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Abstract—The paper presents results on the influence of geo-

metric attributes of satellite-derived raster bathymetric data,

namely the General Bathymetric Charts of the Oceans, on spatial

statistical modelling of marine biomass. In the initial experiment,

both the resolution and projection of the raster dataset are taken

into account. It was found that, independently of the equal-area

projection chosen for the analysis, the calculated areas are very

similar, and the differences between them are insignificant. Like-

wise, any variation in the raster resolution did not change the

computed area. Although the differences were shown to be insig-

nificant, for the subsequent analysis we selected the cylindrical

equal area projection, as it implies rectangular spatial extent, along

with the automatically derived resolution. Then, in the second

experiment, we focused on demersal fish biomass data acquired

from trawl samples taken from the western parts of ICES Sub-area

VII, near the sea floor. The aforementioned investigation into

processing bathymetric data allowed us to build various statistical

models that account for a relationship between biomass, sea floor

topography and geographic location. We fitted a set of generalised

additive models and generalised additive mixed models to combi-

nations of trawl data of the roundnose grenadier (Coryphaenoides

rupestris) and bathymetry. Using standard statistical techniques—

such as analysis of variance, Akaike information criterion, root

mean squared error, mean absolute error and cross-validation—we

compared the performance of the models and found that depth and

latitude may serve as statistically significant explanatory variables

for biomass of roundnose grenadier in the study area. However, the

results should be interpreted with caution as sampling locations

may have an impact on the biomass–depth relationship.

Key words: GEBCO, bathymetry, biomass modelling, pro-

jection, resolution, statistical model.

1. Introduction

Biogeoscience, which combines biology with

broadly understood Earth sciences, is steadily con-

firming its significance as a discipline and goes far

beyond traditional biogeography. Biological pro-

cesses are influenced by distance in accordance with

the first law of geography as postulated by TOBLER

(1970), but are also driven by a variety of geospatial

variables. These variables are observable and are an

expression of both the spatial and temporal dynamics

of the physical Earth. The corresponding data may be

obtained using in situ measurements and, increas-

ingly, through remote sensing. Not uncommonly, the

observations are records of various geophysical pro-

cesses. The integration of up-to-date geophysical data

with modern biological analyses provides us with

new tools that may support and enhance classical

studies, such as those stated in The Theory of Island

Biogeography (MACARTHUR and WILSON 1967).

Geophysics itself is now defined in several ways,

one of which states that it is the use of physical

methods and data to interpret the Earth as a system.

For decades, scientists have been trying to combine

geophysical and biological concepts. For instance,

there have been numerous studies looking at how

animals respond to the dynamics of various geo-

physical fields. GRIFFIN (1969) considered a set of

signals from both atmosphere and the solid Earth to

understand how birds navigate, especially in noctur-

nal conditions. Later, and in a slightly different

context, PRIEDE (1984) pioneered satellite tracking of

fish, a technique that enabled the study of fish motion

in light of numerous physical features of the ocean

such as along thermal fronts (PRIEDE and MILLER

2009). Another example of how pure geophysics of

the solid Earth interacts with biology is a recent study
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by CHARZEWSKA et al. (2010). The authors found that

sunflower autonomic movements are coherent with

semidiurnal and diurnal tides as well as with plumb

line variations. The list of such associations might be

easily extended. However, a clear message is that

geophysical data and methods are very useful for

biological investigations into animal behaviour and

distribution, and it is within this context that our

present study is placed.

There are numerous studies on how marine

habitats, considering their spatial and temporal

variability, are a reflection of sea floor topography

(KENNY et al. 2003). One of the major challenges

facing management of resources in the oceans is the

continued depletion of fish stocks around the world.

There is strong evidence that as fisheries in coastal

waters have declined (JACKSON et al. 2001; CHRIS-

TENSEN et al. 2003) the industry has moved to

progressively deeper waters increasing the mean

depth of catch by 32 m for each decade in the North

Atlantic Ocean since 1950 (MORATO et al. 2006).

However, it is very difficult to assess the size and

status of deep-sea fish resources. Most deep-sea

species are confined to characteristic depth zones

(REX and ETTER 2010). In bottom-living fishes, this

kind of zonation is manifested as a succession of

different species with increasing depth (PRIEDE et al.

2010). As depth has been found to be a strong pre-

dictor of probability of species occurrence and

relative abundance, using information on patterns of

species abundance with depth it is possible to esti-

mate stock biomass in a given area by extrapolation

using known bathymetry.

Associated with this is the search for the most

suitable statistical models that may be used to predict

biomass as a function of depth and other explanatory

variables. The development of such models is now

feasible using global bathymetric data, which have

become available through remote sensing, both from

ships towards the sea floor and from satellites towards

the Earth. Hence, global bathymetry grids (MARKS

and SMITH 2006) include the inverse information

about the altimeter-derived Earth’s gravity field.

Accurate bathymetry is critical for appropriateness of

the aforementioned models and thus recent progress

towards the 30-arc seconds solution of the General

Bathymetric Charts of the Oceans (GEBCO), with

properly combined data from ship-mounted sonars

and sensors integrated on satellites, offers new per-

spectives for modelling marine environments at a

range of spatial scales.

This paper presents results of research on the

influence of geometric attributes of raster bathymetric

dataset (GEBCO) (HALL 2006) on spatial statistical

modelling of fish biomass. In particular, the aim of

the research was to identify the changes of biomass of

bottom-living fishes in the Northeastern Atlantic

Ocean from pre-commercial trawling levels

(1977–1989) to the post-commercial trawling period

(2000–2002). Data were modelled from scientific

trawl samples taken from the western parts of ICES

Sub-area VII (Fig. 1). In order to calculate the bio-

mass of demersal fish (tonnes), we needed to

determine the relationship for biomass (kg km-2) as

a function of depth. Then knowing depth across the

ICES Sub-area VII total biomass can be estimated by

integrating values of biomass multiplied by the area

(km2). The result can then be compared with biomass

estimates obtained using standard methods used in

fishery management. Typically, fishery scientists use

cohort or virtual population analysis (HILBORN and

WALTERS 1992) derived from commercial landings

statistics and population age structure data to recon-

struct the stock biomass from which those landings

were derived. The International Council for Explo-

ration of the Sea (ICES 2012) reports landings data

and stock biomass estimates each year for deep water

stocks in the Northeastern Atlantic Ocean by sub-

area. Our approach also enables estimation of bio-

mass of species not landed by commercial fishermen.

In the first part of the paper, we examine impact

of cartographic projection (we tested nine equal area

projections) and resolution (three different resolu-

tions) on the prediction of total fish biomass in ICES

Sub-area VII using a linear model with generalised

least squares estimation (GODBOLD et al. 2013). The

aim of these analyses is to verify whether choice of

cartographic projection and raster resolution influ-

ences biomass estimates. The objective of the second

part of the paper is twofold. Firstly, using in situ

trawling data obtained in two distinct periods in the

Porcupine Seabight (the Northeastern Atlantic), we fit

various generalised additive models (GAM) and

generalised additive mixed models (GAMM) that aim
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to predict Coryphaenoides rupestris (roundnose

grenadier) biomass as a function of explanatory

variables which are chosen from 1-, 2- and

3-dimensional spaces. GODBOLD et al. (2013) pro-

posed a straightforward one-dimensional biomass–

depth relationship, and by fitting a spatial autocor-

relation structure within GAMM considered variation

in the spatial distribution of C. rupestris across the

Porcupine Seabight. Herein, we extend that approach

and statistically examine more complicated models,

with latitude and/or longitude as explanatory vari-

ables, which may improve prediction accuracy.

Secondly, the most suitable models are then run using

a set of values (of depth, latitude or/and longitude),

which were derived from a randomised GEBCO

bathymetry extracted for the Porcupine Seabight. As

a result, we are able to migrate to geospatial model-

ling with geographic information system (GIS)

techniques and use actual sea floor topography to

estimate total biomass in a given marine environ-

ment. The entire study aims to provide a better

understanding of environmental conditions, mostly

based on the topography of the sea floor, that control

distribution of fish.

2. Materials

2.1. Global Bathymetry

Mapping of deep waters offshore using conven-

tional sounding methods has been hampered by

sparse data sets with errors in navigation, transcrip-

tion and digitisation. Major progress has been made

through the use of satellite location provided by the

Global Positioning System (GPS), which has reduced

navigational errors in conventional ship-borne sur-

veys. A further step has been the derivation of

bathymetry from satellite microwave altimetry. Since

the early 1970s, altimetric satellites have been

providing a wealth of geophysical data on the spatial

and temporal variability of the sea level and, as a

consequence, altimeter-derived gravity field of the

oceans. Early altimetric missions—Skylab, Geos-3,

Seasat and Geosat—did not guarantee the accuracy

Figure 1
Locations of the trawl sample points in ICES Sub-area VII, divisions b, c, j and k. Period 1, before the advent of a commercial deep water

fishery, corresponds to years 1977–1989; and period 2, during the commercial fishery, corresponds to years 2000–2002. The isobath 800 m

indicates the minimum depth sampled in this study
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required by the detailed oceanographic studies.

However, the launch of TOPEX/Poseidon in 1992

commenced the era of accurate altimetry (FU et al.

1994). Its superior performance was later continued

by its successor, Jason-1 (PERBOS 2003). At present, a

continuous time series of sea surface topography is

being maintained by Jason-2 (LAMBIN et al. 2010)

and, additionally, by Jason-1, Cryosat-2 and HY-2.

Altimetry can be utilised to produce sea floor

bathymetry data through application of inversion

algorithms (DIXON et al. 1983; BAUDRY and CALMANT

1991; CALMANT and BAUDRY 1996) based on the fact

that depth influences local gravity. The description of

the problem may be summarised as follows: ‘‘depth

variations of the seafloor can be considered as height

variations of mass elements the density Dq of which

is given by the contrast between rock and sea water

densities’’ (CALMANT and BAUDRY 1996). This concept

was used by HAXBY et al. (1983) and HAXBY (1985)

who first produced a global map of the marine gravity

field. There are a few procedures that allow us to

invert satellite altimetric data to sea floor topography

data, and the development of these methods was

initiated by DIXON et al. (1983). A review of more

advanced approaches was presented by CALMANT and

BAUDRY (1996).

SMITH and SANDWELL (1997) produced a global

digital bathymetric map of the oceans with a

horizontal resolution of 2 arc-minutes by combining

high-resolution marine gravimetry from Geosat and

ERS-1 with carefully validated ship-borne depth

soundings. Depth soundings were used to correct

inversion algorithms for sediment thickness and

substrate density variations. The high resolution

achieved revealed important previously unknown

features such as seamounts.

Satellite-derived bathymetry is now incorporated

into the General Bathymetric Chart of the Oceans

(GEBCO) produced under the auspices of the Inter-

national Hydrographic Organization (IHO) and the

Intergovernmental Oceanographic Commission

(IOC) of UNESCO (MARKS and SMITH 2006).

Satellite data are used to interpolate between sparse

depth soundings. Inversion algorithms are in turn

calibrated by available soundings. Since 2010,

GEBCO bathymetry has become available for public

download at a global resolution of 30 arc-seconds

either the GEBCO official webpage or the website of

the British Oceanographic Data Centre (BODC) (The

GEBCO_08 Grid). The same resolution of bathymet-

ric data is available from yet another global dataset,

namely SRTM30_PLUS derived from the Shuttle

Radar Topography Mission (SRTM) that flew

onboard the Space Shuttle Endeavour in 2000

(BECKER et al. 2009).

In the context of the present study, the resolution

in question plays a key role in the performance of our

statistical models. Indeed, sea floor topography is

assumed as a geophysical field that, along with

latitude and longitude, creates a framework for

multivariate modelling.

2.2. The Study Area

The study area covers the Sub-area VII delineated

by the International Council for the Exploration of

the Sea (ICES) in the North-East Atlantic Ocean,

south west of Ireland. For the present analyses, only

the area with depth greater than 800 m was taken into

account, as these are the depths from which the deep-

sea fisheries operate. Hence ICES Sub-area VII

divisions a, d, e, f, g, h, which are all too shallow,

were excluded and the model was confined to

divisions b, c, j and k, which are located in the

western part of ICES Sub-area VII. These divisions

form an ellipsoidal trapezoid, limited by the follow-

ing parallels: B1 = 48�000N, B2 = 54�300N, and

meridians: L1 = 9�000W, L2 = 18�000W (Fig. 1).

2.3. Trawling Data

The deep-sea demersal fishes of the Porcupine

Seabight and Abyssal Plain areas of the Northeast

Atlantic Ocean (approx. 50�N, 13�W) were surveyed

by scientific bottom trawl from 1977 to 2002. For the

present analysis we used trawls at depths ranging

from 800 to 4,865 m [=146 trawls, GODBOLD et al.

(2013)], which is a subset of the full data described

by BAILEY et al. (2009) and PRIEDE et al. (2010).

Trawls from depths \800 m were excluded from the

analysis as no shallow water trawling was carried out

after 1989. In addition, eight trawls from 1997 were

omitted from the analysis, because these trawls

lacked ‘time on bottom’ data, which are required to
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calculate fish biomass (kg km-2) and abundance

(individuals km-2) from trawl swept-area (calculated

from time on bottom, vessel speed and door spread).

The survey data were split into two distinct time

periods, ‘early’ period from 1977 to 1989 (95 trawls)

and ‘late’ period from 2000 to 2002 (51 trawls). The

‘early’ period represents the state of the deep-sea fish

assemblage before and during the initial development

of the commercial fishery in this area, whilst the

‘late’ period represents the time when the fishery was

well established (BAILEY et al. 2009; PRIEDE et al.

2011).

3. GIS Methods

Biomass of all bottom-living fish species data

were modelled by GODBOLD et al. (2013) and they

found a linear relationship between total biomass and

depth. As noted above, the biomass of fish (kg km-2)

was multiplied by area (km2) to calculate the total

biomass of demersal fish (in tonnes). All pixels in

GEBCO raster dataset have the same size in degree

(30 arc-seconds), but different areas. Hence, we

needed to resample the raster dataset of ICES Sub-

area VII onto an equal area projection, which has no

area distortion (KENNEDY and KOPP 2000). Another

problem was the choice of raster size for modelling

spatial differentiation of biomass, as modifications of

the resolution implied dissimilar estimates.

3.1. Area Measurement

We tested a few equal-area projections, available

in ArcView 9.3 by ESRI (Table 1), by measuring the

area of ellipsoidal trapezoid extracted from GEBCO

bathymetric dataset. The trapezoid was resampled to

three different resolutions and projected into nine

different equal area projections (Fig. 2). Within the

first group of raster datasets, a variety of similar

resolutions were tested (an average of 748 m). The

latter number was automatically generated by Arc-

View software as optimized for a particular

projection. The remaining resolutions, i.e., 500 and

1,000 m, were chosen to test raster datasets in smaller

and bigger pixel size.

The obtained results (Table 2) were compared to

the reference area, which was calculated using Eq. (1)

for the area of the ellipsoidal trapezoid (P) limited by

parallels B1 B2 and meridians L1 L2 stored in the

Geographical Coordinate System (GCS) based on the

World Geodetic System (WGS) 1984 ellipsoid:

P ¼ 1

2
a2 1� e2
� �

L2 � L1ð Þ

sin B

1� e2 sin2 B
þ 1

2e
ln

1þ e sin B

1� e sin B

� ����
B2

B1

ð1Þ

where a is semi-major axis and e is eccentricity

(BALCERZAK and PĘDZICH 2006).

The most promising results, which are highly

similar to the reference area in WGS 1984, are

obtained for the pseudocylindrical projection and the

cylindrical equal area (CEA) projection (Table 2).

For all of them, a difference between area of the

ellipsoidal trapezoid on raster dataset and ellipsoid

WGS 1984 is\0.2 % of the reference area. However,

the difference for other projections was not signifi-

cantly greater, i.e., the values do not exceed 0.3 %.

Hence, area measurement error was found to be

negligible. Nevertheless, the cylindrical projection

fits better to rectangular raster cells than the others

because of the rectilinear and right-angled shape of

cartographic network.

3.2. Changes in Total Demersal Fish Biomass

as Function of Bathymetry-Derived Depth

Application of three resolutions and nine equal

area projections results in 27 different datasets of

bathymetry for the study area. Since deep-sea fish-

eries do not operate at depths shallower than 800 m,

only area at depths equal or deeper than 800 m below

sea level were extracted from each of 27 raster

datasets for ICES Sub-area VII. To predict the total

biomass for both periods we used the following linear

functions (GODBOLD et al. 2013):

Period 1: y ¼ �0:2253xþ 1;351; ð2Þ

Period 2: y ¼ �0:1261xþ 853:27; ð3Þ

where y is total biomass (kg km-2), and x is depth

(m).
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In order to model the spatial distribution of all

demersal fish biomass in the study area between the

two periods (Fig. 3), the equations were applied to

GEBCO bathymetry using Map Algebra tool in

ArcView 9.3 in combination with nine different

projections and three different resolutions. As indi-

cated by many authors (e.g., NYERGES and JANKOWSKI

1989; KHALID 2006), the problem of selecting an

appropriate projection remains an ongoing challenge.

In particular, it has been confirmed that dissimilar

equal-area projections may lead to results that are

unlike each other (USERY and SEONG 2001), and the

differences are driven by numerous factors. Hence,

we decided to focus on that problem in the context of

bathymetry data. In practise, it is often unclear which

projection should be used and how our choice

influences the estimates of the area. Therefore, we

performed the exercise, the aim of which was to show

the real impact of projection on calculation of area

and, subsequently, on computation of total fish

biomass. The best solution to calculate the total

biomass of demersal fish (tonnes) was to multiply the

mean value of biomass (kg km-2) by the area (km2)

at depths [800 m. The mean values were extracted

using Raster Dataset Properties in ArcView 9.3. As a

result, we obtained 54 values of demersal fish total

biomass in tonnes. A descriptive overview of the

results on the statistics that were computed is shown

in Table 3. Regardless of the choice of projection, the

biomass values have been found to be very similar.

The differences, regardless of resolutions and peri-

ods, do not exceed 0.4 % of the minimum and

maximum values. However, the lowest differentiation

of the obtained biomass estimates is typical for

models based on the automatically generated resolu-

tion. As expected, highly dissimilar, and probably the

worst results were obtained at 1,000 m resolution, but

results based on the automatically generated resolu-

tion and the resolution bigger than 500 m were highly

similar (Table 3). This suggests that increasing

spatial resolution does not significantly modify

modelling results. Furthermore, higher resolution

may increase the size of the raster files, and thus

data processing may become more time-consuming.

Hence, the best solution is to choose a raster

resolution generated by aforementioned software.

4. Statistical Models and Spatial Modelling

Lack of complex/adequate/representative data is

typical for investigations into changing components of

environment, especially for marine environments. If

they exist, they are often constrained because they are:

• initially collected for other reasons,

• collected at different times,

• collected when the conditions (weather, ship route as

well as trawl route) allowed, and therefore samples

cover the study area in a spatially random fashion.

Hence, there are considerable difficulties in

assessing the state of phenomena across different

time periods, and consequently, their changes are

tough to measure.

Table 1

Attributes of equal area projections used in the experiment

Projection Type by projection surface Aspect Standard parallels*

Lambert azimuthal Azimuthal Tangent oblique 51�N**

Albers Conical Secant normal 49.5�N and 53�N

Bonne Pseudoconic Tangent normal 51�N

Lambert cylindrical Cylindrical Tangent normal 0�N

Behrmann Cylindrical Secant normal 30�S and 30�N

Cylindrical equal area Cylindrical Secant normal 51�S and 51�N

Eckert IV Pseudocylindrical Tangent normal 0�N

Eckert VI Pseudocylindrical Tangent normal 0�N

Mollweide Pseudocylindrical Tangent normal 0�N

* Longitude of central meridian for all projections is 13.5�W

** Latitude of projection centre
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4.1. Descriptive Statistics of Trawling Data

In the experiment, we used roundnouse grenadier

biomass data (kg km-2), which were collected in the

same way as the total biomass of demersal fish data

described above. Figure 4 shows the spatial distribu-

tion of the sample points. Maximum differences

between latitude and longitude of sample points are

the same, but in metric units they are different.

Distance between the most southern and the most

northern sample points is ca. 300 km and between the

most eastern and the most western sample points is

ca. 180 km. Therefore, we tested not only depth

impact on biomass but also focused on how geo-

graphical and metrical coordinates influence biomass

estimates.

Roundnose grenadier is the main species targeted by

the commercial fishery. Figure 5 shows biomass values

for the species collected during the sampling procedure.

Depth range of the sample points is from 804 to 1,932 m.

The maximum biomass of roundnose grenadier was

collected at depth 1,360 m in period 1 (1,172.7 kg km-2)

and 1,541 m in period 2 (1,383.7 kg km-2).

Figure 2
Maps of the ICES Sub-area VII (divisions b, c, j and k) projected in nine various equal area projections: a Lambert azimuthal, b Albers

conical, c Bonne pseudoconic, d Lambert cylindrical, e Behrmann cylindrical, f cylindrical equal area, g Eckert IV pseudocylindrical,

h Eckert VI pseudocylindrical, i Mollweide pseudocylindrical. Scale is equal to 1:25,000,000
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4.2. Statistical Inference

We fitted various GAM and GAMM models to

predict biomass of roundnose grenadier as a function of

explanatory variables, which were chosen from one-,

two- and three-dimensional spaces (ZUUR et al. 2007,

2009). Finally, we obtained 14 specific models, both

based on GAM and GAMM approaches (Table 4).

Firstly, a straightforward one-dimensional biomass-

depth relationship was prepared by GODBOLD et al.

(2013) who used latitude and longitude for defining a

spatial correlation kernel. In the latter approach,

however, information on location was not explicitly

included in explanatory variables. Fluctuations of the

biomass (kg km-2) of roundnose grenadier with depth,

between the early and the late periods, were analysed

using GAM and GAMM models, applied to log10-

transformed data, with a Gaussian distribution. We

used log10 transformation to stabilise the variance and

reduce the effect of large values. Spatial autocorrela-

tion was detected and the biomass data were analysed

using GAMM models with the Gaussian spatial

correlation structure (corGauss) (PINHEIRO et al.

2008). Both GAM and GAMM approaches included

factor called ‘period’ (early or late) and a smoother

over depth. To identify a presence of significant

correlations between explanatory variables we used

the analysis of variance (ANOVA).

As we were specifically interested in spatial

distribution of biomass, the GAM and GAMM models

were extended by incorporating coordinates as poten-

tial explanatory variables. Hence, we obtained eight

2-dimensional models based on depth and one of the

geographical coordinates measured in degrees (lati-

tude or longitude) or rectangular coordinates measured

in metres (X or Y according to geodetic notation).

Furthermore, we prepared four three-dimensional

Table 2

Comparison of area of the ellipsoidal trapezoid for different projections and WGS 1984

Projection Pixel size (m) Area of ellipsoidal

trapezoid (km2)

Difference between area

on raster dataset and

reference area (km2)

Difference as percent

of reference area

Reference area – 454,155.327 0 0

Lambert azimuthal 763.808 455,112.372 -957.045 -0.211

Albers 764.166 455,108.737 -953.410 -0.210

Bonne 763.727 455,122.007 -966.679 -0.213

Lambert cylindrical 734.215 455,077.818 -922.491 -0.203

Behrmann 734.215 455,079.974 -924.647 -0.204

Cylindrical equal area 734.215 454,857.877 -702.550 -0.155

Eckert IV 742.175 454,348.348 -193.021 -0.043

Eckert VI 747.747 454,652.009 -496.682 -0.109

Mollweide 749.388 454,336.206 -180.878 -0.040

Lambert azimuthal 500 455,121.500 -966.173 -0.213

Albers 500 455,119.000 -963.673 -0.212

Bonne 500 455,115.500 -960.173 -0.211

Lambert cylindrical 500 455,362.000 -1,206.673 -0.266

Behrmann 500 454,921.500 -766.173 -0.169

Cylindrical equal area 500 455,083.750 -928.423 -0.204

Eckert IV 500 454,517.000 -361.673 -0.080

Eckert VI 500 454,579.750 -424.423 -0.093

Mollweide 500 454,367.750 -212.423 -0.047

Lambert azimuthal 1,000 455,121.000 -965.673 -0.213

Albers 1,000 455,128.000 -972.673 -0.214

Bonne 1,000 455,122.000 -966.673 -0.213

Lambert cylindrical 1,000 455,362.000 -1,206.673 -0.266

Behrmann 1,000 455,356.000 -1,200.673 -0.264

Cylindrical equal area 1,000 455,040.000 -884.673 -0.195

Eckert IV 1,000 454,150.000 5.327 0.001

Eckert VI 1,000 454,582.000 -426.673 -0.094

Mollweide 1,000 454,720.000 -564.673 -0.124
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models, in which we took into account depth and full

location of the trawling points, expressed in geograph-

ical or rectangular coordinates. All models were

compared using the Akaike information criterion

(AIC), root mean square error (RMSE) and mean

absolute error (MAE). Analyses were conducted in R

version 2.13.2 (The R Foundation for Statistical

Computing 2011) using the ‘mgcv’ library for GAM

and GAMM models (WOOD 2007; ZUUR et al. 2009).

5. Results and Discussion on Statistical Modelling

Firstly, having assumed the GIS-based prerequi-

sites identified in Sect. 3, we aimed to check whether

explanatory variables are significantly correlated with

biomass. Therefore, we used ANOVA to check all

models under study. As expected, depth is a signifi-

cant explanatory variable for biomass, and this holds

for all models. The analysis of variance showed that

Figure 3
Example of biomass predictions based on the GIS model for spatial distribution of total fish biomass (kg km-2) in ICES Sub-area VII

(divisions b, c, j, k) computed using Eqs. (2) and (3). Spatial data are projected onto the cylindrical equal area (CEA) projection. Left figure

corresponds to period 1 (1997–1989), and right figure shows the results for period 2 (2000–2002) (the same as in GODBOLD et al. (2013) but in

different projection)

Table 3

Descriptive statistics of the modelled biomass of fish for dissimilar resolution and equal area projections

Period Resolution Range (t) Mean (t) Standard

deviation (t)

Range as a percent

of minimum value

Range as a percent

of maximum value

1 Automatic 312.26 169,720 121.00 0.1842 0.1838

500 m 382.59 169,717 116.33 0.1938 0.1934

1,000 m 517.90 169,775 146.87 0.3057 0.3047

2 Automatic 226.52 122,445 86.67 0.1852 0.1849

500 m 243.73 122,446 83.00 0.1993 0.1989

1,000 m 390.09 122,475 113.11 0.3191 0.3181

Vol. 171, (2014) Remotely-Derived Bathymetry for Biomass Modelling 1037



longitude and the corresponding Y coordinates are

insignificant, because both are correlated with depth

(Table 4). However, as also inferred from Table 4,

longitude and Y coordinates were found to reveal a

significant impact on biomass. According to AIC, we

argue that the most appropriate approach is the

2-dimensional GAM based on depth and latitude

(referred to as GAM_depth_lat) or Y coordinate

(named also as GAM_depth_Y). It is worth noting

that AIC criterion attained minimum for the three-

dimensional GAM models, which additionally

included longitude (known hereafter as GAM_

depth_lat_lon) or coordinate X (named as

GAM_depth_Y_X), but they had to be rejected due to

high p value of these additional variables obtained in

the ANOVA investigation. The one-dimensional

model (known as GAMM_depth) and the two-

dimensional model based on depth and latitude

(referred to as GAMM_depth_lat) may be identified

as the most appropriate amongst GAMM models used

in the study. To obtain two types of RMSE and MAE,

we first calculated model residuals (RM) and subse-

quently utilised cross-validation (CV) based on leave-

one-out procedure. According to RM, eight models

(all three-dimensional and four two-dimensional

based on the depth and latitude or coordinate Y) have

Figure 4
Locations of sample points at depth from 800 to 2,000 m with biomass of roundnose grenadier collected in the ICES Sub-area VII in early and

late period

Figure 5
Relations of roundnose grenadier biomass (kg km-2) to depth in

the Porcupine Seabight area of the Northeast Atlantic Ocean

between the early (1977–1989, period 1) and late (2000–2002,

period 2) trawling periods
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lower RMSE (by approximately 0.05) than the others.

The corresponding MAE are smaller by about 0.035.

The similar findings hold for CV-based errors.

Indeed, the same eight models have smaller errors

than the others (by about 0.04 for RMSE and about

0.02 for MAE).

Considering all the above-mentioned criteria we

may conclude that in each group, GAM and GAMM,

the best models are those based on depth and latitude

(GAM_depth_lat and GAMM_depth_lat). In addi-

tion, AIC, RMSE and MAE calculated for model

residuals are smaller for GAM model, however,

GAMM models reveal smaller RMSE and MAE

values for the cross-validation experiment. It is thus

difficult to unequivocally recommend any of the two

classed of additive models as tools for biomass-

depth-location modelling.

For further investigation we selected models that

include location as explanatory variable. These are:

GAM_depth_lat and GAMM_depth_lat. For com-

parison, we used the one-dimensional models,

namely GAM_depth and GAMM_depth. The models

were used to compute the values of biomass (tonnes)

in 100-m depth bins and incorporated into the GIS

modelling following the same modelling procedure

described in the first part of this paper for total

demersal fish biomass.

In the one-dimensional models, calculation of

biomass in 100-m depth bins was straightforward. In

the case of the two-dimensional models sample points

contained information about depth (100-m depth

bins) and latitude, and the latter values were selected

randomly from the GEBCO bathymetry. Figures 6

and 7 show the distribution of biomass depending on

Table 4

ANOVA and errors for models of a relationship between biomass of roundnose grenadier and depth

Model Variables ANOVA AIC RM CV

F p value RMSE MAE RMSE MAE

GAM_depth Depth 8.51 0.000 151.1 0.654 0.490 0.744 0.552

GAM_depth_lat Depth 8.39 0.000 141.5 0.600 0.455 0.690 0.521

Lat 11.56 0.001

GAM_depth_lon Depth 8.23 0.000 153.0 0.654 0.490 0.755 0.559

Lon 0.13 0.715

GAM_depth_lat_lon Depth 8.46 0.000 142.5 0.595 0.450 0.699 0.525

Lat 12.07 0.001

Lon 0.70 0.408

GAM_depth_Y Depth 8.38 0.000 141.5 0.600 0.455 0.690 0.521

Y km 11.56 0.001

GAM_depth_X Depth 7.97 0.000 152.9 0.654 0.489 0.754 0.559

X km 0.18 0.671

GAM_depth_Y_X Depth 8.46 0.000 142.5 0.596 0.450 0.699 0.525

X km 0.69 0.409

Y km 12.01 0.001

GAMM_depth Depth 7.06 0.000 155.4 0.657 0.493 0.722 0.538

GAMM_depth_lat Depth 7.79 0.000 154.0 0.604 0.461 0.680 0.515

Lat 6.68 0.012

GAMM_depth_lon Depth 6.84 0.000 158.6 0.657 0.492 0.730 0.544

Lon 0.03 0.874

GAMM_depth_lat_lon Depth 7.69 0.000 157.0 0.601 0.457 0.688 0.520

Lat 6.60 0.013

Lon 0.30 0.589

GAMM_depth_Y Depth 6.42 0.000 160.2 0.606 0.465 0.680 0.518

Y km 6.10 0.016

GAMM_depth_X Depth 5.82 0.000 163.2 0.657 0.496 0.730 0.548

X km 0.00 0.960

GAMM_depth_Y_X Depth 6.07 0.000 171.4 0.600 0.460 0.688 0.522

X km 0.46 0.502

Y km 6.12 0.016
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depth or depth and latitude obtained from the models

in two periods. The one-dimensional models predict a

unimodal distribution of biomass as a function of

depth, in contrast to the two-dimensional models that

have a bimodal distribution. The unimodal distribu-

tion seems to better describe a relation between the

biomass of roundnose grenadier and depth, because

like most deep-sea species, grenadier are confined to

a characteristic depth zone. The best models in terms

of statistics are characterised by a bimodal distribu-

tion, but they seem to be incorrect in biological sense.

Bimodal distribution probably results from the spatial

distribution of sample points, which occur in two

groups-clusters, in the North and in the South of

Porcupine Seabight (Fig. 4).

Biomass of the roundnose grenadier as a func-

tion of depth was found to be non-linear. Therefore,

for estimating total biomass for both periods we

used segmented regression models. Biomass values

were calculated for each cell of the raster dataset,

with depth C800 m (Fig. 8) and subsequently were

converted to total roundnose grenadier biomass (in

tonnes) by multiplying the mean biomass

(kg km-2) by area at depths C800 m (km2). The

integrated values of the biomass are presented in

Table 5.

Figure 6
Biomass as a function of depth or depth and latitude obtained from models for period 1, a few extreme data have been excluded from the

figure for the purpose of presentation—see Fig. 5 for comparison
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In period 1, the two-dimensional models give

lower values of biomass than the 1-dimensional

models, and they differ by about 17 % for GAM and

11.5 % for GAMM. In period 2, the two-dimensional

models produce biomass value higher by about 16 %

for GAM and about 23 % for GAMM. Therefore, the

differences of the estimated biomass of roundnose

grenadier between the pre-and post-commercial

fishing period in the particular models, vary up to

20 %. GAM_depth model, which gives the extreme

Figure 7
Biomass as a function of depth or depth and latitude obtained from models for period 2; for the purpose of presentation, a few extreme data

have been excluded from the figure—see Fig. 5 for comparison
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Figure 8
Examples of biomass predictions based on the GIS model for spatial distribution of total roundnose grenadier biomass (kg km-2) in ICES

Sub-area VII (divisions b, c, j, k). Left column corresponds to period 1 (1997–1989), whereas right column corresponds to period 2

(2000–2002). Top row presents the distribution based on the GAMM_depth model (Table 5) after Godbold et al. (2013), whereas the bottom

row shows the results based on the GAMM_depth_lat model (Table 5)
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values of biomass in both periods and also the biggest

difference, is the least reliable due to results of sta-

tistical inference. An important advantage of GAMM

models is the possibility of taking into account spatial

autocorrelation of the data, which is impossible in

GAM models (ZUUR 2009).

6. Conclusions

In statistical modelling of satellite-derived

bathymetric data the choice of equal area projection

has no impact on the final estimate of area. The

choice of resolution of the modelled bathymetric

raster data seems to be more important if cell size is

bigger than default. Otherwise resolution should not

affect the calculation of areas. In spatial analyses,

choice of statistical models cannot be based solely on

statistical criteria, as well-fitted models do not always

give better predictions. Indeed, ROBERTS and PASHLER

(2000) discussed how crucial goodness-of-fit is and

found that, in fact, it is more important to look at

what the theory predicts. Not uncommonly concep-

tually and phenomenologically incorrect models

produce acceptable predictions, as shown by LEFEB-

VRE et al. (1996) who focused on kriging-based

predictions. It is therefore necessary to take into

account the nature of a given phenomenon and its

geophysical setting, which—in this study—is depth.

In the deep-sea environment, besides specifying

spatial extent in two dimensions, it is necessary to

enter a range of depths. Outcomes of spatial models

also depend on the abundance and distribution of the

sample.

Finally, we obtained two models. The first one,

GAMM_depth, illustrates variation of grenadier bio-

mass with depth and does it rather acceptably, but

does not take geographical differentiation into

account. The second model, GAMM_depth_lat, is the

best one from the statistical point of view, but—as it

depends on latitude and hence is partially explained

by zonal variation—is more sensitive to the spatial

distribution of samples. Although the fit and model

predictions computed for GAMM_depth_lat—also

those based on a cross-validation procedure—are

superior over the other models under study, the

resulting distribution of roundnose grenadier as a

function of depth is bimodal, with the first (lower)

modal value around 1,000 m and the second (upper)

mode at 1,600 m of depth. The bimodal distribution

of roundnose grenadier is biologically improbable

(PRIEDE et al. 2010; REX and ETTER 2010), and a

potential explanation should be sought in the rela-

tively limited number of data points available in each

period. Indeed, the sparse data points are spatially

clustered and thus it is difficult to unequivocally

confirm the bimodal pattern of the distribution curve.

However, given the predictive performance of the

GAMM_depth_lat approach it is worth stating a

working hypothesis for future investigations with the

main message that it would be valuable to incorporate

additional explanatory variables in order to improve

the model predictions based on bathymetry data.
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