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Abstract

A real number x is f-bounded computable (f-bc, for short) for a function f if there is a computable sequence
(xs) of rational numbers which converges to x f-bounded effectively in the sense that, for any natural number
n, the sequence (xs) has at most f (n) non-overlapping jumps of size larger than 2−n. f-bc reals are called
divergence bounded computable if f is computable. In this paper we give a hierarchy theorem for Turing
degrees of different classes of f-bc reals. More precisely, we will show that, for any computable functions f and
g, if there exists a constant � > 1 such that, for any constant c, f (n�)+n+c�g(n) holds for almost all n, then
the classes of Turing degrees given by f-bc and g-bc reals are different.As a corollary this implies immediately
the result of [R. Rettinger, X. Zheng, On the Turing degrees of the divergence bounded computable reals, in:
CiE 2005, June 8–15, Amsterdam, The Netherlands, Lecture Notes in Computer Science, vol. 3526, 2005,
Springer, Berlin, pp. 418–428.] that the classes of Turing degrees of d-c.e. reals and divergence bounded
computable reals are different.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In order to investigate computability of real numbers we usually look at convergent computable
sequences (xs) of rational numbers. Depending on how fast a sequence converges, we distinguish
several computability levels of its limit. For example, in the optimal case, if (xs) converges
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effectively in the sense that |xs −xs+1|�2−s for all s, then its limit x is called computable [8,6]. If
the sequence converges weakly effectively in the sense that the sum

∑
s∈N |xs −xs+1| is finite, then

its limit is weakly computable [1] which is a weaker computability notion than that of computable
reals. Moreover, if we do not ask for additional conditions besides computability and convergence
of the sequences, then the limits are called computably approximable (c.a.) or �0

2 [1,9]. In general,
we measure the convergence speed of a sequence by counting the number of jumps of certain
sizes. Two different types of jumps can be considered here, depending on how we classify the
size of a jump, namely, the jumps (xi, xj ) with 2−n � |xi − xj | < 2−n+1 or with |xi − xj |�2−n

for some n ∈ N.
According to the first type of jumps, the authors introduced in [12] the Cauchy computability

of reals. A real x is called f-Cauchy computable if there exists a computable sequence (xs) of
rational numbers which converges to x f-effectively, which means that there are at most f (n)

non-overlapping pairs of indices (i, j) such that 2−n � |xi − xj | < 2−n+1 for all n ∈ N. (If
f is a computable function, then f-Cauchy computable real numbers are also called �-Cauchy
computable.) Concerning the f-Cauchy computability there is a hierarchy theorem similar to
Ershov’s Hierarchy theorem [4] of subsets of natural numbers. That is, if f and g are different in
infinitely many places, then the classes of f- and g-Cauchy computable reals are different.

Using the second type of jumps, the f-bounded computability is introduced in [10]. More
precisely, we call an index pair (i, j) a 2−n-jump if |xi − xj |�2−n. A sequence (xs) converges
f-bounded effectively if it has at most f (n) non-overlapping 2−n-jumps for all n ∈ N. A real
number x is f-bounded computable (f-bc, for short) if there is a computable sequence (xs) of
rational numbers which converges to x f-bounded effectively. Naturally, we need only to consider
monotone functions f here. If a real number is f-bc for a computable function f, then it is also called
divergence bounded computable (dbc, for short). Obviously, the divergence bounded computable
reals, are exactly the �-Cauchy computable reals while f-bounded and f-Cauchy computability are
different notions in general. For f-bc reals, we have another kind of hierarchy theorem (see [10])
that, if the computable functions f and g have an unbounded distance, i.e., (∀c ∈ N)(∃n)(|f (n)−
g(n)|�c), then the classes of f- and g-bounded computable reals are different.A very nice property
of f-bc reals has been shown in [10]: if C is a class of functions such that for any f, g ∈ C and
c ∈ N there is an h ∈ C so that h(n)�f (n + c) + g(n + c) for all n, then the class of all C-bc
(f-bc for an f ∈ C) reals is a field.

Intuitively, if f (n)�g(n) for all n, then an f-bc real should not be more complicated than
a g-bc real even from the (classical) computability point of view. To give some evidence for
this we consider Turing degrees as a measure for complexity of real numbers, where the Turing
degree of a real number is purely based on its binary expansion. Without loss of generality we
only consider reals in the unit interval [0; 1]. For any real x ∈ [0; 1] there exists a set A ⊆ N

such that x = xA := ∑
i∈A 2−(i+1). The set A is called the binary expansion of the real xA

because the binary expansion of xA is 0.A if A is identified with its characteristic sequences. A
real xA is called Turing reducible to another real xB (denoted by xA �T xB ) if the set A is Turing
reducible to the set B, i.e., A�T B and two reals x, y are Turing equivalent (denoted by x ≡T y)
if x�T y&y�T x. Finally, the equivalence class degT (x) := {y : x ≡T y} is called the Turing
degree of x. For convenience, we do not distinguish between Turing degrees of real numbers xA

and Turing degrees of the sets A. Thus, a Turing degree of reals can be called c.e. or �-c.e. if it
contains a c.e. or �-c.e. set. Here, a set A is called �-c.e. if there is a computable sequence (As)

of finite sets which converges to A such that |{s : As(n) �= As+1(n)}|�h(n) for all n ∈ N and
some computable function h, i.e., A can be approximated in such a way that the membership of a
natural number n can be changed at most h(n) times.
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The computable enumerability was also introduced for real numbers. A real number x is called
computably enumerable (c.e.) or left computable if there exists an increasing computable sequence
of rational numbers which converges to x. Obviously, any real with a c.e. binary expansion (so
called strongly c.e. real by Downey [2]) is a c.e. real but not every c.e. real has a c.e. binary
expansion (cf. [7]). However, since the left Dedekind cut of a c.e. real is a c.e. set and it is Turing
equivalent to the binary expansion of this real, the Turing degree of any c.e. real contains at least a
c.e. set. That is, the class of c.e. Turing degrees (the degrees containing a c.e. set) is just the class
of Turing degrees which contain at least one c.e. real. However, if we consider the d-c.e. degrees,
the situation is different. A real number is called d-c.e. (difference of c.e.) if it is the difference of
two c.e. reals. D-c.e. reals are exactly the weakly computable reals [1]. In [11] Zheng shows that
there is a Turing degree containing a d-c.e. real which does not contain any �-c.e. sets. Moreover,
Downey et al. [3] show that every �-c.e. Turing degree contains a d-c.e. real but not every �0

2-
degree contains a d-c.e. real. Recently, the authors [5] show that the classes of Turing degrees of
d-c.e. reals, dbc reals and c.a. reals, respectively, are all different.

In this paper we investigate the hierarchy of Turing degrees of real numbers more systematically.
Our aim is to find sufficient conditions on f and g to separate the classes of Turing degrees of f-bc
and g-bc reals. As mentioned before, if two computable functions f and g satisfy the condition
(∀c)(∃∞n)(f (n) + c�g(n)), then there is a g-bc real which is not f-bc. For the Turing degrees
we will show that a strengthening suffices to separate even the classes of Turing degrees. Namely,
if there is a constant � > 1 such that for any constant c, the inequality f (n�) + n + c�g(n) hold
for almost all n, then there is a g-bc real which is not Turing equivalent to any f-bc real.

Notice that any d-c.e. real is �n.2n-bounded computable. Let f (n) := 2n and g(n) := 22n for
all n. Then f and g satisfy the above condition and hence there is a g-bc real which is not Turing
equivalent to any d-c.e. reals. This implies immediately the result of [3,5] that there is a dbc real
which is not Turing equivalent to any d-c.e. reals.

2. Preliminaries

In this section we explain some notations and prove a technical lemma which we will use in
the proof of our main theorem.

Let N, D, Q and R be the classes of natural, dyadic rational, rational and real numbers, respec-
tively. Let 〈· · ·〉 be a computable n-pairing function and let �1, . . . , �n be its inverse functions.
Let � := {0, 1} be a binary alphabet. The classes of finite strings and infinite sequences of �
are denoted by �∗ and ��, respectively. For convenience, we identify a real x ∈ [0, 1] with
its binary characteristic sequence x ∈ �� and identify a dyadic rational number r ∈ [0, 1]
with its binary characteristic string r ∈ �∗. For any binary string w, an open interval of w is
defined by I (w) := w�� \ {w1�, w0�}. For I := I (w) and n ∈ N, we define two subinter-
vals Ln(I) := I (w00n1) and Rn(I) := I (w10n1). Especially, we denote L(I) := L1(I ) and
R(I) := R1(I ). Thus, L(I) and R(I) are the second and sixth subintervals, respectively, if the
interval I is divided equidistantly into eight subintervals. Let I, J be any intervals, their min-
imal and maximal distances are denoted by d(I, J ) := min{|x − y| : x ∈ I & y ∈ J } and
D(I, J ) := max{|x − y| : x ∈ I & y ∈ J }, respectively. Given two intervals I1 := I (w1) and
I2 := I (w2) of distance d(I1, I2) = � > 0 and a number n, let w0 be the shortest string such
that |w0|�n and d(I1, I (w0)) = d(I (w0), I2) > 2−n. Thus, the interval I (w0) has at most a
length 2−n and locates exactly in the middle between I1 and I2. This interval I (w0) is denoted
by Mn(I1, I2). The middle point of an interval I is denoted by mid(I ).
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Let (NA
e ) be a computable enumeration of all Turing machines with oracle A and suppose that

Ne computes the computable functional �e. By definition, a real x is Turing reducible to y if there
exists an i ∈ N such that x = �y

i i.e., x(n) = �y
i (n) holds for all n ∈ N. Thus, in order to

construct two non-Turing equivalent reals x, y, we have to guarantee that x �= �y
i ∨ y �= �x

j

for all i, j . To this end, we define a “length function" recording the maximal temporal agreement
between (x, y) and (�y

i , �
x
j ) and try to destroy this agreement if it is possible to keep it finite.

This is usually quite complicated if we consider all (i, j) in a priority construction. The following
observation will simplify the matter a lot. If x = �y

i , then there is another computable functional
�j such that x�n = �y

j (n) for all n, where x�n is the initial segment of x of length n. (Here we
identify a natural number n with the nth binary word under the length-lexicographical ordering.)
Thus, two reals x and y are Turing equivalent iff there are i, j ∈ N such that x is (i, j)-Turing
equivalent to y (denoted by x ≡(i,j)

T y) in the following sense:

(∀n ∈ N)
(
x�n = �y

i (n) & y�n = �x
j (n)

)
. (1)

Although this is only a simple variation of usual Turing equivalence of the form x = �y
i & y = �x

j ,
it connects the Turing equivalence to the topological structure of R more closely. More precisely,
we have the following:

Lemma 2.1. For any open interval I0 ⊆ ��, and any natural numbers i, j, t , there exist two
open intervals I ⊆ I0 and J ⊆ �� of the length at most 2−t such that for any x and y with
x ≡(i,j)

T y we have

x ∈ I 
⇒ y ∈ J and y ∈ J 
⇒ x ∈ I0. (2)

Proof. The idea of the proof is quite simple. If there does not exist x ∈ I0 and y ∈ �� which
are (i, j)-Turing equivalent, then we can choose I = I0 and J arbitrarily. Otherwise, let x ∈ I0
be a real number which is (i, j)-Turing equivalent to some y ∈ ��. That is, x�n = �y

i (n) and
y�n = �x

j (n) hold for all n. First, we choose a natural number n� t such that (x�n)�� ⊆ I0.

There exists m > n such that the computation �y
i (n) uses only the oracle information y�m. This

means that, if u ≡(i,j)
T v and v ∈ I (y�m) then u ∈ I (x�n) ⊆ I0. Thus, the interval J := I (y�m)

suffices for the second part of (2). Furthermore, choose a natural number p > m large enough such
that the computation �x

j (m) queries only information on y�p. This guarantees that, v ∈ I (y�p)

if u ≡(i,j)
T v and u ∈ I (x�p). Thus, the intervals I := I (x�p) ⊆ I (x�m) ⊆ I0 and J := I (y�m)

satisfy condition (2). Obviously, their lengths do not exceed 2−t . �

Notice that, if the intervals I, J satisfy (the first part of) condition (2), then any real in I can only
be (i, j)-Turing equivalent to reals in J. In other words, if the reals x, y satisfy x ∈ I & y /∈ J ,
then they are not (i, j)-Turing equivalent! Thus, to avoid the constructed real x being (i, j)-Turing
equivalent to a given real y, it suffices to fix two interval pairs (Il, Jl) and (Ir , Jr ) according to the
above lemma, then choose x from Il whenever y does not seem in Jl and change x to Ir if y enters
Jl and so on. This jump trick is called “escaping procedure”. For convenience, we call an interval
I (i, j)-reducible to J (denoted by I ≺(i,j) J ) if, for all x, y, x ∈ I ∧ x ≡(i,j)

T y 
⇒ y ∈ J . The
second part of (2) guarantees that, if two distinct I-intervals are given, then the corresponding
J-intervals are also distinct.
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The proof of Lemma 2.1 is, of course, not constructive because we cannot effectively determine
if there exists an x ∈ I0 which is (i, j)-Turing equivalent to some y. However, given any i, j, t ∈
N and w ∈ �∗, we can always search for the intervals I (u) ⊆ I (w) and I (v) which satisfies
condition (2). If we fail, we should guarantee that no real in I (w) is (i, j)-Turing equivalent to
any real. This leads to the following effective version of Lemma 2.1.

Lemma 2.2. There exists a partial computable function � :⊆ N3 × �∗ → (�∗)2 such that if
there exist x ∈ I (w) and y ∈ �� with x ≡(i,j)

T y, then
(1) �(i, j, t, w) ↓= (u, v);
(2) l(I (u)), l(I (v))�2−t ;
(3) I (u) ≺(i,j) I (v); and

(4) (∀x, y)(x ≡(i,j)
T y & y ∈ I (v) 
⇒ x ∈ I (w)).

Here, �(i, j, n, w) ↓= (u, v) means that �(i, j, n, w) is defined and has the value (u, v). Let M
be a Turing machine which computes the function �(i, j, n, w). By Lemma 2.2, for any interval
I0 := I (w) and natural numbers i, j, t , we can compute �(i, j, n, w) by running M(i, j, n, w).
If after s steps, the machine halts and outputs (u, v), then the interval I := I (u) and J := I (v)

satisfy condition (2). Otherwise, if the machine never halts, then no real number of the interval
I0 is (i, j)-Turing equivalent to any real number.

3. Main result

In this section we prove the hierarchy theorem. For simplification we first prove a technical
lemma which reformulates the condition of the main theorem.

Lemma 3.1. Let � > 1 be a real number and let f, g : N → N be monotonically increasing
functions satisfying the following condition:

(∀c ∈ N)(∀ ∞n)(f (�n) + n + c < g(n)). (3)

For any constant a, b ∈ N, � < 1 and 	 > 1 such that � > 	/�, the following holds:

(∀c ∈ N)(∀ ∞n)(f (b + 	n) + n + c < g(a + �n)), (4)

where “∀∞n” means “for almost all n”.

Proof. Suppose that � > 1 be a constant and f, g be increasing functions which satisfy condition
(3). Let a, b ∈ N, � < 1 and 	 > 1 be constants such that � > 	/�. By the density of real
numbers, there is an �1 such that � > �1 > 1 and � > 	/�1 > 	/�. Then, for a sufficiently large
n we have

f (b + 	n) + n + c = f (	/�1(b �1/	 + �1n)) + n + c

� f (�(b �1/	 + �1n)) + (b �1/	 + �1n) + c

� g(b �1/	 + �1n)

� g(a + �n). �

Now we prove our main result as follows.
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Theorem 3.2. Let f, g : N → N be two monotonically increasing computable functions such
that g(n + 1)�g(n) + 2 and

(∀c ∈ N)(∀ ∞n)(f (�n) + n + c < g(n)) (5)

for some constant � > 1. Then there exists a g-bc real x which is not Turing equivalent to any f-bc
real.

Proof. Given two monotonically increasing computable functions f, g : N → N which satisfy
condition (5) for a constant � > 1, choose two rational numbers 1

2 < � < 1 and 	 > 1 such that
� > 	/�. By Lemma 3.1, for any constants a, b, c ∈ N, we have f (b + 	n) + n + c < g(a + �n)

for almost all n.
We construct a computable sequence (xs) of rational numbers converging g-bounded effectively

to a real number x which is not Turing equivalent to any f-bc real number. That is, for any
computable sequence (zs) of rational numbers, if it converges f-bounded effectively, then its limit
is not (i, j)-Turing equivalent to x for any pair (i, j) of natural numbers. In other words, x satisfies
all of the following requirements:

R〈i,j,k〉 : if(
k(s))s converges f -bounded effectively to yk, then x �=(i,j)
T yk

for i, j, k ∈ N, where (
k(s))s is a computable enumeration of all partial computable functions

k :⊆ N → D.

To satisfy a single requirement Re for e = 〈i, j, k〉 we fix an interval Ie−1 as the base interval
of Re and try to find a subinterval Ie ⊂ Ie−1 such that any x ∈ Ie satisfies the requirement Re.
Such an interval Ie is called a witness interval of Re. Thus, our goal is to find a correct witness
interval for Re.

As a default candidate we consider first the interval L(Ie−1), the second subinterval of the
partition of Ie−1 into eight equidistant parts. If no element of this interval is (i, j)-Turing equivalent
to some real number y, then we are done. Otherwise, by Lemma 2.2, we can effectively find a pair
(Il, Jl) of intervals such that Il ⊆ L(Ie−1) and Il ≺(i,j) Jl . If the sequence (
k(s))s does not enter
the interval Jl , then the interval Il is a correct witness interval of Re and we are done. Suppose that
the sequence (
k(s))s does enter the interval Jl . Then we consider the interval R(Ie−1) as a new
candidate of the witness interval of Re. Analogously, either R(Ie−1) is a correct witness interval
of Re or we can find another pair (Ir , Jr ) of intervals such that Ir ⊆ R(Ie−1) and Ir ≺(i,j) Jr . In
this case, if the sequence (
k(s))s enters the interval Jr , then we can go back to the old interval
pair (Il, Jl) to escape the sequence (
k(s))s and so on. This escaping technique works well if the
intervals Jr and Jl have a positive distance of at least, say, 2−n, because at most f (n) jumps are
needed to find a correct witness interval of Re from Il or Ir if the sequence (
k(s))s converges
f-bounded effectively.

Unfortunately, we cannot guarantee that d(Jl, Jr ) �= 0 so far and if d(Jl, Jr ) = 0, then the
sequence (
k(s)) can enter the intervals Jr and Jl alternatively infinitely often. In this case the
escaping strategy described above fails. To solve this problem, we consider a third pair (Im, Jm)

of intervals as follows. Since the intervals Il and Ir do have a positive distance, we can choose
a new interval I ′

m between Il and Ir . Again, either the interval I ′
m is already a correct witness

interval of Re (if no element of I ′
m is (i, j)-Turing equivalent to any real number), or we arrive

at a pair (Im, Jm) of intervals such that Im ⊂ I ′
m and Im ≺(i,j) Jm. Because all three inter-

vals Il, Im and Ir are disjoint, the intervals Jl, Jm and Jr are also disjoint by condition 4 of
Lemma 2.2. From three disjoint intervals Jl, Jm and Jr , we can find two, say Jl, Jr , of positive
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distance. By means of the interval pairs (Il, Jl) and (Ir , Jr ) we can find a correct witness interval
for Re by the above escaping technique. If we denote the candidate of witness interval of Re at
stage s by Ie,s and define xs as the middle point of Ie,s , then the sequence (xs) converges and its
limit x satisfies obviously the requirement Re.

However, the computable sequence (xs) constructed in this way does not necessarily converge
g-bounded effectively. Suppose that the minimal distance between the intervals Jl and Jr is
bounded below by 2−b for some b ∈ N, i.e., 2−b �d(Jl, Jr ). Then the number of necessary
jumps in the above strategy is bounded by f (b), if the sequence (
k(s))s converges f-bounded
effectively. On the other hand, the sizes of the jumps contributed by this strategy are bounded by
D(Il, Ir ). Let a be the maximal natural number such that 2−a �D(Il, Ir ). In general, there is no
relationship between the numbers a and b available. The following strategy of “interval distance
reduction” will introduce a sufficient relation between the two kinds of interval distances, so that
the number of jumps between the I-intervals is bounded by the allowed number of jumps of (
k)

between the J-intervals.
To explain the strategy of “interval distance reduction”, suppose that we have two interval

pairs (Il, Jl) and (Ir , Jr ) such that D(Il, Ir )�2−a and d(Jl, J r)�2−b. Let Il = (u1, v1), Ir =
(u2, v2), Jl = (u3, v3) and Jr = (u4, v4). Assume that the intervals Il and Jl are located on the
left side of the intervals Ir and Jr (on the real axis), respectively, and assume further that the
lengths of the intervals Il and Ir are less than D(Il, Ie)/4. (If it is not the case, we can choose
new subinterval pairs according to Lemma 2.2 with this property.) Since � < 1 and 	 > 1, we
can find a natural number k�2 such that

2−1 − 2−k �2−	 and 2−1 + 2−k �2−�. (6)

Let I be a rational interval of length less than 2−kD(Il, Ir ) located in the middle of the interval
(u1, v2). Then, either I is a correct witness interval of Re or we can find an interval pair (Im, Jm)

such that Im ⊆ I , l(Jm)�2−kd(Jl, Jr ) and Im ≺(i,j) Jm. Of course, the interval Jm is not
necessarily located between Jl and Jr . But we have always the following

max{d(Jl, Jm), d(Jl, Jm)}�(2−1 − 2−k)d(Jl, Jr )�2−(b+	)

and

max{D(Il, Im), D(Il, Im)}�(2−1 + 2−k)D(Il, Ir )�2−(a+�).

Suppose w.l.o.g. that d(Jl, Jm)�d(Jr , Jm) and denote the interval pairs (Il, Jl) and (Im, Jm) by
(I 1

l , J 1
l ) and (I 1

r , J 1
r ), respectively. Then we have

D(I 1
l , I 1

r )�2−(a+�) & d(J 1
l , J 1

r )�2−(b+	). (7)

This finishes the first step of the “interval distance reduction”. If we repeat this reduction n times,
we will either stop in some t �n steps at a correct witness interval of Re or arrive at interval pairs
(In

l , J n
l ) and (In

r , J n
r ) with the following properties

In
l ≺(i,j) J n

l & In
r ≺(i,j) J n

r (8)

and

D(In
l , I n

r )�2−(a+n�) & d(J n
l , J n

r )�2−(b+n	). (9)

If the number n is chosen carefully such that f (b + 	n) + n + c < g(b + �n) holds, where
c denotes the current stage s of the construction, i.e., we have constructed the finite sequence
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(xt )t � s which has, of course, at most c := s jumps of any size, then we can apply the standard
escaping technique to find a correct witness interval In

l or In
r in at most f (b + n	) further steps.

In this way, we can ensure that the sequence (xs) converges g-bounded effectively.
To satisfy all requirements Re simultaneously we need a finite injury priority construction.

We say that a requirement Ri has a higher priority than Rj if i < j . At the beginning of the
construction let I−1 := (0; 1) be the base interval for the requirement R0 and we try to find
a witness interval I0 ⊂ I−1 by the strategy described above. Our first candidate is the interval
I 0

0 := L(I−1). If this is a correct witness interval for R0, then we can set I0 := I 0
0 and search

further for the witness interval I1 ⊂ I0, and so on. However, I 0
0 may be a wrong candidate and

in this case we choose a new candidate I 1
0 ⊂ I 0

0 and an interval J 1
0 according to Lemma 2.2 such

that I 1
0 ≺(i0,j0) J 1

0 , where 〈i0, j0, k0〉 = 0. The interval I 1
0 may be a wrong candidate too if the

sequence (
k0
(s)) enters the interval J 1

0 . In this case, we consider I 2
0 := R(I−1) and eventually

I 3
0 ⊂ I 2

0 and so on. Thus, the candidate for I0 can be changed many times. Although we arrive at a
correct witness interval I0 in finitely many steps as mentioned above, we cannot confirm in finitely
many steps which candidate interval is a correct one. In other words, to tell certainly whether a
candidate interval is a correct witness interval or not, we need essentially infinitely many steps.
This means that, if we hang on finding a correct witness interval of R0, then we have no chance
to deal with other requirements any more. Therefore, we have to begin our search for a witness
interval I1 of R1 before we have definitely a correct witness interval for R0. For example, if I t

0 is
the current candidate of R0 and no evidence shows that it is not correct, then we can carry on with
our strategy for R1 on the interval I t

0. If, however, at a later stage we find that I t
0 is not a proper

candidate for R0, then we change the base interval for R1 to I t+1
0 and the strategy for R1 has to

be restarted on this interval newly. What we have done for R1 on I t
0 is destroyed. (We say that R1

is injured.) Since R0 changes its candidate intervals only finitely often, we do have a chance to
finish a strategy for R1 eventually. Analogously, all requirements can be satisfied in this way.

In general, denote by Ie,s the candidate interval for Re at stage s in the construction. Then, at
any stage s, we have a maximal finite sequence I0,s ⊃ I1,s ⊃ · · · ⊃ Iks ,s of intervals consisting
of all the current valid candidate intervals for R0, R1, . . . , Rks , respectively. For any e, the limit
Ie := lims→∞ Ie,s exists and it is a correct witness interval for Re such that Ie ⊂ Ie−1. Let xs

be the middle point of the interval Iks ,s . Then the computable sequence (xs) of rational numbers
converges to x which locates in all witness intervals of Re and hence it satisfies all Re. The only
problem left now is, whether the sequence (xs) converges g-bounded effectively?

Let us look at the strategy for a single requirement Re on the base interval Ie−1 of a length less
than 2−ne−1 and calculate first how many jumps can be contributed by this strategy. Before the
interval distance reduction only c1 jumps are needed for a constant c1 �8. Suppose now that, we
have two interval pairs (Il, Jl) and (Ir , Jr ) with D(Il, Ir )�2−a and d(Jl, Jr )�2−b. Then choose
an n′

e large enough such that f (b + 	n′
e) + n′

e + c1 < g(a + �n′
e) and begin the interval distance

reduction procedure.At most n′
e jumps can be caused by this procedure. It is followed immediately

by the escaping procedure which can cause at most f (b + 	n′
e) jumps. In summary, at most

f (b+	n′
e)+n′

e+c1 �g(a+�n′
e) jumps can occur. Let ne := a+�n′

e, then the strategy for Re can
contribute at most g(ne) jumps of size larger than 2−ne . Suppose that ne−1 satisfies g(ne−1)�c1.
Then for any k�ne −ne−1, the interval distance reduction causes at most 2k jumps of sizes larger
than 2−(ne−1+k) since � > 1

2 . This implies that, if ne−1 �n < ne, then the total number of jumps
larger than 2−n is bounded by c1+2(n−ne−1)�g(ne−1)+2(n−ne−1)�g(ne−1+(n−ne−1)) =
g(n). This shows that, our strategy succeeds for a single requirement.

To consider all requirements simultaneously, we should avoid that the jumps of similar lengths
are used by actions for different requirements. For example, at stage s, we arrive at the interval
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Ie−1,s and start the action for Re by defining a new interval Ie,s+1 ⊂ Ie−1,s . We can choose the
interval Ie,s+1 in such a way that its length is less that 2−k and all jumps of the finite sequence
(xv)v � s constructed sofar are larger than 2−k . This guarantees that all jumps constructed later
in the interval Ie,s+1 do not share the length of the jumps constructed before the stage s. Here,
two jumps share a length means that both of their lengths locate in the interval [2−m; 2−m+1)

for some m ∈ N. The problem is, the jumps in the interval Ie,s+1 can share the length with
jumps constructed later by the interval distance reduction or escaping procedure for Ri (i�e).
For the case of interval distance reduction, it can happen at most two times for each i�e because
� > 1

2 and can be bounded already in the definition of Ie,s+1. Sharing length with the jumps in
the escaping procedure should be strictly forbidden by choosing a proper number me of steps of
interval distance reductions. That is, besides the condition f (b + 	me) + me + c < g(b + �me),
2−(b+�me) should be smaller than all jumps constructed so far. Whenever me is defined, any jumps
constructed later on for any Ri with i > e are not allowed to share this length. This guarantees
that the sequence (xs) indeed converges g-bounded effectively.

The details of the formal construction are omitted here. �
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