87 research outputs found

    Proposal for a Bond Graph Based Model of Computation in SystemC-AMS

    Get PDF
    SystemC-AMS currently offers modelling formalisms with specialised solvers mainly focussing on the electrical domain. There is a need to improve its modelling capabilities concerning conservative continuous time systems involving the interaction of several physical domains and their interaction with nonconservative digital control components. Bond graphs unify the description of multi-domain systems by modelling the energy flow between the electrical and non-electrical components. They integrate well with block diagrams describing the signal processing part of a system. It is proposed to develop an extension to the current SystemC-AMS prototype, which shall implement the bond graph methodology as a new Model of Computation (MoC)

    Efficient Modelling and Simulation Methodology for the Design of Heterogeneous Mixed-Signal Systems on Chip

    Get PDF
    Systems on Chip (SoCs) and Systems in Package (SiPs) are key parts of a continuously broadening range of products, from chip cards and mobile phones to cars. Besides an increasing amount of digital hardware and software for data processing and storage, they integrate more and more analogue/RF circuits, sensors, and actuators to interact with their (analogue) environment. This trend towards more complex and heterogeneous systems with more intertwined functionalities is made possible by the continuous advances in the manufacturing technologies and pushed by market demand for new products and product variants. Therefore, the reuse and retargeting of existing component designs becomes more and more important. However, all these factors make the design process increasingly complex and multidisciplinary. Nowadays, the design of the individual components is usually well understood and optimised through the usage of a diversity of CAD/EDA tools, design languages, and data formats. These are based on applying specific modelling/abstraction concepts, description formalisms (also called Models of Computation (MoCs)) and analysis/simulation methods. The designer has to bridge the gaps between tools and methodologies using manual conversion of models and proprietary tool couplings/integrations, which is error-prone and time-consuming. A common design methodology and platform to manage, exchange, and collaboratively develop models of different formats and of different levels of abstraction is missing. The verification of the overall system is a big problem, as it requires the availability of compatible models for each component at the right level of abstraction to achieve satisfying results with respect to the system functionality and test coverage, but at the same time acceptable simulation performance in terms of accuracy and speed. Thus, the big challenge is the parallel integration of these very different part design processes. Therefore, the designers need a common design and simulation platform to create and refine an executable specification of the overall system (a virtual prototype) on a high level of abstraction, which supports different MoCs. This makes possible the exploration of different architecture options, estimation of the performance, validation of re-used parts, verification of the interfaces between heterogeneous components and interoperability with other systems as well as the assessment of the impacts of the future working environment and the manufacturing technologies used to realise the system. For embedded Analogue and Mixed-Signal (AMS) systems, the C++-based SystemC with its AMS extensions, to which recent standardisation the author contributed, is currently establishing itself as such a platform. This thesis describes the author's contribution to solve the modelling and simulation challenges mentioned above in three thematic phases. In the first phase, the prototype of a web-based platform to collect models from different domains and levels of abstraction together with their associated structural and semantical meta information has been developed and is called ModelLib. This work included the implementation of a hierarchical access control mechanism, which is able to protect the Intellectual Property (IP) constituted by the model at different levels of detail. The use cases developed for this tool show how it can support the AMS SoC design process by fostering the reuse and collaborative development of models for tasks like architecture exploration, system validation, and creation of more and more elaborated models of the system. The experiences from the ModelLib development delivered insight into which aspects need to be especially addressed throughout the development of models to make them reusable: mainly flexibility, documentation, and validation. This was the starting point for the development of an efficient modelling methodology for the top-down design and bottom-up verification of RF Systems based on the systematic usage of behavioural models in the second phase. One outcome is the developed library of well documented, parameterisable, and pin-accurate VHDL-AMS models of typical analogue/digital/RF components of a transceiver. The models offer the designer two sets of parameters: one based on the performance specifications and one based on the device parameters back-annotated from the transistor-level implementation. The abstraction level used for the description of the respective analogue/digital/RF component behaviour has been chosen to achieve a good trade-off between accuracy, fidelity, and simulation performance. The pin-accurate model interfaces facilitate the integration of transistor-level models for the validation of the behavioural models or the verification of a component implementation in the system context. These properties make the models suitable for different design tasks such as architecture exploration or overall system validation. This is demonstrated on a model of a binary Frequency-Shift Keying (FSK) transmitter parameterised to meet very different target specifications. This project showed also the limits in terms of abstraction and simulation performance of the "classical" AMS Hardware Description Languages (HDLs). Therefore, the third and last phase was dedicated to further raise the abstraction level for the description of complex and heterogeneous AMS SoCs and thus enable their efficient simulation using different synchronised MoCs. This work uses the C++-based simulation framework SystemC with its AMS extensions. New modelling capabilities going beyond the standardised SystemC AMS extensions have been introduced to describe energy conserving multi-domain systems in a formal and consistent way at a high level of abstraction. To this end, all constants, variables, and parameters of the system model, which represent a physical quantity, can now declare their dimension and associated system of units as an intrinsic part of their data type. Assignments to them need to contain besides the value also the correct measurement unit. This allows a much more precise but still compact definition of the models' interfaces and equations. Thus, the C++ compiler can check the correct assembly of the components and the coherency of the equations by means of dimensional analysis. The implementation is based on the Boost.Units library, which employs template metaprogramming techniques. A dedicated filter for the measurement units data types has been implemented to simplify the compiler messages and thus facilitate the localisation of unit errors. To ensure the reusability of models despite precisely defined interfaces, their interfaces and behaviours need to be parametrisable in a well-defined manner. The enabling implementation techniques for this have been demonstrated with the developed library of generic block diagram component models for the Timed Data Flow (TDF) MoC of the SystemC AMS extensions. These techniques are also the key to integrate a new MoC based on the bond graph formalism into the SystemC AMS extensions. Bond graphs facilitate the unified description of the energy conserving parts of heterogeneous systems with the help of a small set of modelling primitives parametrisable to the physical domain. The resulting models have a simulation performance comparable to an equivalent signal flow model

    Informal Logic: A 'Canadian' Approach to Argument

    Get PDF
    The informal logic movement began as an attempt to develop – and teach – an alternative logic which can account for the real life arguing that surrounds us in our daily lives – in newspapers and the popular media, political and social commentary, advertising, and interpersonal exchange. The movement was rooted in research and discussion in Canada and especially at the University of Windsor, and has become a branch of argumentation theory which intersects with related traditions and approaches (notably formal logic, rhetoric and dialectics in the form of pragma-dialectics). In this volume, some of the best known contributors to the movement discuss their views and the reasoning and argument which is informal logic’s subject matter. Many themes and issues are explored in a way that will fuel the continued evolution of the field. Federico Puppo adds an insightful essay which considers the origins and development of informal logic and whether informal logicians are properly described as a “school” of thought. In considering that proposition, Puppo introduces readers to a diverse range of essays, some of them previously published, others written specifically for this volume

    An ARCH/GARCH arbitrage pricing theory approach to modelling the return generating process of South African stock returns.

    Get PDF
    This study investigates the return generating process underlying the South African stock market. The investigation of the return generating process is framed within the Arbitrage Pricing Theory (APT) framework with the APT reinterpreted so as to provide a conceptual framework within which the return generating process can be investigated. In modelling the return generating process, the properties of South African stock returns are taken into consideration and an appropriate econometric framework in the form of Autoregressive Conditional Heteroscedastic (ARCH) and Generalized Autoregressive Conditional Heteroscedastic (GARCH) models is applied. Results indicate that the return generating process of South African stock returns is described by innovations in multiple risk factors representative of several risk categories. The multifactor model of the return generating process explains a substantial amount of variation in South African stock returns and the ARCH/GARCH methodology is an appropriate econometric framework for the estimation of models of the return generating process. The APT framework is successfully applied to model and investigate the return generating process of South African stock returns

    The Daily Egyptian, September 22, 1972

    Get PDF

    The Daily Egyptian, September 22, 1972

    Get PDF
    • …
    corecore