adversary. Adv can eavesdrop on and alter the communi-
cation data between services. Adv will be particularly interested to alter the
communication data in such way that it will change the intended control-flow
of the invoked service.

– Replay attack. Adv precomputes the operations of the attestation proce-
dure, and reports to V rf a previous valid response which hides the attack.

RADIS: Remote Attestation of Distributed IoT Services 11

Assumptions. Like in other attestation schemes, we rule out physical attacks,
and we assume that a software adversary cannot compromise hardware-protected
memory. While we do not consider Denial of Service (DoS) attacks, we limit
these attacks by using a symmetric key for the service invocations, thus, a device
does not perform intensive computations to refuse a fake service request. We also
assume that software attacks and Man in the middle (MITM) attacks impact the
control-flow of a service software. Furthermore, we rule out an adversary that
relocates itself without affecting the control-flow of the distributed services at the
attestation time. We also assume that services will respond during the attestation
procedure. However, since RADIS includes the attestation result in the service
invocations, typically a non-responding service will generate a timeout message,
and consequently, the final attestation result will not comprise the information
about the non-responsive service.

5.2 Security requirements

In order to be resilient to the above attacks, the remote attestation scheme of
distributed services should satisfy the following security properties:

– Authenticity and integrity of services: The attestation scheme should
perform software integrity verification of a distributed service to guarantee
that the distributed service has not been modified by any software adversary.
In particular, the protocol should provide authentic and reliable evidence to
prove that at run-time a distributed service has followed a legitimate control-
flow. The attestation scheme should guarantee the integrity and authenticity
of each of the services that compose a distributed service.

– Integrity of communication data: The attestation scheme should detect
the compromised state of distributed services when a MITM attack, which
alters the communication data between two distributed services, causes the
invoked service to execute a non-intended control-flow. Each distributed
service should be able to verify the trustworthy origin of its inputs, and it
should reject any service calls invoked by an unauthorized device.

– Freshness: To be resilient to replay attack, any service should not be able
to reply to the attestation request of V rf with a pre-computed value that
could hide an ongoing attack on the service. Likewise, an invoked service
should prove to the calling service the freshness of the response it provides
to the caller.

6 Preliminaries

In order to achieve all security properties described above, our attestation scheme
requires the following components.

Signature scheme. A signature algorithm σ ← sig(sk;m) takes as input a
message m and a secret signing key sk and outputs a signature σ. A verification
algorithm {0, 1} ← vrfsig(pk;m,σ) verifies whether σ is valid or invalid on input
of a message m, a signature σ, and a public verification key pk.

12 Mauro Conti, Edlira Dushku, and Luigi Vincenzo Mancini

Message authentication code (MAC). MAC is a pair of polynomial time
algorithms signMac() and verifyMac() such that µ← signMac(k;m) outputs
a MAC tag µ on input of m and k, and {0, 1} ← verifyMac(k;m,µ) verifies µ
on input of m and k.

Graph hashing. A Control Flow Graph represents the legitimate execution
flows of a given software. For instance, Figure 6 depicts two valid execution flows:
N1 → N2 → N4 and N1 → N3 → N4, where each graph node N1 .. N4 denotes a
software instruction or a group of uninterrupted sequences of instructions, i.e.,
basic blocks. We borrow the hash engine from C-FLAT, which associates each
valid execution flow of a single device with a unique hash value, computing Hl =
Hash(Hl−1, Nl).

N1

N2 N3

N4

H1 = H (0, N1)

H2 = H (H1, N2) H3 = H (H1, N3)

 H4 = H (H2, N4) OR H (H3, N4)

Fig. 6: Hashing algorithm of Control Flow Graph

7 Remote attestation of distributed IoT services: RADIS

We now describe RADIS, our remote attestation protocol for distributed IoT
services.

RADIS has two main operation modes: setup mode and attestation mode.
Setup mode is an initial procedure, executed only once, which allows trustworthy
execution of the remote attestation protocol. Attestation mode is a periodical
procedure initiated by V rf at an arbitrary time. In Table 1, we summarize the
terms used in RADIS.

7.1 Setup phase

Setup phase includes two operations: key setup and service measurement, executed
respectively by OP and V rf .

Key setup. To establish a secure communication between V rf and Prv,
each deployed device Di knows V rf ’s public key PKV rf and owns an asymmetric
key-pair (pki, ski). In addition, two devices Di and Dj that will interact in the
network establish a shared symmetric attestation Message Authentication Code
(MAC) key kij . The secret signing key ski and the shared attestation key kij

RADIS: Remote Attestation of Distributed IoT Services 13

Table 1: Notation Summary of RADIS protocol
Term Description

OP System Operator
V rf Verifier of a distributed IoT system
SKV rf Secret key of V rf
PKV rf Public key of V rf
Di Device i
Prvi Prover i
ski Secret key of Di

pki Public key of Di

kij shared symmetric key between Di and Dj

Siu Unique name of a service running on Di

SFG Service Flow Graph
GHVi Global Hash Value stored in Di for the

control-flow execution of a service flow

Procedure Description

signMac(k;m) generates MAC tag on m
verifyMac(k;m,µ) verifies MAC tag µ on m using k
sig(sk;m) encrypts a message m using a secret key sk
vrfsig(pk;m,σ) verifies σ on m using public key pk
servatt() performs attestation for a given service
callatt() a calling service sends an attestation

request to an invoked service
respatt() reports attestation result from an invoked

service to a calling service
getrespatt() retrieves the attestation response from an

invoked service to a calling service

are both stored within hardware-protected memory, preventing untrusted parties
from using these keys. Alternatively, as a lightweight key exchanging scheme
between devices can be used a random key predistribution scheme [7,5] which rely
on probabilistic key sharing among devices. The basic idea is that each device
is initialized with m keys, selected from a large pool of S keys, such that two
random subsets of size m in S will share at least one key with some probability
p. Next, devices will perform shared-key-discovery to find out which of other
devices they share a key with. Note that the key setup process between devices
is managed by OP , and this work assumes that two device Di and Dj share a
symmetric key kij without providing details about the key management scheme.

Service measurement. Service measurement is a one-time-only procedure
that V rf performs offline to measure the legitimate service flows of a distributed
service. Service measurement procedure follows the assumption that V rf has
access to the binaries of all the services and V rf knows in advance the legitimate
interactions between IoT devices. First, V rf builds a graph, in which the nodes
represent services and the edges determine the execution order of the services in a

14 Mauro Conti, Edlira Dushku, and Luigi Vincenzo Mancini

distributed service. Next, V rf builds the Control Flow Graph of every service and
builds a Service Flow Graph (SFG) to represent all the possible valid transitions
that a distributed service may follow at run-time. Then, starting from each valid
transition, V rf executes a measurement function to associate each legitimate
service flow with a single hash value as shown in Figure 7. Finally, V rf stores all
the generated hash values in a database. In this initial setup phase, although the
measurement of the Control Flow Graph can introduce high complexity, the V rf
generates the measurements offline, so the complexity of software measurement
does not impact the performance of the remote attestation procedure on the
device. Moreover, a typical IoT service is expected to be less complex than
traditional applications, and V rf has sufficient processing resources.

7.2 Attestation phase

The attestation procedure starts with V rf who sends an attestation request
Ch = Siu, inputSiu, R, σV rf , where Siu is the name of the service to be attested,
inputSiu is the initial input for the given service Siu, R is a randomized nonce to
ensure the freshness of the communication, and σV rf is V rf ’s signature over Siu,

inputSiu and R (as shown in Step 1 in Figure 8). Upon receiving the attestation
request Ch, the device Di, which serves as a prover Prvi, verifies the signature
by using the V rf ’s public key PKV rf . If the signature is valid, RADIS protocol,

which is running on Prvi, invokes the procedure servatt (Step 2) to attest Siu

with the provided input inputSiu. Since Siu is the first service of the service flow,
GHVi will be initialized with 0. The invocation of servatt triggers the tracing of
the execution flow of Siu, to compute a hash value for each instruction, and to
store the accumulated hash value in GHVi.

A

B

D

C

Siu

E

F
G

Sjv

H

Control-flow path
Service Flow path

Service init
Node of CFG

H1 = Hash (0, Siu)

H2 = Hash (H1, A)

H3 = Hash (H2, B)

H9 = Hash (H8, C)

H4 = Hash (H3, Sjv)

H5 = Hash (H4, E)

H6 = Hash (H5, F)

H8 = Hash (H7, H)

H7 = Hash (H5, G)

H10 = Hash (H9, D)

Fig. 7: Hashing procedure for a legitimate Service Flow in RADIS

When Siu invokes another service Sjv, the code of Siu that handles the

service invocation will be attested by the procedure callatt (Step 3). Among

RADIS: Remote Attestation of Distributed IoT Services 15

 Verifier

 R ←{0,1}n;
 σVrf←sig(SKVrf; Siu i⃦nputSiu R⃦);

 vrfsig(pki; outputSiu, R, σPrv)

 Device i

 if (vrfsig(PKVrf; Siu ⃦inputSiu ⃦R, σVrf)) then
Begin
 GHVi ⟵ 0;
 servatt(Siu, inputSiu, GHVi)
 Begin
 ∀ Nl ∈ CFG(Siu)
 begin

 GHVi ⟵ Hash(GHVi, Nl);
 end
 return outputSiu ⃦GHVi;
 End

callatt()
 Begin
 Sjv ⟵ name of invoked service;
 Ri ←{0,1}n;
 msgi ⟵ Sjv o⃦utputSiu G⃦HVi R⃦i;
 µi⟵ signMac(kij; msgi);
 End

getrespatt()
 Begin
 if (verifyMac(kij;msgj)) then
 outputSjv ⃦GHVj ⃦Ri ⟵ resp;
 GHVi ⟵ GHVj;
 End

possibly more code to attest by calling
again the procedures in

 σPrv ⟵ sig(ski; R o⃦utputSiu ⃦GHVi);
Result = { R, outputSiu, GHVi, σPrv}

Else

 Reject Ch;
End.

 Device j

if (verifyMac(kij; msgi, µi)) then
Begin
Sjv ⃦inputSjv ⃦GHVi ⃦Ri ⟵ msgi;
res ⟵ servatt(Sjv, inputSjv, GHVi);
outputSjv G⃦HVj ⟵ res;

respatt()
 Begin
 msgj ⟵ Ri ⃦outputSjv ⃦GHVj;
 µj ⟵ signMac(kij; msgj);
 End

Else
 Reject req;
End.

Ch = {Siu, inputSiu, R, σVrf}

 req = {msgi, µi}

 Result

resp = {msgj, µj}

1

2

3

4

5

6

7

2 3 6

Fig. 8: The algorithm of RADIS attestation protocol

16 Mauro Conti, Edlira Dushku, and Luigi Vincenzo Mancini

the arguments of the service call, the service invocation will also include the
attestation result of Siu and a nonce Ri to initiate the attestation for Sjv.
Specifically, to initiate the request, callatt computes a MAC signature µi =
signMac(kij ;msgi) over the message msgi = Sjv ‖ outputSiu ‖ GHVi ‖ Ri,
where Sjv is the name of the invoked service, outputSiu is the output Siu which
serves as input data in the service call, GHVi is the attestation result of Siu,
and Ri is a randomized nonce. On receiving the service request, Dj uses kij to
verify the MAC signature verifyMac(kij ;msgi, µi) and prove the authenticity
and integrity of the request. In case the service call is valid, RADIS protocol
running on Dj starts the attestations for Sjv by calling servatt (Step 4) on
the received input data. The code of Sjv which handles the response will be

attested by respatt (Step 5). Next, Di handles the response of Dj by calling

getrespatt (Step 6) and updates GHVi with the hash value GHVj produced
by Dj . After the response, in case Siu continues code execution or invokes other
services, RADIS will trigger again servatt, callatt, and getrespatt.

Upon a complete execution of all the service that compose a service flow,
Prvi retrieves GHVi stored locally, and it sends back to V rf the signed attes-
tation result σPrv =sig(ski;R ‖ outputSiu ‖ GHVi) (Step 7). V rf verifies the
signature of the response vrfsig(pki;R ‖ outputSiu ‖ GHVi ‖ σPrv)) and then
proceeds with hash validation. Since V rf has initially stored the valid hash for
each service, to validate the attestation response, V rf checks in the database
whether GHVi is among the legitimate hash values saved in the database. If
it matches, then GHVi serves as an evidence to prove that each service of the
service flow is legitimate.

8 Experimental setup and evaluation

This section describes our experiments and presents the performance evaluation
of RADIS.

Recall from Figure 8 that RADIS protocol computes a hash value for every
running service in a distributed system, and it is composed of two main compu-
tations: (1) the attestation of each individual service that composes a distributed
service (performed by servatt()) and (2) the service request invocation and the
reply obtained along with each remote service attestation (performed by callatt(),
respatt(), getrespatt()). The attestation for each individual service is performed
based on the control-flow of the service. As the complexity of this computation is
similar to the protocol described in [1], the complexity of the hash computation
for the individual attestation is linear to the number of control-flow instructions
that the service has to execute. Considering that in RADIS, the hash computation
for each service starts either from an initial service (from 0) or from a previous
calculated hash (as described in Section 7), RADIS does not introduce additional
overhead with respect to the work [1] to compute the hash of each individual
service.

However, in order to transmit the attestation result among services, RADIS
sends a hash value in every service call in addition to the standard parameters.

RADIS: Remote Attestation of Distributed IoT Services 17

Due to the communication of the hash value, RADIS introduces an additional
overhead compared to the service calls where no attestation of distributed services
is performed. Considering that RADIS computes a single hash over a previous
calculated hash (as described in Figure 8, procedure servatt()), the hash length
remains constant despite the number of services that can compose a distributed
service. In the following, we describe the experiment and the evaluation of the
additional overhead that RADIS introduces.

8.1 Experimental Setup

To attest individual services, we developed a hash module and customized a trace
module3 to trace the control-flow at run-time. During execution, the customized
trace module invokes the hash module to compute and accumulate a single hash
value for each executed control-flow. We assume that an adversary will not be
able to disable or modify the trace module and the hash module. For a secure
deployment of the protocol on real devices, trace module and hash module can
run within a lightweight hardware-assisted secure environment based on ARM
TrustZone.

In order to measure the overhead for transmitting a hash value in every
service call, we implemented a distributed service scenario composed of three
services: captureImage() → checkImage() → unlockDoor(). We implemented
each service in Python v3.6.3 using Python Flask v1.0.2. We deployed each
service inside a Docker container with 1GB RAM and 1.2GHz CPU running on
Alpine Linux v3.8 and establish a HTTP communication among the services. We
use SHA-1 and SHA-384 as a cryptographic hash function and a Keyed-Hash
Message Authentication Code (HMAC) based on SHA-256 as a MAC in order to
show the complexity and computational overhead of the implemented distributed
service.

8.2 Evaluation

For single service attestation, the overhead to compute a hash for the entire
control-flow of a service with 10 lines of code is ≈ 36 microseconds. We evaluated
the communication overhead of RADIS by measuring the run-time of distributed
services without performing the attestation protocol and with performing the
attestation with the two cryptographic hash functions, namely, SHA-1 and
SHA-384.

From Table 2 one can see that the communication overhead of SHA-1 and
SHA-384 among two services is respectively ≈ 8 milliseconds and ≈ 9 milliseconds
with respect to the case of no attestation. While in the case of three services,
the communication overhead is ≈ 16ms for SHA-1 and ≈ 17.5ms for SHA-
384. The time of signature verification HMAC SHA-256 of each service is ≈ 1
millisecond, and it is included in the measured run-time shown in Table 2. The

3 We customized trace which is an open-source python module
https://docs.python.org/2/library/trace.html.

18 Mauro Conti, Edlira Dushku, and Luigi Vincenzo Mancini

Table 2: RADIS run-time in seconds (s)
Services No attest SHA-1 SHA-384

captureImage− checkImage 0.00383s 0.01164s 0.01213s
checkImage− unlockDoor 0.00441s 0.01211s 0.01298s
captureImage− checkImage− unlockDoor 0.00750s 0.02355s 0.02503s

runtime measurements of RADIS are also shown in Figure 9 which illustrates a
comparison of RADIS performance for SHA-1 and SHA-384 for the services that
compose the distributed service of our case study application.

captureImage-
checkImage

checkImage-
unlockDoor

captureImage-checkImage-
unlockDoor

Services

0.000

0.005

0.010

0.015

0.020

0.025

Ru
nt

im
e(

s)

no attestation
SHA-1
SHA-384

Fig. 9: Comparison of RADIS performance for SHA-1 and SHA-384 for two and
three services in a distributed service

Our experiments show that the communication overhead between two services
is constant. Therefore, for a distributed service which comprises N services, the
overhead is linear in (N-1). Let Tnoattest be the time of interaction between
services when no attestation is performed and Toverhead is the overhead of RADIS
between two services. The runtime TRADIS of the communication between N
services in RADIS can be given as TRADIS = Tnoattest + Toverhead ∗ (N − 1).
The scalability of RADIS for N services depends on scalability properties of the
underlying architecture of a distributed service. See Figure 10 that reports the
overhead of RADIS for SHA-1 in a various number of services that compose
a distributed system. The results confirm that the performance of RADIS is
reasonable for attesting distributed IoT services.

RADIS: Remote Attestation of Distributed IoT Services 19

2 services 3 services 4 services 5 services 8 services 10 services

Number of services in a distributed service

0.00

0.02

0.04

0.06

0.08

0.10

Ru
nt

im
e

(s
)

Comparison of RADIS
no-attestation
RADIS SHA-1

Fig. 10: RADIS performance in various number of services in a distributed system

9 Security Analysis

This section presents some arguments to give an insight into the proof that
RADIS meets the security requirements described in Section 5.2.

Authenticity and Integrity of software: In RADIS, a trace module
intercepts the control-flow of each service at run-time and invokes a hash module
to compute a cumulative hash. Thus, Adv will not be able to execute an arbitrary
code or change the control-flow that will not be observed by the hash module.
Following the assumptions that the hash functions are collision-resistant, and
that Adv cannot disable or modify the code of the trace and hash module, then
Adv will not be able to generate a valid hash value for an altered control-flow.
Additionally, RADIS intercepts the service calls, and each invoked service first
registers the attestation result of the calling service, and then starts the execution.
Hence, a data attack on the calling service that produces a corrupted output
which changes the control-flow of the invoked service will produce an unknown
hash value to V rf . As only RADIS can access the secret signing key sk, the final
attestation result is authenticated and cannot be tampered by Adv.

Integrity of communication: Any changes of the communication data
by Adv that effects the execution flow of the invoked service will produce an
unknown hash value to V rf . The communication data between two devices
is authenticated with a MAC symmetric encryption kij . Given a secure MAC
function, it will be infeasible for Adv to forge the data without knowing kij .

Freshness: The freshness of the attestation is ensured by a randomized
nonce R sent by V rf , and randomized nonces Ri exchanged among device Di.
Assuming that the probability of sending a randomized nonce R, where R = Rold

is negligible, two different attestation results will not match. Therefore, V rf can
detect the replay attack.

20 Mauro Conti, Edlira Dushku, and Luigi Vincenzo Mancini

10 Conclusions and Future works

While IoT systems become interoperable, an important challenge for the remote
attestation schemes is to guarantee the trustworthy state of the IoT services
that compose a distributed service. A secure interaction between devices is a key
issue in IoT systems, and in this paper, we emphasize the need for a distributed
services attestation in IoT systems. We presented RADIS, as a protocol that
provides a comprehensive and reliable integrity check of a distributed service. Our
solution gives evidence about the trustworthiness of the services that compose a
distributed services and the interaction flow between services.

Future work includes the optimization of hash computation for resource-
constrained devices and implementation of our protocol on real devices. In
addition, we plan to investigate lightweight authentication schemes for distributed
IoT services. Finally, we are looking for possible solutions for development of
low cost lightweight easy to deploy remote attestation scheme for dynamic IoT
swarms.

11 Acknowledgement

This work has been partially funded by the Progetto Ateneo Sapienza 2019,
”PRIvacy-preserving, Security, and MAchine-learning techniques for healthcare
applications (PRISMA)”.

References

1. Abera, T., Asokan, N., Davi, L., Ekberg, J.E., Nyman, T., Paverd, A., Sadeghi,
A.R., Tsudik, G.: C-FLAT: Control-Flow Attestation for Embedded Systems Soft-
ware. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security CCS ’16 (2016)

2. Ambrosin, M., Conti, M., Lazzeretti, R., Masoom Rabbani, M., Ranise, S.: PADS:
Practical Attestation for Highly Dynamic Swarm Topologies. ArXiv e-prints (2018)

3. Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.R., Schunter, M.:
SANA: Secure and Scalable Aggregate Network Attestation. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security CCS
’16 (2016)

4. Asokan, N., Brasser, F., Ibrahim, A., Sadeghi, A.R., Schunter, M., Tsudik, G.,
Wachsmann, C.: SEDA: Scalable Embedded Device Attestation. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security
CCS ’15 (2015)

5. Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor
networks. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy.
SP ’03 (2003)

6. Dessouky, G., Zeitouni, S., Nyman, T., Paverd, A., Davi, L., Koeberl, P., Asokan,
N., Sadeghi, A.R.: LO-FAT: Low-Overhead Control Flow ATtestation in Hardware.
In: Proceedings of the 54th Annual Design Automation Conference 2017 DAC ’17
(2017)

RADIS: Remote Attestation of Distributed IoT Services 21

7. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security CCS ’02 (2002)

8. Gu, L., Cheng, Y., Ding, X., Deng, R.H., Guo, Y., Shao, W.: Remote Attestation on
Function Execution (Work-in-progress). In: Proceedings of the First International
Conference on Trusted Systems on - INTRUST ’09 (2010)

9. Hu, H., Shinde, S., Adrian, S., Chua, Z.L., Saxena, P., Liang, Z.: Data-Oriented
Programming: On the Expressiveness of Non-control Data Attacks. In: 2016 IEEE
Symposium on Security and Privacy SP ’16 (2016)

10. Ibrahim, A., Sadeghi, A.R., Tsudik, G., Zeitouni, S.: DARPA: Device attestation
resilient to physical attacks. In: Proceedings of the 9th ACM Conference on Security
& Privacy in Wireless and Mobile Networks WiSec ’16 (2016)

11. Kil, C., Sezer, E.C., Azab, A.M., Ning, P., Zhang, X.: Remote attestation to dynamic
system properties: Towards providing complete system integrity evidence. In: 2009
IEEE/IFIP International Conference on Dependable Systems & Networks (2009)

12. Kohnhäuser, F., Büscher, N., Gabmeyer, S., Katzenbeisser, S.: SCAPI: a scalable
attestation protocol to detect software and physical attacks. In: Proceedings of the
10th ACM Conference on Security and Privacy in Wireless and Mobile Networks
WiSec ’17 (2017)

13. Kohnhäuser, F., Büscher, N., Katzenbeisser, S.: SALAD: Secure and Lightweight
Attestation of Highly Dynamic and Disruptive Networks. In: Proceedings of the
2018 on Asia Conference on Computer and Communications Security ASIACCS
’18 (2018)

14. KrebsonSecurity: Mirai botnet. http://krebsonsecurity.com/tag/mirai-botnet
(October 2016), [Online; accessed 15-September-2018]

15. Ronen, E., Shamir, A., Weingarten, A.O., OFlynn, C.: IoT goes nuclear: Creating
a ZigBee chain reaction. In: 2017 IEEE Symposium on Security and Privacy (SP)
(2017)

16. Senrio: Devil’s ivy: Flaw in widely used third-party code impacts millions.
http://blog.senr.io/blog/devils-ivy-flaw-in-widely-used-third-party-
code-impacts-millions (July 2017), [Online; accessed 15-September-2018]

17. Shacham, H.: The geometry of innocent flesh on the bone. In: Proceedings of the
14th ACM conference on Computer and communications security CCS ’07 (2007)

18. Shi, E., Perrig, A., Doorn, L.V.: BIND: A Fine-Grained Attestation Service for
Secure Distributed Systems. In: 2005 IEEE Symposium on Security and Privacy
(SP) (2005)

19. Zeitouni, S., Dessouky, G., Arias, O., Sullivan, D., Ibrahim, A., Jin, Y., Sadeghi,
A.R.: ATRIUM: Runtime attestation resilient under memory attacks. In: 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). pp.
384–391 (2017)

http://krebsonsecurity.com/tag/mirai-botnet
http://blog.senr.io/blog/devils-ivy-flaw-in-widely-used-third-party-code-impacts-millions
http://blog.senr.io/blog/devils-ivy-flaw-in-widely-used-third-party-code-impacts-millions

	RADIS: Remote Attestation of Distributed IoT Services

