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Abstract

Formal proof checkers such as Coq are capable of validating proofs of correction of algorithms
for finite field arithmetics but they require extensive training from potential users. The delayed
solution of a triangular system over a finite field mixes operations on integers and operations
on floating point numbers. We focus in this report on verifying proof obligations that state
that no round off error occurred on any of the floating point operations. We use a tool named
Gappa that can be learned in a matter of minutes to generate proofs related to floating point
arithmetic and hide technicalities of formal proof checkers. We found that three facilities
are missing from existing tools. The first one is the ability to use in Gappa new lemmas that
cannot be easily expressed as rewriting rules. We coined the second one “variable interchange”
as it would be required to validate loop interchanges. The third facility handles massive loop
unrolling and argument instantiation by generating traces of execution for a large number of
cases. We hope that these facilities may sometime in the future be integrated into mainstream
code validation.

1 Introduction

Introducing a new algorithm is a difficult task. Authors have to persuade readers that their
algorithm is correct and efficient. Such goals are usually attained by providing pen-and-paper
proofs of correction more or less interlaced with the description of the algorithm. Authors
may also provide results of tests to guarantee correction and efficiency on random cases and on
known or new hard cases. Alas, this process is known to fail on mundane as well as notorious
occurrences [16].

Developing a proof of correction in a formal proof checker using higher order logic such as
Coq [1] would be a nice alternative but such a task usually represents a large amount of work
outside the fields of expertise of most authors.

∗This work has been partially founded by PICS 2533 of the CNRS, project EVA-Flo of the ANR, project
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The delayed solver studied here works on a N ×N unitary triangular matrix on Z/pZ finite
field. The key improvement of this algorithm compared to state of the art lies in the fact that
delayed algorithms use floating point units to perform operations with no rounding error and
delay computations of remainders as much as possible. Operations on floating point numbers
are limited to three functions. The other functions use combinatorial logic.

The first function (DGEMM_NEG) performs a naive matrix multiplication and Gappa may soon
be able to handle the proof obligation generated by a tool such as the Why platform [9] and
the corresponding floating-point annotations [2]. The second function (DTRSM) is invoked only
under the delay predicate. This is enforced by the condition on the induction of the invoking
function (LZ_TRSM) for N between 2 and 54 with p prime varying between 2 and 94, 906, 266.
Variable interchange in the delay predicate allows to limit the proof to the 53 different values
of N where a naive user would consider the 94, 906, 265 different values of p.

Proof obligations are usually derived from a static analysis of the source code considered.
Our work showed that generating proof obligations from traces of execution after most pa-
rameters have been instantiated may also be useful. We have set up a C++ class to provide
such proof obligations but we hope that such capability will be provided by Why and similar
tools in the future.

We present some background information in the remaining of the introduction. We continue
with a new lemma that might be used by Gappa for inductive linear bounds in Section 2 and
with our prototyping variable interchange developments in Sections 3. We conclude this work
in Section 4.

1.1 Finite field arithmetic and application to linear algebra

Finite field arithmetic plays a crucial role in nowadays applications. One of the most
extensively studied application of finite fields is cryptography. Another key application of
finite field arithmetic arises with exact linear algebra computation where modular techniques
(e.g. CRT or P-adic lifting) allow some control on expression swell with high performances
(see [8] and references herein). While cryptographic applications need finite fields of large
cardinality for security purpose, most exact linear algebra restrains to machine word size
prime field (e.g. 32 or 64 bits) in order to benefit from machine arithmetic units.

A classical way to perform one arithmetic operation in a prime field, here we refer to
integers modulo a prime number, is to first perform the operation on integers and second
reduce the result to the destination field. Let x, y ∈ Z/pZ and ∗ ∈ {+,×}. One may compute
z = x ∗ y ∈ Z/pZ by computing t = x ∗ y ∈ Z and a modular reduction z = t mod p.

When one deals with fixed precision prime field arithmetic, two majors issues arise: per-
formances and cardinality limitation. The latter issue can have a non-negligible impact on
the former one. As was just said, the classical way to perform arithmetic operations over a
prime field is to perform operations on integers and reduce intermediate results. Therefore,
all integers between 0 and (p− 1)2 must be representable to correctly perform multiplications
over Z/pZ. This limitation slightly increase to perform an AXPY operation (a multiplication
followed by an addition) with only one reduction step. This implies that all integers between
0 and p × (p − 1) must be representable.

Using word-size machine integers and classic arithmetic we obtain the following cardinality
limitation: p < 216 on 32 bit architectures and p < 232 on 64 bit architectures with unsigned

types. An alternative to increase cardinality of word-size prime fields is to use floating point
numbers. According to the IEEE 754 standard [10], mantissas of double precision floating



point numbers can store 53 bit integers (including the implicit bit). Therefore, we can perform
prime field arithmetic with cardinality up to 226 using double. Note that, the reduction is
easily obtained by the fmod function available in standard libraries. This approach is quite
interesting in practice since floating point multiplications and divisions may be faster than
their integer counterparts.

On selected classes of algorithms, delayed prime field arithmetic sustains better perfor-
mances. The idea is to perform several integer operations before reduction into the field. It
has been very fruitful for exact linear algebra [7]. Delayed exact linear algebra computations
also benefit from optimized numerical BLAS (e.g. ATLAS [18], GOTO [11]) libraries for exact
computations and they often reach peak FPU throughput for operations over a finite field.

Beside basics linear algebra operations such as matrix-vector products and matrix multipli-
cations, delayed arithmetic over a prime field is valuable when expressions swell largely such
as solving systems of linear equations. This approach works perfectly for unitary triangular
system (only ones along the diagonal) despite the exponential growth of the intermediate
variables.

1.2 Formal proof checking and Gappa

Gappa [3] has been created to generate formal certificates of correction for programs that
use floating point arithmetic [6, 15, 14] and is related to other developments [12, 5]. It is
available from

http://lipforge.ens-lyon.fr/www/gappa/.

It will in the future be able to interact seamlessly with Why [2], a tool to certify programs
written in a generic language. C and Java can be converted to this language.

Gappa manipulates arithmetic expressions on real and rational numbers and their evalua-
tions on computers. Exact and rounded expressions are bounded using interval arithmetic [13],
forward error analysis and properties of dyadic fractions. To the authors’ best knowledge,
Gappa is the first tool that can convert some of the simple tasks performed here into formal
proofs validated by an automatic proof checker. Such goal has previously been quoted as
invisible formal methods [17] in the sense that Gappa delivers formal certificates to users that
are not expected to write any piece of proof in any formal proof system.

Gappa produces a Coq file for a given input script. Users do not need to be able to write
the Coq file but they can check the work of Gappa by reading it or parsing it automatically. It
contains Variables, Definitions, Notations, Lemmas and comments are between (* and *)

signs. Although enclosure is the only predicate available to users, Gappa internally relies on
more predicates to describe properties on expressions. All the properties of the input script
are defined in the Coq file. Validity of proofs can automatically be checked by Coq. More
insights to Gappa are presented in [4].

2 A new lemma that might be used by Gappa for inductive linear bounds

A key application in exact linear algebra is the resolution of triangular systems over finite
fields presented in Figure 1. A delayed prime field arithmetic version of this algorithm can
be constructed by simply doing a delayed matrix multiplication on the operation B1 := B1 −
A2X2. Listing 1 performs such matrix multiplication DGEMM NEG with no reduction. We used
naming conventions of BLAS and LAPack for the function and the parameter names. For the

http://lipforge.ens-lyon.fr/www/gappa/


Input: A ∈ Z/pZ
N×N , B ∈ Z/pZ

N×K .
Output: X ∈ Z/pZ

N×K such that AX = B.

if N=1 then

X := A−1

1,1 × B.

else (splitting matrices into ⌊N
2
⌋ and ⌈N

2
⌉ blocks)

A X B
︷ ︸︸ ︷
[

A1 A2

A3

]
︷ ︸︸ ︷
[

X1

X2

]

=

︷ ︸︸ ︷
[

B1

B2

]

X2 :=LZ TRSM(A3, B2).
B1 := B1 − A2X2.
X1 :=LZ TRSM(A1, B1).

return X.

Figure 1. First algorithm for LZ TRSM(A,B)

sake of simplicity some parameters have be omitted and some function names were slightly
modified.

The DREMM function computes the remainder modulo p of all the components of a matrix.
We are overspecifying it for the purpose of this presentation as our proof never use the exact
value of these remainders but the sole property that they are between 0 and p − 1. In the
definition of is exact int mat, we use the predicate exists. The property described is that
X[i × LDX + j] is not any float, but it is an integer. To describe this, we require (or prove)
that there exists an integer equal to the floating-point value of X[i ×LDX + j]. We also use
\old in the annotations: the value \old(X) represents the value of the variable X before the
function execution. It allows us to specify the outputs depending on the inputs, even if the
pointed values are modified. Some ghost variables are introduced in our example to ease the
proofs. A mechanism not presented here prevents such ghost variables to remain in the code
once compiled.

Let M be the width of matrix A2 or the height of vector X2 and FP EPSILON be the machine
ǫ for fp in float, double or long double and FP in FLT, DBL or LDBL respectively. The DREMM
reduction can be delayed until the end of DGEMM NEG provided

(p − 1)2 × M ≤ 2/FP EPSILON,

as all the number between 0 and 2/FP EPSILON can be represented exactly with type fp.

Assertions on the DGEMM_NEG function generate proof obligation

−1 ≤
Y [i × LDY + k]

(p − 1)2 × (j + 1)
=

oY ik − A[i × LDA + j] × X[j × LDX + k]

(p − 1)2 × (j + 1)

for all iterations defined by i, j and k. It can be proved by induction on j with the following
lemma that we proved in Coq and similar ones for the other relations.

∀ a, b, c, d, e ∈ R ; e ≤
a

b
∧ e ≤

c

d
∧ 0 < b × d =⇒ e ≤

a + c

b + d



Listing 1. Matrix-matrix multiplication Y <- Y - AX and compo nent-wise remainder
#include <math.h>

typedef double fp;

#define FP_ESPILON DBL_EPSILON

/*@ logic real epsilon() { 2^^(-53) } @*/

/*@ logic real max_int() { 2 / epsilon() } @*/

/*@ predicate is_exact_int_mat (fp *X, int LDX , int N, int M) {

@ \valid_range(X,0,LDX*N) && M <= LDX &&

@ \forall int i; \forall int j; 0 <= i < N && 0 <= j < M =>

@ \round_error(X[i*LDX+j])==0 && \exists int v; X[i*LDX+j]==v

@ } @*/

/*@ predicate is_exact_int_mat_bounded_by

@ (fp *X, int LDX , int N, int M, int min , int max) {

@ is_exact_int_mat(X,LDX ,N,M) && \forall int i; \forall int j;

@ 0 <= i < N && 0 <= j < M => min <= X[i*LDX+j] <= max

@ } @*/

/*@ requires (p-1)*(p -1)*M <= max_int() &&

@ is_exact_int_mat_bounded_by(Y,LDY ,N,K,0,p-1) &&

@ is_exact_int_mat_bounded_by(A,LDA ,N,M,0,p-1) &&

@ is_exact_int_mat_bounded_by(X,LDX ,M,K,0,p-1)

@ assigns Y[..]

@ ensures

@ is_exact_int_mat_bounded_by(Y,LDY ,N,K,(1-p)*(p-1)*M,p-1) @*/

void DGEMM_NEG (int N, int M, int K, int p,

fp *A, int LDA , fp *X, int LDX , fp *Y, int LDY) {

int i, j, k; fp oYiK;

for (i = 0; i < N; i++)

for (j = 0 ; j < M; j++)

for (k = 0; k < K; k++) {

oYik = Y[i*LDY+k];

Y[i*LDY+k] = Y[i*LDY+k] - A[i*LDA+j] * X[j*LDX+k];

/*@ assert -1 <= Y[i * LDY + k] / ((p-1)*(p -1)*(j+1)) &&

Y[i * LDY + k] <= p-1 @*/

}

}

/*@ requires is_exact_int_mat(X,LDX ,N,K)

@ assigns X[..]

@ ensures is_exact_int_mat_bounded_by (X,LDX ,N,K,0,p-1) &&

@ \forall int i; \forall int j; 0 <= i < N && 0 <= j < K =>

@ \exists int d; X[i*LDX+j] == \old(X[i*LDX+j]) + d*p @*/

void DREMM (int N, int K, int p, fp *X, int LDX) {

int i, k;

for (i = 0; i < N; i++) for (k = 0; k < K; k++) {

X[i*LDX+k] = fmod (X[i*LDX+k], p);

if (X[i*LDX+k] < 0) X[i*LDX+k] += p;

}

}



Gappa does not handle arrays so we have to rename A[i×LDA+j] to Aik, X[j×LDX +k]
to Xjk and Y [i × LDY + k] to Yik. The following Gappa text should be sufficient to prove
the generic case of the induction if our lemma is added to Gappa.

{

p in [2,1b53] ->

j in [1,1b53] ->

oYik in [-1b53 ,1b53] ->

Aij/(p-1) in [0,1] ->

Xjk/(p-1) in [0,1] ->

oYik / ((p-1)*(p -1)*j) >= -1 ->

((p-1)*(p -1)*j) * ((p -1)*(p-1)) >= 0 /\

-Aij*Xjk / ((p -1)*(p-1)) >= -1 /\

(oYik - Aij*Xjk) / ((p -1)*(p -1)*(j+1)) >= -1

}

-Aij*Xjk / ((p -1)*(p-1)) ->

- (Aij/(p -1)) * (Xjk/(p-1)) { (p-1) <> 0 };

(oYik - Aij*Xjk) / ((p-1)*(p-1)*(j+1)) ->

(oYik + (- Aij*Xjk)) / (((p-1)*(p-1)*j) + ((p -1)*(p -1)))

{ ((p -1)*(p -1)*(j+1)) <> 0 , ((p -1)*(p -1)*j) * ((p-1)*(p-1)) <> 0 };

A Gappa file usually starts with aliases. Gappa uses them for its outputs and in the
formal proof instead of machine generated names. We do not need any alias here. Identifiers
are assumed to be universally quantified over the set of real numbers the first time Gappa
encounters them.

The main assertion is written between brackets ({ }). The hypotheses end with the last
line finished by an implication sign (->). Each states that a variable or an expression is within
an interval or bounded. Note that p1 → p2 → p3 is logically equivalent to p1∧ p2 → p3. The
goal is next. It is a conjunction (/\). Statements about intermediate variables are given as
goals to force Gappa to establish them first.

The statement after the brackets are hints that propose replacements. Gappa replaces the
left side of the -> sign by the right side as soon as it encounters the former. It also tries
to prove that the replacements are valid. They help Gappa identify the proper theorems
syntactically. Conditions on the validity of the hints are expressed between brackets.

3 Variable interchange in a predicate

For the sake of completeness we recall an optimal bound on integer coefficients growth
during backward substitution.

Corollary. [7, corollary 3.3] Let A ∈ Z
N×N be a unit diagonal upper triangular matrix, and

b ∈ Z
N , with |A|, |B| ≤ p − 1. Then x ∈ Z

N the solution of the system Ax = B is such that

|x| ≤
p − 1

2

[
pN−1 + (p − 2)N−1

]
,

and this bound is optimal.

As this formula also bounds all the intermediate values, enough bits are available to combine
a few recursion steps of LZ TRSM without reduction and guarantee that all numerical results
are exact. We present in Listing 2 an improved version for the delayed prime field arithmetic
by replacing the last levels of the recursion by calls to DTRSM numerical solver according to



Listing 2. Delayed solution of a unitary triangular system o ver a finite field
/*@ predicate delay(int N, int p) @*/

/*@ logic int l_pmax(int n) @*/

// Floating point exact solution to a small unitary triangular system

/*@ requires N <= 54 &&

@ is_exact_int_mat_bounded_by(X,LDX ,N,K,0,l_pmax(N)-1) &&

@ is_exact_int_mat_bounded_by(A,LDA ,N,N,0,l_pmax(N)-1)

@ assigns X[..]

@ ensures

@ is_exact_int_mat_bounded_by(X,LDX ,N,K,-max_int(), max_int()) @*/

void DTRSM (int N, int K, fp *A, int LDA , fp *X, int LDX) {

int i, j, k;

for (i = N-2; i >= 0; i--)

for (j = i+1; j < N; j++)

for (k = 0 ; k < K; k++)

X[i*LDX+k] = X[i*LDX+k] - A[i*LDA+j] * X[j*LDX+k];

}

/*@ requires (p-1)*(p -1)*N <= max_int() &&

@ is_exact_int_mat(A,LDA ,N,N) && is_exact_int_mat(B,LDB ,N,K)

@ assigns B[..]

@ ensures is_exact_int_mat(B,LDB ,N,K) @*/

void LZ_TRSM (int N, int K, int Nmax , int p,

fp *A, int LDA , fp *B, int LDB) {

if (N <= Nmax) {

/*@ assert N <= 54 && delay(N,p) @*/

DTRSM (N, K, A, LDA , B, LDB); DREMM (N-1, K, p, B, LDB);

} else {

int P = N/2, G = N - P;

LZ_TRSM (G, K, Nmax , p, A+P*(LDA+1), LDA , B+P*LDB , LDB);

DGEMM_NEG (P, G, K, p, A+P, LDA , B+P*LDB , LDB , B, LDB);

DREMM (P, K, p, B, LDB);

LZ_TRSM (P, K, Nmax , p, A, LDA , B, LDB);

}

}

/*@ ensures \forall int N; N <= \result => delay (N, p) @*/

int Nmax (int p) {

fp pp = 1, p2 = 1; int N;

for (N = 0; ((p -1)*(pp+p2))/2 < 2 / 2^53; N++)

{pp *= p; p2 *= p -2;};

return N;

}

/*@ ensures \result ==l_pmax(N) &&

@ \forall int p; p <= \result => delay (N, p) @*/

int pmax (int N) {

int p; for (p = 1; N <= Nmax(p); p++);

return p-1;

}



Table 1. Maximum value pmax of parameter p for each value of parameter N allowed

N 2 3 4 5 6 7 8 9 10 11 12

pmax 94906266 208064 9739 1553 457 191 97 59 39 29 19

N 13 14 15 16 · · · 19 20 · · · 23 24 · · · 34 35 · · · 54

pmax 17 13 11 7 5 3 2

Table 2. Time to establish that no round-off occurred and gen erate a Coq proof script

Script N 2 3 4 5 6 7 8 9 10 11

no time(s) 00.02 00.06 00.10 00.19 00.29 00.43 00.57 00.74 00.93 01.15
Coq 00.02 00.06 00.13 00.22 00.35 00.50 00.87 01.35 01.84 02.43

Script N 12 13 14 15 17 19 23 34 54

no time(s) 01.38 01.63 01.91 02.90 02.90 03.73 05.93 13.71 38.32
Coq 03.22 03.77 05.26 07.13 12.22 19.50 38.13 421.4 5767

the above corollary. Recursion is stopped for the maximal integer Nmax such that

p − 1

2

[
pNmax−1 + (p − 2)Nmax−1

]
≤ 2/FP EPSILON. (1)

Function Nmax of Listing 2 uses a strict inequality in equation (1) to control the loop because
it computes the bound with the same floating point format than the one used by LZ TRSM.
We focus now on proving that the DTRSM function invoked by LZ TRSM never produce any
round-off error.

One could port the proof of Corollary 3.3 [7] to Coq to finish the proof of correction. We
decided to use Gappa and simple techniques that could be made automatic. Syntactically, the
DTRSM function is invoked by LZ_TRSM only if the condition delay(N, p) is fulfilled. We may
define it by:

delay(N, p) = N ≤ Nmax(p).

Gappa does not handle loops and branches. We perform a case analysis but p may vary
from 2 to 94, 906, 266. On the other hand, N varies only between 2 and 54. Table 1 presents
the value computed by the pmax function. Variable interchange should allow to prove that
DTRSM is invoked only on the condition

delay(N, p) ⇐⇒ p ≤ pmax(N).

A C++ class produces a trace for N between 2 and 54 where all branches and control
statements have been removed. Each trace contains only floating point operations. Table 2
gives the time needed by Gappa on a 1.86 GHz Quad-Core Intel Xeon Processor with 2x4MB
L2 cache and 2x1GB of memory, to produce each of the proofs that no round-off error occurred
for all the values of N between 2 and 54. That ends the proof of correction of the algorithm.



4 Perspectives and concluding remarks

This report presents a new use of Gappa based on proof obligations generated from a trace
of execution [14]. It would enable us to prove in Coq in the future that expression swell within
the studied algorithm of delayed finite field arithmetic does not introduce round off errors [7].
This full certification will not be obtained by porting the initial proof to Coq but by a case
analysis on the 53 possible values of one argument N . Pieces of the formal proof have been
generated by Gappa for each individual value of N .

Our approach can be easily reproduced to other exact linear applications over finite fields.
More precisely, the FFLAS-FFPACK project has been successful on using delayed prime field
arithmetic for linear algebra applications.

http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/FFLAS/
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