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Abstract 

Target identification remains a challenge for 

acoustic surveys of marine fauna. Antarctic krill, 

Euphausia superba, are typically identified through 

a combination of expert scrutiny of echograms and 

analysis of differences in mean volume 

backscattering strengths (SV; dB re 
1
 m

-1
) measured 

at two or more echosounder frequencies. For 

commonly used frequencies, however, the 

differences for krill are similar to those for many 

co-occurring fish species that do not possess swim 

bladders. At South Georgia, South Atlantic, one 

species in particular, mackerel icefish, 

Champsocephalus gunnari, forms pelagic 

aggregations, which can be difficult to distinguish 

acoustically from large krill layers. Mackerel icefish 

are currently surveyed using bottom-trawls, but the 

resultant estimates of abundance may be biased 

because of the species’ semi-pelagic distribution. 

An acoustic estimate of the pelagic component of 

the population could indicate the magnitude of this 

bias, but first a reliable target identification method 

is required. To address this, random forests were 

generated using acoustic and net sample data 

collected during surveys. The final random forest 

classified krill, icefish, and mixed aggregations of 

weak scattering fish species with an overall 

estimated accuracy of 95%. Minimum SV, mean 

aggregation depth (m), mean distance from the 

seabed (m) and geographic positional data were 

most important to the accuracy of the random 

forest. Time-of-day and the difference between SV 

at 120 kHz (SV 120) and that at 38 kHz (SV 38) were 

also important. The random forest classification 

resulted in significantly higher estimates of 

backscatter apportioned to krill when compared to 

widely applied identification methods based on 

fixed and variable ranges of SV 120-SV 38. These 

results suggest that krill density is underestimated 

when those SV-differencing methods are used for 

target identification. Random forests are an 

objective means for target identification, and could 

enhance the utility of incidentally collected acoustic 

data. 

Key words:  acoustics, target identification, fish 

survey, South Georgia 

 

Introduction 

Mackerel icefish, Champsocephalus gunnari, 

hereafter “icefish”, is a semi-pelagic finfish 

occurring across shelf areas in the Southern 

Ocean (Kock, 2005a). The population at South 

Georgia, South Atlantic, is the target of a 
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commercial pelagic trawl fishery constrained 

by quotas of 1000 to 5000 tonnes per season, 

in recent years (Barnes et al., 2011; CCAMLR, 

2014). Icefish are assessed using bottom trawl 

surveys which may yield biased estimates of 

abundance as a result of limited availability to 

the sampling method due to pelagic feeding 

migrations undertaken by the species (Fallon 

et al., 2015; Hill et al., 2005, 2012). Adaptive 

acoustic-trawl surveys (Everson et al., 1996), 

or other implementations of combined 

acoustic-trawl survey (Kotwicki et al., 2013; 

McQuinn et al., 2005) have the potential to 

address this issue. 

The hypothesis that bias in icefish 

abundance estimates results from their 

vertical distribution can be explored using data 

from an echosounder. Acoustic data can be 

collected concurrently with bottom trawling 

(Bez et al., 2007) to estimate the density of 

fish which are unavailable to the trawl (e.g. 

Aglen et al., 1999). However, to incorporate 

acoustic estimates into the assessment of the 

population, backscatter from icefish must first 

be identified (Horne, 2000). When attributing 

acoustic data to species, a number of spatial 

scales can be considered (e.g. that of the 

school; the elementary distance sampling unit, 

EDSU; or the region of interest; Reid et al., 

2000). Distinguishing between groups of 

objects with different scattering properties 

(e.g. fish or plankton with or without gas 

inclusions) is often achievable using data 

processing on an EDSU or regional scale 

(Korneliussen et al., 2009; Madureira et al., 

1993). This typically involves resampling 

acoustic data across some range of depth and 

distance or time, followed by classification 

according to assumptions regarding scattering 

properties of the group or groups of interest 

(Hewitt et al., 2004; Madureira et al., 1993). 

Assumptions are based on the backscatter 

versus frequency, the frequency response, of 

the target organism. This is a function of its 

orientation relative to the incident sound 

wave, the incidence angle, as well as its size 

and composition (Korneliussen and Ona, 

2003). Classification may also depend on the 

target location and depth, associated seabed 

type, or other distributional co-variates (Reid 

et al., 2000). However, organism aggregations 

are often geometrically complex, and 

resampling methods can degrade identifying 

characteristics (Reid and Simmonds, 1993). A 

school-level analysis preserves finer spatial-

scale information, which could improve 

classification accuracy, and avoid any 

problems which might arise from several 

different target types occurring in a single 

EDSU. 

Although the acoustic scattering 

properties of icefish need further study, 

information can be inferred from physical 

characteristics, which will aid in the 

identification of candidate echoes. Icefish lack 

swim bladders, so the frequency response 

could be similar to that of mackerel 

(Korneliussen, 2010): dominated by a flesh 
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component at lower frequencies (e.g. 38 kHz), 

and by a bone component at higher 

frequencies (e.g. 120 kHz; see Gorska et al., 

2007). The flesh component should be 

relatively frequency independent across the 

typical operating frequencies (38-200 kHz) and 

may vary according to factors such as 

temperature and individual condition. The 

bone component would be characterised by a 

rising frequency response, peaking at ~200 

kHz, varying with fish orientation (Gorska et 

al., 2005; Korneliussen, 2010). The frequency 

response of icefish schools may therefore be 

low and flat at lower echosounder frequencies 

(38-100 kHz) relative to 120 and 200 kHz 

(Gorska et al., 2007). Krill (Euphausia superba), 

icefish, and much of the South Georgia 

groundfish assemblage have similar frequency 

responses across commonly used frequencies 

(i.e. 38, 120 and 200 kHz), and therefore may 

be indistinguishable on an echosounder 

display (Collins et al., 2008; Kock and 

Kellermann, 1991; Kock, 2005a; Lavery et al., 

2007). When such similarities exist, non-

acoustic characteristics may be more 

important to accurate classification (Reid and 

Simmonds, 1993). Therefore, the data 

processing and analysis should incorporate all 

available variables.  

Ideally, an objective target 

identification method should be applied due to 

the extensive training required for an operator 

to consistently and objectively identify a given 

species (Fernandes, 2009; Horne, 2000). In the 

Southern Ocean, Antarctic krill density and 

distribution is routinely estimated using the 

difference in volume backscattering strength 

(SV; dB re 1 m-1) measured at multiple 

frequencies (CCAMLR, 2010; Madureira et al., 

1993). Initially, a constant range of SV 

measured at 120 kHz (SV 120) minus SV 

measured at 38 kHz (SV 38) was used (Hewitt et 

al., 2004; Madureira et al., 1993). This has 

changed to include variable ranges of 

differences between SV 38, SV 120, and SV 200 

(Fielding et al., 2014; Reiss et al., 2008). 

However, these methods are typically applied 

at the EDSU level and may not differentiate 

well between species at the school level 

(Lawson et al., 2008). The latter may require 

additional classification rules regarding target 

location, depth, or time-of-day. Woodd-

Walker et al. (2003) compared an SV-difference 

method with school-level classification of 

plankton using discriminant function analysis 

(DFA) and artificial neural networks (ANN). 

Although reasonable classification results were 

attained for krill, classifications for other 

groups in the analysis had higher error rates. 

In addition, the DFA required some 

transformation of variables to account for non-

normality, and a simplified ANN had to be 

used because only a small training dataset was 

available. Tree-based methods (e.g. 

classification trees, bagged trees, random 

forests; Breiman, 2001; Hastie et al., 2009) 

have also been explored as a means for 

acoustic target identification, and have yielded 
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promising results albeit in a small number of 

case studies (D’Elia et al., 2014; Fernandes, 

2009). 

The objective of this study is to 

explore and develop a random forest (RF) 

method for discrimination between weak 

acoustic-scattering organisms at South 

Georgia. Given the many varied properties of 

trawl-verified echoes collected during fish 

surveys, a RF approach is employed to 

distinguish between three classes of echoes 

(krill, mackerel icefish, and mixed groundfish). 

Tree-based classification methods do not 

require variables to be linear, and can be used 

to process large, high-dimensional datasets 

efficiently. In addition, RF classification 

accuracy is not affected by correlations or 

interactions between variables (James et al., 

2013). Further to the development of the 

method, the RF algorithm is tested against 

fixed and variable SV-difference approaches 

(Fielding et al., 2014; Madureira et al., 1993) 

to compare outcomes. The intention of this 

comparison is to explore whether the 

alternative methods may overestimate the 

amount of backscatter attributable to krill due 

to the inclusion of backscatter from all weak 

scatterers, including icefish. 

 

Methods 

Data Sources 

Data were from South Georgia groundfish 

surveys, conducted during the Austral 

summers of 2004-2006, and the Austral winter 

of 2007 aboard the Fisheries Patrol/Research 

Vessel (FPRV) Dorada (Figure 1). The surveys 

followed a stratified design across five areas 

(Mitchell et al., 2010), in which icefish density 

(kg km-2) is estimated for two depth strata, 50-

200 m and > 200 m (generally < 300 m) using 

demersal trawl data (FP-120 trawl net; Pilling 

and Parkes, 1995). At the end of each of these 

surveys, a small number of pelagic hauls 

(International Young Gadoid Pelagic Trawl) 

targeted krill swarms and pelagic aggregations 

of icefish. During these surveys, echosounders 

(Simrad EK500) collected SV 38 and SV 120 

following synchronized 1.0-ms pulse 

transmissions every 2.170 s. The echosounders 

were calibrated using a standard 38.1-mm 

 

Figure 1. Locations of trawl-

verified echoes used in the 

training dataset for generating 

random forests. 
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diameter tungsten-carbide sphere (Foote et 

al., 1987), during each survey, at Husvik, 

Stromness Bay. In the Austral summers of 

2010-2013, krill abundance was surveyed on 

the South Georgia shelf aboard the Royal 

Research Ship (RRS) James Clark Ross (JCR). 

During these surveys, SV 38, SV 120, and SV 200 

(Simrad EK60) were collected following 1.024-

ms pulse transmissions every 2 s.  The 

scatterers of interest were sampled using a 

Rectangular Midwater Trawl (RMT8; Fielding 

et al., 2014). The echosounders were 

calibrated using copper spheres (Foote et al., 

1987), during each survey, at Stromness 

Harbour (see Fielding et al., 2014 and 

supplementary material Table S1 for more 

details). 

Post-processing of Echosounder Data 

The echosounder data were post-processed 

using commercial software (Echoview, 

Sonardata; Higginbottom et al., 2000). Aboard 

FPRV Dorada, the transmit power for the 120-

kHz pulses was 1000 W instead of the 

recommended 250 W (Korneliussen et al., 

2008), which likely caused nonlinear distortion 

in the collected data.  A nonlinearity correction 

factor was thus applied to the SV 120 data to 

compensate for nonlinear distortion.  The 

correction factor was derived as the simulated 

ratio of SV corrected for nonlinear attenuation 

to measured SV, where finite amplitude effects 

were assumed to be influential during both 

echosounder calibration and survey data 

collection due to high transmit power (see 

Lunde and Pedersen, 2012, and Pedersen, 

2006, for further details). A multifrequency 

threshold (similar to that used in Fernandes, 

2009) was applied to the SV data as a series of 

virtual echograms (Higginbottom et al., 2000) 

to remove data outside of animal aggregations 

from the analysis for the sole putrpose of 

improving on the single frequency threshold 

normally required for “school” detection using 

the Shapes algorithm (Coetzee, 2000). Single 

frequency SV data, thresholded at -70 dB, were 

summed across all available frequencies (ICES, 

2015). Thresholds for these virtual echograms, 

determined empirically to retain schools and 

eliminate non-school echoes, were -135 dB for 

SV 38 + SV 120 and -240 dB for SV 38 + SV 120 + SV 200. 

A 5x5 median convolution kernel, giving each 

pixel in the acoustic data matrix the median 

value of the surrounding set of 5x5 pixels, was 

then applied to remove single target 

observations and noise spikes (Fielding et al., 

2014). A 7x7 dilation convolution kernel (giving 

the maximum value in each 7x7 set of pixels) 

was then applied to the summed SV data to 

mitigate any removal of data within schools by 

the other filtering steps. Finally a bitmap was 

used to mask the SV data, removing data 

outside of schools from the analysis and 

retaining data assumed to originate from 

aggregations of organisms. 

The SHAPES school detection 

algorithm (Barange, 1994) was then applied to 

the virtual echograms arising from the image 
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analysis steps described above. The SHAPES 

parameters were:  minimum total school 

length = 5 m; minimum school height = 1 m; 

minimum candidate length = 5 m, minimum 

candidate height = 1 m, maximum vertical-

linking distance = 5 m, and maximum 

horizontal-linking distance = 20 m. The school 

polygons defined by the algorithm were then 

used to compile variables associated with each 

school, to serve as a training dataset for the 

purpose of classification. Echoes were 

assigned one of the following categories 

according to trawl composition data, assuming 

that the composition of echoes is represented 

by the complementary evidence collected by 

trawl: “Krill” schools, or swarms, were 100% 

Euphausia spp., almost exclusively Euphausia 

superba; “Mackerel Icefish” schools were 

>85% C. gunnari; and “Mix” were mixed 

aggregations of groundfish without swim 

bladders, consisting of <85% of any single fish 

species. Aggregations including fish possessing 

swim bladders (e.g. myctophid species such as 

Electrona carlsbergi) were excluded from the 

analysis. The inclusion of “Mix” was necessary 

to represent the wide assemblage of weak 

scattering species present in the area, to avoid 

misclassification of backscatter as “Mackerel 

Icefish” which occupies an overlapping 

location-depth niche. 

The Random Forest Algorithm 

All of the variables exported from the acoustic 

data were evaluated for collinearity, to 

identify superfluous variables that might be 

discarded. The final vector of variables (p) 

consisted of: mean SV 120, maximum SV 120, 

minimum SV 120, standard deviation of SV 120, SV 

120 skewness, mean height of school (m), mean 

aggregation depth (m), mean distance from 

seabed (m), latitude at centre of school, 

longitude at centre of school, corrected school 

length (m), corrected school thickness (m), 

corrected school perimeter (m), corrected 

school area (m), attack angle (°; Diner, 2001), 

image compactness (a ratio of the perimeter 

to the area of a school), corrected mean 

amplitude (m2 m3), horizontal roughness 

coefficient (Nero and Magnuson, 1989), SV 120 – 

SV 38 , time-of-day,  and estimated school 

volume assuming a cylindrical shape (m3). An 

RF was then generated using this training 

dataset (Breiman, 2001). Each tree within a RF 

was generated by recursive partitioning of the 

data, using the best splitting variable from a 

vector m randomly selected from p to partition 

the data at each node on the bth tree (Tb), 

where m was of length 2 × √𝑝. Vectors (m) of 

length √𝑝 and √𝑝 2⁄  were also tested, but 

resulted in higher error rates. Nodes were split 

until they reached a specified minimum 

number of echoes (nmin) of n=1. The RF was 

then used to make predictions according to: 

𝐶̂𝑟𝑓
𝐵 (𝑥) = mode {𝐶̂𝑏(𝑥)}

1

𝐵
 (1) 

where 𝐶̂𝑏(𝑥) is the classification prediction of 

the bth tree in the ensemble of B = 1 x 104 

trees, and 𝐶̂𝑟𝑓
𝐵 (𝑥) is the prediction of the RF. 
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Out-of-bag (OOB) error estimates were 

inspected as a means of cross-validation of 

prediction accuracy (Breiman, 2001; Hastie et 

al., 2009). In addition to the RF generated 

using all available variables, RFs were 

generated using acoustically derived variables 

only (to explore how well the method might 

be generalised to other regions in the 

Southern Ocean), and using variables from 

schools around the main South Georgia shelf 

only (i.e. excluding Shag Rocks where krill data 

was not collected). 

Confusion matrices were generated 

from OOB classifications, providing both 

overall and class-specific estimates of 

generalisation error. The kappa statistic (κ; 

Cohen, 1960) was used to measure 

classification performance by indicating the 

proportion of classification agreement beyond 

that expected to occur by chance. Variable 

importance was examined to assess the 

ranked importance of each variable to 

classification accuracy. The two typical 

measures of variable importance were 

calculated for the RF: mean decrease in 

accuracy, and the mean decrease in Gini 

Importance Index (left and right panels, 

respectively, in supplementary material Figure 

S1; Breiman, 2001). The first gives a measure 

of the decrease in prediction accuracy when 

the best node splitting variable is randomly 

permuted for all variables in p. The mean 

decrease in accuracy across all trees gives a 

measure of variable importance (Breiman, 

2001). Secondly, the Gini Impurity Criterion 

(GIC) is a measure of the rate of 

misclassification of randomly chosen elements 

of a given node when classified according to 

the distribution of classes in its daughter node. 

The sum of decreases in the GIC for each 

variable across all trees results in a Gini 

Importance Index (GII). As these two measures 

may be biased by correlated variables (Strobl 

et al., 2008), a third measure of conditional 

variable importance was calculated to verify 

their validity (Figure 2). The RF analyses were 

implemented in the R software environment 

using the “randomForest” and “party” 

packages (Liaw and Wiener, 2002; R 

Development Core Team, 2015; Strobl et al., 

2009). 

Comparison of Methods 

Other methods for krill identification were also 

used to apportion backscatter to weak 

scatterers, i.e. krill, icefish, and other fish 

species without swim bladders (Madureira et 

al., 1993). Acoustic data collected during the 

course of the 2006 South Georgia groundfish 

survey was resampled to mean values within 

5-m vertical by 100-m horizontal data bins 

(Demer, 2004; Fielding et al., 2014). It was 

then assumed that resampled values of SV 120 – 

SV 38 which fell within the range of 2-12 dB 

represented bins in which weak scattering 

targets which might be classified as krill would 

be found (as applied in Fielding et al., 2014 & 

Woodd-Walker et al., 2003). This method was 
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also applied using a wider range, 2-16 dB 

(Watkins and Brierley, 2002). A third range, 

0.37-12 dB, was also tested, based on the 

values used in the application of the variable 

window method (Fielding et al., 2014), 

although the accuracy of this approach would 

likely be improved with the availability of 

additional frequencies. Data was then 

integrated from 12 m below the transducer to 

0.5 m above the echosounder-detected 

seabed to give nautical area scattering 

coefficient (sA; m2 nmi-2) values per 1-nmi 

EDSU. The derived sA would be classified as 

krill within the integration volume, according 

to Madureira et al. (1993) and Fielding et al., 

(2014), but that energy could have been 

reflected by many weak scatterers. The 2006 

survey data was also classified using the above 

RF method. Integration over each region 

defined by the SHAPES algorithm gave sA 

apportioned to each RF classification group for 

each EDSU. As SV 200 data was not available in 

all datasets, it was not considered in this part 

of the analysis.  

 

Results 

Trawl-verified echoes across the three 

classification categories exhibited a range of 

variability in morphological, spatial (both 

vertical and horizontal) and acoustic 

properties. Krill echoes are the most highly 

studied of the three classes, and are known to 

exhibit temporal and spatial variability across a 

number of descriptors, including estimated 

density and echo morphology (Klevjer et al., 

2010; Tarling et al., 2009). Krill echoes verified 

in the trawl data were broadly similar to those 

described elsewhere. Krill were most often 

found in discrete, dense swarms, which were 

relatively easily visually identifiable, given 

 

Figure 2. Conditional variable 

importance plot for the 

random forest using the full 

training dataset. 
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some experience (Figure 3a). However, more 

dynamic and patchy echoes were also 

observed, which could be mistakenly 

associated with other weakly scattering 

organisms (Figure 3b). This ambiguity is 

exemplified by a trawl-verified echo from the 

2006 groundfish survey (Figure 3c), where a 

monospecific catch of icefish was obtained 

from the scatterers rising as much as 100 m 

above the seabed. Krill was caught during a 

separate haul targeting the relatively small 

dense scatterer aggregations <50 m below the 

surface. The fish and krill echoes in this 

example are difficult to visually distinguish 

with certainty (e.g. Figure 3b). Mixed 

groundfish typically formed more diffuse 

aggregations extending <20 m from the 

seabed (Figure 3d), but were also observed to 

 

Figure 3. (a) Krill (Euphausia superba) echo from the JR245 research cruise. Echoes such as this, discrete dense 

backscatter formations in a relatively shallow position in the water column, are typically easy to distinguish as krill; (b) 

Krill (Euphausia superba) echo from the JR245 research cruise. Large, dynamic echoes were less typical of krill and more 

difficult to visually distinguish from pelagic icefish echoes; (c) Echo from the 2006 South Georgia groundfish survey. 

Pelagic trawl catches targeting dynamic echoes extending up to ~150 m from the seabed included only mackerel icefish. 

Krill was caught when the dense echoes <50m below the surface were targeted during a separate trawling event; (d) 

Echo from the 2006 South Georgia groundfish survey. Relatively weak backscattering close to the seabed, such as this, 

was typical of mixed groundfish trawls, although more extensive and dynamic aggregations were observed in a minority 

of cases. Targeting this aggregation with a demersal trawl yielded a catch comprised of mostly humped rockcod 

(Gobionotothen gibberifrons), blackfin icefish (Chaenocephalus aceratus) and South Georgia icefish 

(Pseudochaenichthys georgianus). All echoes were generated from 120 kHz SV data thresholded at -70 dB. 
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form denser, more extensive echoes in some 

cases. 

A value of κ = 0.92, 95% confidence 

interval ±0.04, was calculated from the RF 

confusion matrix (Table 1), where values of κ > 

0.75 are considered an indication of an 

excellent classifier (Fielding and Bell, 1997). 

The total OOB estimate of error rate (i.e. the 

ratio of the sum of misclassified echoes from 

each category to the total number of samples) 

gave an estimate of overall prediction accuracy 

for the full RF of 95.08%. The top seven 

variables in order of importance for both 

indices were identical, although the order was 

different (supplementary material Figure S2 

shows an alternative means of visualising the 

contribution of each variable to classification; 

Welling et al., 2015). The most important 

variable using each metric was the minimum 

SV 120 (dB). The next four most important 

variables were those pertaining to position, 

depth and time-of-day. The remaining 

variables related to measures of the acoustic 

and geometric properties of echoes whose 

order of importance varied in each case. The 

order of importance suggests that the use of 

acoustic descriptors alone is not a 

comprehensive basis for target identification. 

It is noteworthy that the distributions of SV 120 

– SV 38 values exhibited substantial overlap 

across all three groups (Figure 4), although 

Kolmogorov-Smirnov tests detected significant 

differences between them (p < 0.05). Crucially, 

the fixed 2-12 dB range, which designates 

backscatter as krill in the Madureira et al. 

(1993) method, only accounted for 

approximately 61% of the trawl-verified krill 

echoes. The RF models using only acoustically 

derived variables and South Georgia shelf 

data, proved similarly effective, with 

estimated generalisation accuracies of 88 % 

and 97 %, and κ values of 0.84±0.05 and 

0.94±0.04 respectively (see also 

supplementary material Tables S2 & S3). 

The spatial distributions of sA classified 

as krill by each method were in broad 

agreement (Figures 5 & 6a). Variability in the 

spatial distribution of sA was similar in both 

cases, with relatively larger values occurring to 

the northwest and east of the South Georgia 

Table 1. Confusion matrix for random forest generated using the full trawl-verified dataset, with class-

specific estimates of generalisation error. 

Actual 

Predicted Class 

Generalisation 

Error 

Mackerel Icefish Krill Mix 

Mackerel Icefish 104 3 3 5.45% 

Krill 6 206 3 3.73% 

Mix 4 1 57 8.06% 
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shelf, as well as to the west of Shag Rocks. Due 

to the school-based nature of the RF method, 

only aggregations above some background 

density were detected, and so there are 

several EDSUs associated with this method 

where no krill was detected. The 

corresponding EDSUs from the other methods 

often contained low densities. Overall, 

however, the sA per EDSU attributed to krill 

using the RF method were significantly higher 

than those resulting from both the fixed 2-12 

dB range (Wilcoxon signed rank test, V = 

1815149, p < 0.05), and the variable 0.37-12 

dB range (Wilcoxon signed rank test, V = 

1833645, p < 0.05). The fixed 2-16 dB range 

resulted in significantly higher sA per EDSU 

than the RF (Wilcoxon signed rank test, V = 

1944337, p < 0.05). Relatively small amounts 

of sA were attributed to icefish using the RF, 

mainly to the northwest of the South Georgia 

shelf and the east of Shag Rocks (Figure 6b). 

These correspond to areas where the 

commercial fishery mainly operates, as well as 

where the highest densities of icefish are 

typically recorded during groundfish surveys 

(Main et al., 2008). sA attributed to mixed 

groundfish aggregations by the RF method 

were fairly uniformly distributed across the 

South Georgia shelf, with some small amounts 

at Shag Rocks (Figure 6c). This pattern is again 

in agreement with groundfish survey 

observations of the benthic assemblage. Of 

the RF-assigned backscatter, 93% of icefish sA 

and 62% of mixed groundfish sA was above the 

6m mean headline height of the bottom trawl 

(Parkes, 1991). 

 

 

Figure 4. Distributions of 

school-level SV 120 – SV 38 

(dB) values (a-c) and 

minimum SV 120 (dB) values 

(d-f) from trawl-verified 

echoes for mackerel icefish 

(black), krill (white), and 

mixed groundfish (grey). 
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Discussion and Conclusion 

Random Forest (RF) models classify 

echoes on the basis of their empirically 

observable attributes while making few 

assumptions after the data has been collected. 

RF models may be improved with the addition 

of new data to the training dataset, and 

selection of variables according to the 

particular attributes of the species being 

classified (Genuer et al., 2010). Expert 

knowledge can thus be incorporated via case-

specific variable selection. Relative to other 

 

Figure 5. Spatial distributions of sA (m
2
 nmi

-2
) for krill using: (a) the 2-12 dB fixed window method, (b) the 2-

16 dB fixed window method, (c) the variable window method. 
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methods, RF models are also simple to 

implement, and accept variables with diverse 

statistical properties (Hastie et al., 2009). For 

identifying icefish in the water column, the RF 

in this study had an estimated 94% accuracy, 

and an overall prediction accuracy higher than 

other methods (D’Elia et al., 2014; Woodd-

Walker et al., 2003). Accepting the need to 

develop reliable target strength models for 

icefish, the method presented here could be 

used in the quantification of any bottom trawl 

sampling bias, and may be integrated into 

survey analyses that inform the icefish 

assessment. The RF method was pre-

 

Figure 6. Spatial distributions of sA (m
2
 nmi

-2
) for: (a) krill, (b) icefish, and (c) mixed groundfish, where sA was 

classified using the random forest method trained on the full dataset. 
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conditioned on schools, and so, unlike the SV-

difference methods, it did not function in the 

detection and classification of backscatter 

below a given density, e.g. that which is 

observed in some dispersed krill layers 

(Watkins and Murray, 1998). However, the 

fact that krill sA as defined by the RF method 

was still significantly higher than that from the 

fixed 2-12 dB method illustrates that excluding 

those diffuse layers from the analysis may not 

substantially bias density estimates, and that 

the majority of krill biomass is contained in 

swarms (Fielding et al., 2014).  

Although this study was motivated by 

the investigation of the pelagic component of 

the icefish stock, there is also potential for 

acoustic data collected during groundfish 

surveys to supplement other analyses, such as 

the Western core box (WCB) krill survey and 

ecosystem modelling. In order to provide more 

accurate data on the various pelagic scatterers 

detected during groundfish surveys, some 

effort should be allocated to the collection of 

krill data around Shag Rocks. In reality, krill is 

not absent from the Shag Rocks shelf, but as 

longitude has a relatively strong influence in 

the RF the lack of training data in that area 

might have biased classification. Another 

inherent challenge will be in dealing with the 

non-systematic nature of this incidentally 

collected data, which should be surmountable 

through the specification of spatially explicit 

models. Provided the above issues are 

addressed, species- or assemblage-level 

acoustic indices could give valuable insight into 

uncertainties regarding the composition of the 

pelagic ecosystem at South Georgia. For 

example, given that the majority of sA 

attributed to the various fish species was 

recorded above the bottom trawl headline 

height, with a greater understanding of 

bottom trawl catchability discrepancies 

between survey-based abundance estimates 

and estimated piscivore food requirements 

(Hill et al., 2012) might be explained.  

The methods using fixed and variable 

ranges of SV 120 – SV 38 may provide inaccurate 

estimates of krill backscatter, but not only 

because they include echoes from other 

zooplankton. Echoes from fish without 

swimbladders may also be erroneously 

classified as krill. This is because the 

distributions of school-level SV 120 – SV 38 for 

krill, icefish, and mixed fish overlap (Figure 4). 

Conversely, krill backscatter may be 

underestimated because only a portion of the 

SV 120 – SV 38 values measured from krill swarms 

were included in the SV-difference ranges 

assumed for krill. For example, some haul-

verified krill swarms had SV 120 – SV 38 values 

>12 dB, which Madureira et al. (1993) defined 

as non-krill zooplankton. Therefore, a 2-12 dB 

range of SV 120 – SV 38 alone is unlikely to 

account for all krill backscatter, and may 

include backscatter from other zooplankton 

and fish species. Similarly, the wider 2-16 dB 

range may result in significantly higher sA than 

the RF method due to the inclusion of non-krill 
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echoes (Watkins and Brierley, 2002). This 

exemplifies a trade-off in the EDSU-level 

approach; an excessively conservative SV 120 – 

SV 38 range excludes both non-krill targets and 

some krill echoes, whereas a wider range 

includes most types of weak scatterers.  

Minimum SV 120 was the most 

important predictor variable in the RF. A wider 

range of minimum SV 120 was observed across 

icefish echoes than from those of mixed 

groundfish aggregations, with minimum values 

in both categories being generally higher than 

those of krill swarms. In the case of fish 

schools, minimum SV 120 is perhaps most likely 

to be a function of orientation, with lower 

values recorded for icefish which spends more 

time swimming vertically in the water column 

than other species (Kock, 2005b). Many 

species included in the mixed aggregation 

category also have a larger mean body size 

(Kock and Kellermann, 1991), which could 

account for the generally higher minimum SV 

120 values. It is apparent (Figure 4) that a large 

portion of minimum SV 120 values in krill echoes 

were between -95 and -100 dB, clearly 

distinguishing it from the other categories. A 

single 40 mm krill per m3 at a near horizontal 

orientation has an approximate SV 120 = -70 dB 

(Lawson et al., 2006, 2008), and so values of SV 

120 = -100 dB would most likely represent a 

discontinuity in density within the swarm 

under those assumptions. At fine scales, krill 

within swarms have been shown to exhibit 

measurable levels of uniformity in terms of 

their orientation (Kubilius et al., 2015). Most 

typically they assume a near horizontal 

position, particularly when actively swimming 

(Demer and Conti, 2005; Lawson et al., 2006), 

but are assumed to vary in orientation across 

swarms. It was thus posited that these 

minimum SV samples between -95 and -100 dB 

could either represent vacuoles or variability in 

krill orientation within dense swarms, but are 

perhaps most likely observed due to low 

density regions where krill are oriented 

vertically, minimising their profile in the 

acoustic beam.  

Including a “mixed groundfish” 

category was necessary, as a sufficient number 

of trawl-verified echoes were not available to 

subset the data any further. Operator 

intervention was thus required to verify some 

RF classifications. For instance, the yellowfin 

notothen, Patagonotothen guntheri, another 

weak scattering species, forms dense pelagic 

feeding aggregations around Shag Rocks 

(Collins et al., 2008). If monospecific 

aggregations such as this are known to occur 

then it is preferable to include a corresponding 

class in the RF method. However, few trawl-

verified echoes were available for P. guntheri 

in this case, and so further scrutiny was 

essential for verification of some RF 

classifications. It is also apparent from Table 1 

that the dataset was not balanced in terms of 

the number of observations on each group, 

which can affect the interpretation of results. 

For example, if echoes designated as “krill” 
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were to make up ~5% of observations in the 

confusion matrix of a binary classifier, 95% 

accuracy could be achieved by labelling all 

schools as “mackerel icefish” (Fielding and 

Bell, 1997).  

The properties of echoes considered in 

this analysis exhibited variability, non-linearity, 

interaction, and collinearity. Accordingly, 

classification of echoes at the level of the 

school is complex. Compiling a training dataset 

that adequately represents the distributions of 

those variables of interest can be a significant 

hurdle to reliable classification (Woodd-

Walker et al., 2003). This should be considered 

when choosing which approach to adopt to a 

given echo classification problem, and 

emphasises that the choice of a method is 

sometimes as dependent on the properties 

and quality of the available data as it is on the 

question being addressed (Reid et al., 2000). 

Indeed, there are situations where considering 

the data at broader spatial scales (i.e. EDSU-

level analysis) is more appropriate (Reid et al., 

2000). This can reduce or eliminate the need 

for training data entirely, with the caveat that 

more generalised assumptions will need to be 

accepted regarding the acoustic properties of 

the target species. To that end, EDSU-level 

analyses have been developed which can 

provide more accurate classification than the 

fixed SV-difference method applied in this 

study (Fielding et al., 2014). However, the loss 

of fine-scale detail of individual schools makes 

accurate classification beyond broad 

categories (e.g. weak scatterers) challenging.  
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Supplementary figures and tables are available 
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