85,248 research outputs found

    Formal proof for delayed finite field arithmetic using floating point operators

    Get PDF
    Formal proof checkers such as Coq are capable of validating proofs of correction of algorithms for finite field arithmetics but they require extensive training from potential users. The delayed solution of a triangular system over a finite field mixes operations on integers and operations on floating point numbers. We focus in this report on verifying proof obligations that state that no round off error occurred on any of the floating point operations. We use a tool named Gappa that can be learned in a matter of minutes to generate proofs related to floating point arithmetic and hide technicalities of formal proof checkers. We found that three facilities are missing from existing tools. The first one is the ability to use in Gappa new lemmas that cannot be easily expressed as rewriting rules. We coined the second one ``variable interchange'' as it would be required to validate loop interchanges. The third facility handles massive loop unrolling and argument instantiation by generating traces of execution for a large number of cases. We hope that these facilities may sometime in the future be integrated into mainstream code validation.Comment: 8th Conference on Real Numbers and Computers, Saint Jacques de Compostelle : Espagne (2008

    Case study:exploring children’s password knowledge and practices

    Get PDF
    Children use technology from a very young age, and often have to authenticate themselves. Yet very little attention has been paid to designing authentication specifically for this particular target group. The usual practice is to deploy the ubiquitous password, and this might well be a suboptimal choice. Designing authentication for children requires acknowledgement of child-specific developmental challenges related to literacy, cognitive abilities and differing developmental stages. Understanding the current state of play is essential, to deliver insights that can inform the development of child-centred authentication mechanisms and processes. We carried out a systematic literature review of all research related to children and authentication since 2000. A distinct research gap emerged from the analysis. Thus, we designed and administered a survey to school children in the United States (US), so as to gain insights into their current password usage and behaviors. This paper reports preliminary results from a case study of 189 children (part of a much larger research effort). The findings highlight age-related differences in children’s password understanding and practices. We also discovered that children confuse concepts of safety and security. We conclude by suggesting directions for future research. This paper reports on work in progress.<br/

    “Passwords protect my stuff” - a study of children’s password practices

    Get PDF
    Children use technology from a very young age and often have to authenticate. The goal of this study is to explore children’s practices, perceptions, and knowledge regarding passwords. Given the limited work to date and that the world’s cyber posture and culture will be dependent on today’s youth, it is imperative to conduct cyber-security research with children. We conducted surveys of 189 3rd to 8th graders from two Midwest schools in the USA. We found that children have on average two passwords for school and three to four passwords for home. They kept their passwords private and did not share with others. They created passwords with an average length of 7 (3rd to 5th graders) and 10 (6–8th graders). But, only about 13% of the children created very strong passwords. Generating strong passwords requires mature cognitive and linguistic capabilities which children at this developmental stage have not yet mastered. They believed that passwords provide access control, protect their privacy and keep their “stuff” safe. Overall, children had appropriate mental models of passwords and demonstrated good password practices. Cyber-security education should strive to reinforce these positive practices while continuing to provide and promote age-appropriate developmental security skills. Given the study’s sample size and limited generalizability, we are expanding our research to include children from 3rd to 12th graders across multiple US school districts

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Grid-enabling FIRST: Speeding up simulation applications using WinGrid

    Get PDF
    The vision of grid computing is to make computational power, storage capacity, data and applications available to users as readily as electricity and other utilities. Grid infrastructures and applications have traditionally been geared towards dedicated, centralized, high performance clusters running on UNIX flavour operating systems (commonly referred to as cluster-based grid computing). This can be contrasted with desktop-based grid computing which refers to the aggregation of non-dedicated, de-centralized, commodity PCs connected through a network and running (mostly) the Microsoft Windowstrade operating system. Large scale adoption of such Windowstrade-based grid infrastructure may be facilitated via grid-enabling existing Windows applications. This paper presents the WinGridtrade approach to grid enabling existing Windowstrade based commercial-off-the-shelf (COTS) simulation packages (CSPs). Through the use of a case study developed in conjunction with Ford Motor Company, the paper demonstrates how experimentation with the CSP Witnesstrade and FIRST can achieve a linear speedup when WinGridtrade is used to harness idle PC computing resources. This, combined with the lessons learned from the case study, has encouraged us to develop the Web service extensions to WinGridtrade. It is hoped that this would facilitate wider acceptance of WinGridtrade among enterprises having stringent security policies in place

    Comprendiendo el potencial y los desafĂ­os del Big Data en las escuelas y la educaciĂłn

    Full text link
    In recent years, the world has experienced a huge revolution centered around the gathering and application of big data in various fields. This has affected many aspects of our daily life, including government, manufacturing, commerce, health, communication, entertainment, and many more. So far, education has benefited only a little from the big data revolution. In this article, we review the potential of big data in the context of education systems. Such data may include log files drawn from online learning environments, messages on online discussion forums, answers to open-ended questions, grades on various tasks, demographic and administrative information, speech, handwritten notes, illustrations, gestures and movements, neurophysiologic signals, eye movements, and many more. Analyzing this data, it is possible to calculate a wide range of measurements of the learning process and to support various educational stakeholders with informed decision-making. We offer a framework for better understanding of how big data can be used in education. The framework comprises several elements that need to be addressed in this context: defining the data; formulating data-collecting and storage apparatuses; data analysis and the application of analysis products. We further review some key opportunities and some important challenges of using big data in educationEn los últimos años, el mundo ha experimentado una gran revolución centrada en la recopilación y aplicación de big data en varios campos. Esto ha afectado muchos aspectos de nuestra vida diaria, incluidos el gobierno, la manufactura, el comercio, la salud, la comunicación, el entretenimiento y muchos más. Hasta ahora, la educación se ha beneficiado muy poco de la revolución del big data. En este artículo revisamos el potencial de los macrodatos en el contexto de los sistemas educativos. Dichos datos pueden incluir archivos de registro extraídos de entornos de aprendizaje en línea, mensajes en foros de discusión en línea, respuestas a preguntas abiertas, calificaciones en diversas tareas, información demográfica y administrativa, discurso, notas escritas a mano, ilustraciones, gestos y movimientos, señales neurofisiológicas, movimientos oculares y muchos más. Analizando estos datos es posible calcular una amplia gama de mediciones del proceso de aprendizaje y apoyar a diversos interesados educativos con una toma de decisiones informada. Ofrecemos un marco para una mejor comprensión de cómo se puede utilizar el big data en la educación. El marco comprende varios elementos que deben abordarse en este contexto: definición de los datos; formulación de aparatos de recolección y almacenamiento de datos; análisis de datos y aplicación de productos de análisis. Además, revisamos algunas oportunidades clave y algunos desafíos importantes del uso de big data en la educació
    • …
    corecore