4 research outputs found

    3중 샘플링 방식 델타-시그마 ADC를 이용한 디지털 Capacitive MEMS 마이크로폰

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022. 8. 김수환.본 논문에서는 트리플 샘플링 적분기를 사용한 Capacitive 방식의 MEMS 마이크로폰이 제시되었다. 트리플 샘플링은 델타-시그마 방식의 아날로그-디지털 변환기의 첫 번째 적분기에 사용되었고 크게 두 가지의 동작으로 구분된다. 첫 번째로 적분기의 입력에서 반주기 지연 차동 입력을 빼서 신호 크기를 2배로 만들는 방식. 두 번째로 DAC의 피드백 커패시터를 샘플링 커패시터로 사용하여 입력 전압을 추가로 증가시키는 방식이다. 추가적으로 기존에서 샘플링 커패시터를 증가시켜 신호의 크기를 증폭시키는 방식과 결합하여 실수배의 이득을 얻을 수 있다. 또한 추가적인 커패시터, 타이밍, 전류 소모 없이 구조 변경만으로 이를 달성하였기 때문에 별다른 trade-off 없이 신호의 크기를 증폭시킬 수 있었다. 추가적으로 트리플 샘플링 방식의 적분기 신호 전달 함수 및 잡음 분석 또한 포함하였다. 우리의 readout 회로는 공급 전압이 1.8V인 0.18 m CMOS 공정으로 구현하였고 single-ended capacitive MEMS 트랜스듀서를 사용하여 측정하였다. 전류 소모량은 520 μA 이다. 마이크로폰은 A-weighted 신호 대 잡음 비는 62.1 dBA, 음향 과부하 지점은 115 dB SPL을 달성하였고 칩의 die size는 0.98〖"mm" 〗^2 이다.A triple-sampling ΔΣ ADC can replace the programmable-gain amplifier commonly used in the readout circuit for a digital capacitive MEMS microphone. The input voltage can then be multiplied by subtracting a further half-period delayed differential input and using the feedback capacitor of the DAC as a sampling capacitor. This triple-sampling technique results in a readout circuit with sensitivity and noise performance comparable to recent designs, but with a reduced power requirement. CMRR improvement is achieved by subtracting differential inputs and superior noise performance compare to conventional structure, as amplifier noise and DAC kT/C noise is not amplified by triple-sampling structure while the signal is increased by its gain. Triple-sampling also can be operated as a single-to-differential circuit. A MEMS microphone incorporating this readout circuit, fabricated in a 0.18μm CMOS process, achieved an A-weighted SNR of 62.1 dBA at 94 dB SPL with 520 μA current consumption, to which triple-sampling was shown to contribute 4.5 dBA.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.1.1 MEMS MICROPHONE TRENDS 1 1.1.2 TYPE OF MEMS MICROPHONES 4 1.1.3 PREVIOUS WORKS 7 1.2 MEMS MICROPHONE BASIC TERMS 9 1.3 THESIS ORGANIZATION 12 CHAPTER 2 SYSTEM OVERVIEW 13 2.1 SYSTEM ARCHITECTURE 13 CHAPTER 3 INTERFACE CIRCUITS AND POWER MANAGEMENT CIRCUITS 16 3.1 PSEUDO-DIFFERENTIAL SOURCE FOLLOWER 17 3.2 CHARGE PUMP 19 3.3 LOW DROPOUT REGULATOR 22 3.3.1 DESIGN CONSIDERATION OF LOW DROPOUT REGULATOR 22 3.3.2 IMPLEMENTATION OF LOW DROPOUT REGULATOR 26 CHAPTER 4 TRIPLE-SAMPLING DELTA-SIGMA ADC 31 4.1 BASIC OF DELTA-SIGMA ADC 31 4.2 IMPLEMENTATION OF TRIPLE-SAMPLING DELTA-SIGMA MODULATOR 37 4.2.1 CONVENTIONAL 1ST INTEGRATOR STRUCTURE 37 4.2.2 CROSS-SAMPLING 1ST INTEGRATOR 40 4.2.3 TRIPLE-SAMPLING 1ST INTEGRATOR 43 4.2.4 STF ANALYSIS OF TRIPLE-SAMPLING 1ST INTEGRATOR 47 4.2.5 THERMAL NOISE ANALYSIS OF TRIPLE-SAMPLING 1ST INTEGRATOR 51 4.2 CIRCUIT IMPLEMENTATION OF DELTA-SIGMA ADC 57 CHAPTER 5 MEASUREMENT RESULTS 64 5.1 MEASUREMENT ENVIRONMENT 64 5.2 MEASUREMENT RESULTS 67 5.3 PERFORMANCE SUMMARY 72 CHAPTER 6 CONCLUSION 74 BIBLIOGRAPHY 76 한글초록 79박

    Linearization of Time-encoded ADCs Architectures for Smart MEMS Sensors in Low Power CMOS Technology

    Get PDF
    Mención Internacional en el título de doctorIn the last few years, the development of mobile technologies and machine learning applications has increased the demand of MEMS-based digital microphones. Mobile devices have several microphones enabling noise canceling, acoustic beamforming and speech recognition. With the development of machine learning applications the interest to integrate sensors with neural networks has increased. This has driven the interest to develop digital microphones in nanometer CMOS nodes where the microphone analog-front end and digital processing, potentially including neural networks, is integrated on the same chip. Traditionally, analog-to-digital converters (ADCs) in digital microphones have been implemented using high order Sigma-Delta modulators. The most common technique to implement these high order Sigma-Selta modulators is switchedcapacitor CMOS circuits. Recently, to reduce power consumption and make them more suitable for tasks that require always-on operation, such as keyword recognition, switched-capacitor circuits have been improved using inverter-based operational amplifier integrators. Alternatively, switched-capacitor based Sigma- Delta modulators have been replaced by continuous time Sigma-Delta converters. Nevertheless, in both implementations the input signal is voltage encoded across the modulator, making the integration in smaller CMOS nodes more challenging due to the reduced voltage supply. An alternative technique consists on encoding the input signal on time (or frequency) instead of voltage. This is what time-encoded converters do. Lately, time-encoding converters have gained popularity as they are more suitable to nanometer CMOS nodes than Sigma-Delta converters. Among the ones that have drawn more interest we find voltage-controlled oscillator based ADCs (VCOADCs). VCO-ADCs can be implemented using CMOS inverter based ring oscillators (RO) and digital circuitry. They also show noise-shaping properties. This makes them a very interesting alternative for implementation of ADCs in nanometer CMOS nodes. Nevertheless, two main circuit impairments are present in VCO-ADCs, and both come from the oscillator non-idealities. The first of them is the oscillator phase noise, that reduces the resolution of the ADC. The second is the non-linear tuning curve of the oscillator, that results in harmonic distortion at medium to high input amplitudes. In this thesis we analyze the use of time encoding ADCs for MEMS microphones with special focus on ring oscillator based ADCs (RO-ADCs). Firstly, we study the use of a dual-slope based SAR noise shaped quantizer (SAR-NSQ) in sigma-delta loops. This quantizer adds and extra level of noise-shaping to the modulator, improving the resolution. The quantizer is explained, and equations for the noise transfer function (NTF) of a third order sigma-delta using a second order filter and the NSQ are presented. Secondly, we move our attention to the topic of RO-ADCs. We present a high dynamic range MEMS microphone 130nm CMOS chip based on an open-loop VCO-ADC. This dissertation shows the implementation of the analog front-end that includes the oscillator and the MEMS interface, with a focus on achieving low power consumption with low noise and a high dynamic range. The digital circuitry is left to be explained by the coauthor of the chip in his dissertation. The chip achieves a 80dBA peak SNDR and 108dB dynamic range with a THD of 1.5% at 128 dBSPL with a power consumption of 438μW. After that, we analyze the use of a frequency-dependent-resistor (FDR) to implement an unsampled feedback loop around the oscillator. The objective is to reduce distortion. Additionally phase noise mitigation is achieved. A first topology including an operational amplifier to increase the loop gain is analyzed. The design is silicon proven in a 130 nm CMOS chip that achieves a 84 dBA peak SNDR with an analog power consumption of 600μW. A second topology without the operational amplifier is also analyzed. Two chips are designed with this topology. The first chip in 130 nm CMOS is a full VCO-ADC including the frequencyto- digital converter (F2D). This chip achieves a peak SNDR of 76.6 dBA with a power consumption of 482μW. The second chip includes only the oscillator and is implemented in 55nm CMOS. The peak SNDR is 78.15 dBA and the analog power consumption is 153μW. To finish this thesis, two circuits that use an FDR with a ring oscillator are presented. The first is a capacity-to-digital converter (CDC). The second is a filter made with an FDR and an oscillator intended for voice activity detection tasks (VAD).En los últimos años, el desarrollo de las tecnologías móviles y las aplicaciones de machine-learning han aumentado la demanda de micrófonos digitales basados en MEMS. Los dipositivos móviles tienen varios micrófonos que permiten la cancelación de ruido, el beamforming o conformación de haces y el reconocimiento de voz. Con el desarrollo de aplicaciones de aprendizaje automático, el interés por integrar sensores con redes neuronales ha aumentado. Esto ha impulsado el interés por desarrollar micrófonos digitales en nodos CMOS nanométricos donde el front-end analógico y el procesamiento digital del micrófono, que puede incluir redes neuronales, está integrado en el mismo chip. Tradicionalmente, los convertidores analógicos-digitales (ADC) en micrófonos digitales han sido implementados utilizando moduladores Sigma-Delta de orden elevado. La técnica más común para implementar estos moduladores Sigma- Delta es el uso de circuitos CMOS de capacidades conmutadas. Recientemente, para reducir el consumo de potencia y hacerlos más adecuados para las tareas que requieren una operación continua, como el reconocimiento de palabras clave, los convertidores Sigma-Delta de capacidades conmutadas has sido mejorados con el uso de integradores implementados con amplificadores operacionales basados en inversores CMOS. Alternativamente, los Sigma-Delta de capacidades conmutadas han sido reemplazados por moduladores en tiempo continuo. No obstante, en ambas implementaciones, la señal de entrada es codificada en voltaje durante el proceso de conversión, lo que hace que la integración en nodos CMOS más pequeños sea complicada debido a la menor tensión de alimentación. Una técnica alternativa consiste en codificar la señal de entrada en tiempo (o frecuencia) en lugar de tensión. Esto es lo que hacen los convertidores de codificación temporal. Recientemente, los convertidores de codificación temporal han ganado popularidad ya que son más adecuados para nodos CMOS nanométricos que los convertidores Sigma-Delta. Entre los que más interés han despertado encontramos los ADCs basados en osciladores controlados por tensión (VCO-ADC). Los VCO-ADC se pueden implementar usando osciladores en anillo (RO) implementados con inversores CMOS y circuitos digitales. Esta familia de convertidores también tiene conformado de ruido. Esto los convierte en una alternativa muy interesante para la implementación de convertidores en nodos CMOS nanométricos. Sin embargo, dos problemas principales están presentes en este tipo de ADCs debidos ambos a las no idealidades del oscilador. El primero de los problemas es la presencia de ruido de fase en el oscilador, lo que reduce la resolución del ADC. El segundo es la curva de conversion voltaje-frecuencia no lineal del oscilador, lo que causa distorsión a amplitudes medias y altas. En esta tesis analizamos el uso de ADCs de codificación temporal para micrófonos MEMS, con especial interés en ADCS basados en osciladores de anillo (RO-ADC). En primer lugar, estudiamos el uso de un cuantificador SAR con conformado de ruido (SAR-NSQ) en moduladores Sigma-Delta. Este cuantificador agrega un orden adicional de conformado de ruido al modulador, mejorando la resolución. En este documento se explica el cuantificador y obtienen las ecuaciones para la función de transferencia de ruido (NTF) de un sigma-delta de tercer orden usando un filtro de segundo orden y el NSQ. En segundo lugar, dirigimos nuestra atención al tema de los RO-ADC. Presentamos el chip de un micrófono MEMS de alto rango dinámico en CMOS de 130 nm basado en un VCO-ADC de bucle abierto. En esta tesis se explica la implementación del front-end analógico que incluye el oscilador y la interfaz con el MEMS. Esta implementación se ha llevado a cabo con el objetivo de lograr un bajo consumo de potencia, un bajo nivel de ruido y un alto rango dinámico. La descripción del back-end digital se deja para la tesis del couator del chip. La SNDR de pico del chip es de 80dBA y el rango dinámico de 108dB con una THD de 1,5% a 128 dBSPL y un consumo de potencia de 438μW. Finalmente, se analiza el uso de una resistencia dependiente de frecuencia (FDR) para implementar un bucle de realimentación no muestreado alrededor del oscilador. El objetivo es reducir la distorsión. Además, también se logra la mitigación del ruido de fase del oscilador. Se analyza una primera topologia de realimentación incluyendo un amplificador operacional para incrementar la ganancia de bucle. Este diseño se prueba en silicio en un chip CMOS de 130nm que logra un pico de SNDR de 84 dBA con un consumo de potencia de 600μW en la parte analógica. Seguidamente, se analiza una segunda topología sin el amplificador operacional. Se fabrican y miden dos chips diseñados con esta topologia. El primero de ellos en CMOS de 130 nm es un VCO-ADC completo que incluye el convertidor de frecuencia a digital (F2D). Este chip alcanza un pico SNDR de 76,6 dBA con un consumo de potencia de 482μW. El segundo incluye solo el oscilador y está implementado en CMOS de 55nm. El pico SNDR es 78.15 dBA y el el consumo de potencia analógica es de 153μW. Para cerrar esta tesis, se presentan dos circuitos que usan la FDR con un oscilador en anillo. El primero es un convertidor de capacidad a digital (CDC). El segundo es un filtro realizado con una FDR y un oscilador, enfocado a tareas de detección de voz (VAD).Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Antonio Jesús Torralba Silgado.- Secretaria: María Luisa López Vallejo.- Vocal: Pieter Rombout

    Contribución a la ecualización de señal en sensores basados en modulación SIGMA-DELTA

    Get PDF
    El trabajo de investigación de esta tesis doctoral consiste en obtener una arquitectura de Convertidor Analógico-Digital (ADC) que sea capaz de procesar señales en dos bandas de frecuencias diferentes (tanto en la banda de audio como en la banda de ultrasonidos) de la manera más eficiente posible en consumo de potencia y área. Implementar un nuevo ADC que permita esta funcionalidad es costoso y requeriría el diseño desde el inicio de todos los componentes que lo forman, por lo que, como alternativa, se propone realizar la modificación de un ADC previamente diseñado e integrado con un micrófono digital para su uso en aplicaciones de ultrasonidos. Este ADC esta optimizado para su funcionamiento en la banda de audio por lo que no cumpliría las especificaciones necesarias para la banda de ultrasonidos, siendo necesario variar su comportamiento en dicha banda, sin alterar su comportamiento en la banda de audio. Tras estudiar diferentes técnicas que permiten la modificación del ADC, la opción más eficiente consiste en amplificar la señal en la banda de ultrasonidos mediante la adición de una serie de coeficientes feedforward. Estos coeficientes modifican la función de transferencia de la señal sin afectar al ruido del ADC. Una vez propuesta la técnica que permite procesar señales en ambas bandas de frecuencia, se realizan una serie de estudios teóricos para analizar cuál es el impacto de dicha técnica en el ADC, en términos de estabilidad, linealidad y consumo de potencia. La obtención de los coeficientes feedforward necesarios para obtener una determinada mejora en la banda de ultrasonidos del ADC no es una tarea sencilla, por lo que en esta tesis se ha diseñado una herramienta que permite ayudar en el diseño de estos coeficientes de manera que se pueda conseguir la especificación requerida. Esta herramienta consta de diferentes fases en las que se realizan una serie de cálculos teóricos y simulaciones hasta la obtención de los valores de los nuevos coeficientes feedforward. Finalmente, la técnica propuesta ha sido evaluada mediante un caso práctico de aplicación a un ADC de tercer orden implementado para un micrófono digital. Este ADC ha sido modificado de manera que puede ser empleado tanto para audio como para ultrasonidos, aprovechando la respuesta en frecuencia del sensor MEMS, con una adición de hardware mínima, tan solo un condensador y dos interruptores. La técnica de ecualización se ha combinado con otras técnicas adicionales que han permitido su aplicación practica a nivel de circuito.The research work of this doctoral thesis consists of getting an architecture of Analogto- Digital Converter (ADC) that is able to process signals in two different frequency bands (the audio band and the ultrasound band) in an effective way in terms of power consumption and area. Implementing a new ADC that allows this functionality is expensive and requires the design from the start of all its components. For this reason, this thesis proposes, as an alternative, to modify an ADC previously designed and integrated with a digital microphone to use it in ultrasound applications. This ADC is optimized for its operation in the audio band, not satisfying the specifications needed for the ultrasound band. It is necessary to vary its behavior in the ultrasound band without changing its behavior in the audio band. After studying different techniques that allow the modification of the ADC, the most efficient option consists of amplifying the signal in the ultrasound band adding some feedforward coefficients. These coefficients modify the signal transfer function without affecting the noise of the ADC. Once proposed the technique that allows to process signals in both frequency bands, some theoretical studies are realized to analyze which is the impact of the technique in the ADC in terms of stability, linearity and power consumption. Obtaining the feedforward coefficients needed to reach a certain improvement in the ultrasound band of the ADC is not an easy task, so that in this thesis a toll has been designed for helping in the design of the coefficients to reach the required specification. This tool consists of different phases in which some theoretical calculations and simulations have been realized until obtaining the values of the new feedforward coefficients. Finally, the proposed technique has been evaluated through a practical case of application to a third order ADC, initially implemented for audio applications. This ADC has been modified so that it can be used for both audio and ultrasound applications, taking advantage the MEMS frequency response, with the minimum hardware addition, only a capacitor and two switches. This equalization technique has been combined with other additional techniques that allow its practical application at circuit level.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Emilio Olías Ruiz.- Secretario: Rocío del Río Fernández.- Vocal: Francisco Colodro Rui
    corecore