531 research outputs found

    Galactic Dark Matter

    Get PDF
    The precise phase-space distribution and properties of Galactic dark matter necessary for its direct and indirect detection are currently unknown. Since the distributions of normal and dark matter in the Milky Way are coupled to each other as they both move in the same gravitational potential, constraints on the distribution and properties of dark matter can be derived by studying the distribution of visible matter in the Galaxy and making some general assumptions regarding the phase-space distribution of the dark matter. In this study, the visible components of the Galaxy have been comprehensively reviewed to create an axisymmetric model of the Galaxy that is consistent with the available observations, and the dark matter phase-space distribution is assumed to follow a lowered-isothermal form. Poisson\u27s equations are then solved self-consistently to construct models of the spatial and velocity distribution of Galactic dark matter. The total gravitational potential from normal and dark matter are calculated and compared to the current observations of the rotation curve and to the radial velocity distributions of blue horizontal-branch and blue straggler stars. It is found that this analysis allows for a wide range of parameters for the dark matter. The implications for direct and indirect detection of dark matter are discussed in detail. In the appendices, two additional projects are presented. In Appendix A, the recent observations of the positron fraction and the total electron spectrum in cosmic rays are addressed by considering a nested leaky-box model for the propagation of cosmic rays in the Galaxy. This is found to obviate the need for exotic processes such as the annihilation or decay of dark matter to explain the recent observations. In Appendix B, we discuss a novel dark matter detector involving triggered cavitation in acoustic fields. The theory behind the detector is presented in detail, and we discuss the work than has been done to create a prototype at Washington University

    Identifying Diabetes-Related Important Protein Targets with few Interacting Partners with the PageRank Algorithm

    Get PDF
    Diabetes is a growing concern for the developed nations worldwide. New genomic, metagenomic and gene-technologic approaches may yield considerable results in the next several years in its early diagnosis, or in advances in therapy and management. In this work, we highlight some human proteins that may serve as new targets in the early diagnosis and therapy. With the help of a very successful mathematical tool for network analysis that formed the basis of the early successes of Google(TM), Inc., we analyse the human protein–protein interaction network gained from the IntAct database with a mathematical algorithm. The novelty of our approach is that the new protein targets suggested do not have many interacting partners (so, they are not hubs or super-hubs), so their inhibition or promotion probably will not have serious side effects. We have identified numerous possible protein targets for diabetes therapy and/or management; some of these have been well known for a long time (these validate our method), some of them appeared in the literature in the last 12 months (these show the cutting edge of the algorithm), and the remainder are still unknown to be connected with diabetes, witnessing completely new hits of the method

    Impact of prescribed burning for oak regeneration on forest vegetation, white-footed mouse populations, and Lyme disease

    Get PDF
    In 2009 and 2010, we investigated the impacts of prescribed burns for oak forest management on understory vegetation, white-footed mouse (Peromyscus leucopus) abundance and survival, and questing blacklegged tick (Ixodes scapularis) abundance and tick attachment load. In 2010, understory vegetation diversity and richness significantly decreased as percent burn increased. White-footed mouse abundance and survival were not different between burned and unburned sites; however, abundance was significantly higher in 2009. Attached tick load was significantly higher in 2010, but did not differ between burned and unburned sites. However, tick load increased 3.5 fold in burned sites between years while tick load increased 8 fold in the unburned area. Questing tick abundance was significantly lower in the burned area than the unburned area in both years. These results could assist land managers in developing multipurpose approaches for using prescribed burning for oak forest management

    A hierarchy of Turing degrees of divergence bounded computable real numbers

    Get PDF
    AbstractA real number x is f-bounded computable (f-bc, for short) for a function f if there is a computable sequence (xs) of rational numbers which converges to x f-bounded effectively in the sense that, for any natural number n, the sequence (xs) has at most f(n) non-overlapping jumps of size larger than 2-n. f-bc reals are called divergence bounded computable if f is computable. In this paper we give a hierarchy theorem for Turing degrees of different classes of f-bc reals. More precisely, we will show that, for any computable functions f and g, if there exists a constant γ>1 such that, for any constant c, f(nγ)+n+c⩽g(n) holds for almost all n, then the classes of Turing degrees given by f-bc and g-bc reals are different. As a corollary this implies immediately the result of [R. Rettinger, X. Zheng, On the Turing degrees of the divergence bounded computable reals, in: CiE 2005, June 8–15, Amsterdam, The Netherlands, Lecture Notes in Computer Science, vol. 3526, 2005, Springer, Berlin, pp. 418–428.] that the classes of Turing degrees of d-c.e. reals and divergence bounded computable reals are different

    Grand Valley Magazine, vol. 3, no. 2 Winter 2004

    Get PDF
    Grand Valley Magazine is a quarterly publication about Grand Valley State University produced by University Communications since 2001.https://scholarworks.gvsu.edu/gv_magazine/1008/thumbnail.jp

    Distributed Approximation of Maximum Independent Set and Maximum Matching

    Full text link
    We present a simple distributed Δ\Delta-approximation algorithm for maximum weight independent set (MaxIS) in the CONGEST\mathsf{CONGEST} model which completes in O(MIS(G)logW)O(\texttt{MIS}(G)\cdot \log W) rounds, where Δ\Delta is the maximum degree, MIS(G)\texttt{MIS}(G) is the number of rounds needed to compute a maximal independent set (MIS) on GG, and WW is the maximum weight of a node. %Whether our algorithm is randomized or deterministic depends on the \texttt{MIS} algorithm used as a black-box. Plugging in the best known algorithm for MIS gives a randomized solution in O(lognlogW)O(\log n \log W) rounds, where nn is the number of nodes. We also present a deterministic O(Δ+logn)O(\Delta +\log^* n)-round algorithm based on coloring. We then show how to use our MaxIS approximation algorithms to compute a 22-approximation for maximum weight matching without incurring any additional round penalty in the CONGEST\mathsf{CONGEST} model. We use a known reduction for simulating algorithms on the line graph while incurring congestion, but we show our algorithm is part of a broad family of \emph{local aggregation algorithms} for which we describe a mechanism that allows the simulation to run in the CONGEST\mathsf{CONGEST} model without an additional overhead. Next, we show that for maximum weight matching, relaxing the approximation factor to (2+ε2+\varepsilon) allows us to devise a distributed algorithm requiring O(logΔloglogΔ)O(\frac{\log \Delta}{\log\log\Delta}) rounds for any constant ε>0\varepsilon>0. For the unweighted case, we can even obtain a (1+ε)(1+\varepsilon)-approximation in this number of rounds. These algorithms are the first to achieve the provably optimal round complexity with respect to dependency on Δ\Delta

    Sequence Searching Allowing for Non-Overlapping Adjacent Unbalanced Translocations

    Get PDF

    Sequence searching allowing for non-overlapping adjacent unbalanced translocations

    Get PDF
    Unbalanced translocations are among the most frequent chromosomal alterations, accounted for 30% of all losses of heterozygosity, a major genetic event causing inactivation of tumor suppressor genes. Despite of their central role in genomic sequence analysis, little attention has been devoted to the problem of matching sequences allowing for this kind of chromosomal alteration. In this paper we investigate the approximate string matching problem when the edit operations are non-overlapping unbalanced translocations of adjacent factors. In particular, we first present a O(nm3)-time and O(m2)-space algorithm based on the dynamic-programming approach. Then we improve our first result by designing a second solution which makes use of the Directed Acyclic Word Graph of the pattern. In particular, we show that under the assumptions of equiprobability and independence of characters, our algorithm has a O(n log2σ m) average time complexity, for an alphabet of size σ, still maintaining the O(nm3)-time and the O(m2)-space complexity in the worst case. To the best of our knowledge this is the first solution in literature for the approximate string matching problem allowing for unbalanced translocations of factors

    Montana Kaimin, April 20, 2001

    Get PDF
    Student newspaper of the University of Montana, Missoula

    Montanan, Fall 2004

    Get PDF
    This is the magazine of the University of Montana with news about the University for UM alumni as well as current faculty, students, staff, and administrators. This is volume 21, number 4 (mis-labeled as issue 3).https://scholarworks.umt.edu/montanan/1148/thumbnail.jp
    corecore