18,693 research outputs found

    Impact of ocean warming on sustainable fisheries management informs the Ecosystem Approach to Fisheries

    Get PDF
    Acknowledgements Serpetti N., Heymans J.J., and Burrows M.T. were funded by the Natural Environment Research Council and Department for Environment, Food and Rural Affairs under the Marine Ecosystems Research Programme (MERP) (grant No. NE/L003279/1). Baudron A. and Fernandes, P.G. were founded by Horizon 2020 European research projects MareFrame (grant No. 613571) and ClimeFish (grant No. 677039). Payne, B.L. was founded by the Natural Environment Research Council and Department for Environment under the ‘Velocity of Climate Change’ (grant No. NE/J024082/1).Peer reviewedPublisher PD

    Classification of Southern Ocean krill and icefish echoes using random forests

    Get PDF
    Acknowledgements The authors thank the crews, fishers, and scientists who conducted the various surveys from which data were obtained. This work was supported by the Government of South Georgia and South Sandwich Islands. Additional logistical support provided by The South Atlantic Environmental Research Institute, with thanks to Paul Brickle. PF receives funding from the MASTS pooling initiative (TheMarine Alliance for Science and Technology for Scotland), and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. SF is funded by the Natural Environment Research Council, and data were provided from the British Antarctic Survey Ecosystems Long-term Monitoring and Surveys programme as part of the BAS Polar Science for Planet Earth Programme. The authors also thank the anonymous referees for their helpful suggestions on an earlier version of this manuscript.Peer reviewedPostprin

    Carbon dioxide and ocean acidification observations in UK waters. Synthesis report with a focus on 2010–2015

    Get PDF
    Key messages: 1.1 The process of ocean acidification is now relatively well-documented at the global scale as a long-term trend in the open ocean. However, short-term and spatial variability can be high. 1.2 New datasets made available since Charting Progress 2 make it possible to greatly improve the characterisation of CO2 and ocean acidification in UK waters. 3.1 Recent UK cruise data contribute to large gaps in national and global datasets. 3.2 The new UK measurements confirm that pH is highly variable, therefore it is important to measure consistently to determine any long term trends. 3.3 Over the past 30 years, North Sea pH has decreased at 0.0035±0.0014 pH units per year. 3.4 Upper ocean pH values are highest in spring, lowest in autumn. These changes reflect the seasonal cycles in photosynthesis, respiration (decomposition) and water mixing. 3.5 Carbonate saturation states are minimal in the winter, and lower in 7 more northerly, colder waters. This temperature-dependence could have implications for future warming of the seas. 3.6 Over the annual cycle, North-west European seas are net sinks of CO2. However, during late summer to autumn months, some coastal waters may be significant sources. 3.7 In seasonally-stratified waters, sea-floor organisms naturally experience lower pH and saturation states; they may therefore be more vulnerable to threshold changes. 3.8 Large pH changes (0.5 - 1.0 units) can occur in the top 1 cm of sediment; however, such effects are not well-documented. 3.9 A coupled forecast model estimates the decrease in pH trend within the North Sea to be -0.0036±0.00034 pH units per year, under a high greenhouse gas emissions scenario (RCP 8.5). 3.10 Seasonal estimates from the forecast model demonstrate areas of the North Sea that are particularly vulnerable to aragonite undersaturation

    Putative fishery-induced changes in biomass and population size structures of demersal deep-sea fishes in ICES Sub-area VII, Northeast Atlantic Ocean

    Get PDF
    This work was supported by a series of NERC grants to the principal investigators including NE/C512961/1. The results of the early joint SAMS and IOS surveys were digitized with support from EU MAST Contract MAS2-CT920033 1993–1995, and data analyses was supported by EU FP7 Projects HERMES and HERMIONE. We thank Alain Zuur from Highland Statistics Ltd. for advice with the statistical analyses and Odd Aksel Bergstad for valuable comments that helped to improve the manuscript. We thank the ships’ companies of the RRS Challenger and RRS Discovery.Peer reviewedPublisher PD

    Use of remotely-derived bathymetry for modelling biomass in marine environments

    Get PDF
    The paper presents results on the influence of geometric attributes of satellite-derived raster bathymetric data, namely the General Bathymetric Charts of the Oceans, on spatial statistical modelling of marine biomass. In the initial experiment, both the resolution and projection of the raster dataset are taken into account. It was found that, independently of the equal-area projection chosen for the analysis, the calculated areas are very similar, and the differences between them are insignificant. Likewise, any variation in the raster resolution did not change the computed area. Although the differences were shown to be insignificant, for the subsequent analysis we selected the cylindrical equal area projection, as it implies rectangular spatial extent, along with the automatically derived resolution. Then, in the second experiment, we focused on demersal fish biomass data acquired from trawl samples taken from the western parts of ICES Sub-area VII, near the sea floor. The aforementioned investigation into processing bathymetric data allowed us to build various statistical models that account for a relationship between biomass, sea floor topography and geographic location. We fitted a set of generalised additive models and generalised additive mixed models to combinations of trawl data of the roundnose grenadier (Coryphaenoides rupestris) and bathymetry. Using standard statistical techniques—such as analysis of variance, Akaike information criterion, root mean squared error, mean absolute error and cross-validation—we compared the performance of the models and found that depth and latitude may serve as statistically significant explanatory variables for biomass of roundnose grenadier in the study area. However, the results should be interpreted with caution as sampling locations may have an impact on the biomass–depth relationship

    Stock assessment in brown shrimp (Crangon crangon) part 1: Investigation of possible methods

    Get PDF
    Het Ministerie van LNV, de gezamenlijke Producentenorganisaties voor de garnalenvisserij in Nederland, en de natuurorganisaties Stichting de Noordzee en de Waddenvereniging hebben het belang onderschreven van een gezamenlijk traject naar een verduurzaming van de garnalenvisserij en het verkrijgen van een MSC (Marine Stewardship Councel) certificering voor de garnalenvisserij. Om voor een MSC label in aanmerking te komen moet er aangetoond worden dat de gewone garnaal, Crangon crangon, niet overbevist wordt. Momenteel wordt de garnalen visserij niet beheerd en is er geen officiële bestandschatting. Wel worden er door de ICES crangon werkgroep (WGCRAN, ICES working Group on crangon fisheries and life history) op een beschrijvende manier de fluctuaties in dichtheden van de gewone garnaal bijgehouden. Het is echter wenselijk om tot een meer kwantitatieve bestandschatting te komen

    The Protection and Management of the Sargasso Sea

    Get PDF
    The Sargasso Sea is a fundamentally important part of the world's ocean, located within the North Atlantic sub-tropical gyre with its boundaries defined by the surrounding currents. It is the only sea without land boundaries with water depths ranging from the surface coral reefs of Bermuda to abyssal plains at 4500 m. The Sargasso Sea's importance derives from the interdependent mix of its physical structure and properties, its ecosystems, its role in global scale ocean and earth system processes, its socio-economic and cultural values, and its role in global scientific research. Despite this, the Sargasso Sea is threatened by a range of human activities that either directly adversely impact it or have the potential to do so. Being Open Ocean, the Sargasso Sea is part of the High Seas, the area of ocean that covers nearly 50%of the earth's surface but which is beyond the jurisdiction and responsibility of any national government, and as such it enjoys little protection. To promote the importance of the Sargasso Sea, the Sargasso Sea Alliance was created under the leadership of the Government of Bermudian 2010. This report provides a summary of the scientific and other supporting evidence for the importance of the Sargasso Sea and is intended to develop international recognition of this; to start the process of establishing appropriate management and precautionary regimes within existing agreements; and to stimulate a wider debate on appropriate management and protection for the High Seas. Nine reasons why the Sargasso Sea is important are described and discussed. It is a place of legend with a rich history of great importance to Bermuda; it has an iconic ecosystem based upon floating Sargassum, the world's only holopelagic seaweed, hosting a rich and diverse community including ten endemic species; it provides essential habitat for nurturing a wide diversity of species many of which are endangered or threatened; it is the only breeding location for the threatened European and American eels; it lies within a large ocean gyre which concentrates pollutants and which has a variety of oceanographic processes that impact its productivity and species diversity; it plays a disproportionately large role in global ocean processes of carbon sequestration; it is of major importance for global scientific research and monitoring and is home to the world's longest ocean time series of measurements; it has significant values to local and world-wide economies; and it is threatened by activities including over-fishing, pollution, shipping, and Sargassum harvesting. Apart from over-fishing many of the threats are potential, with few direct causal relationships between specific activities and adverse impacts. But there is accumulative evidence that the Sargasso Sea is being adversely impacted by human activities, and with the possibility of new uses for Sargassum in the future, the lack of direct scientific evidence does not preclude international action through the established precautionary approach. The opportunity to recognize the importance of the Sargasso Sea and to develop and implement procedures to protect this iconic region and the wider High Seas should be taken before it is too late

    Report of the ICES\NAFO Joint Working Group on Deep-water Ecology (WGDEC), 11–15 March 2013, Floedevigen, Norway.

    Get PDF
    On 11 February 2013, the joint ICES/NAFO WGDEC, chaired by Francis Neat (UK) and attended by ten members met at the Institute for Marine Research in Floedevi-gen, Norway to consider the terms of reference (ToR) listed in Section 2. WGDEC was requested to update all records of deep-water vulnerable marine eco-systems (VMEs) in the North Atlantic. New data from a range of sources including multibeam echosounder surveys, fisheries surveys, habitat modelling and seabed imagery surveys was provided. For several areas across the North Atlantic, WGDEC makes recommendations for areas to be closed to bottom fisheries for the purposes of conservation of VMEs
    corecore