
Kloos, Reinhold (2013). ACTAS: Adaptive Composition and Trading with Agents for Services.

(Unpublished Doctoral thesis, City University London)

City Research Online

Original citation: Kloos, Reinhold (2013). ACTAS: Adaptive Composition and Trading with Agents for

Services. (Unpublished Doctoral thesis, City University London)

Permanent City Research Online URL: http://openaccess.city.ac.uk/2722/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

-ACTAS-

ADAPTIVE COMPOSITION AND

TRADING WITH AGENTS FOR SERVICES

SUBMISSION FOR
DOCTOR OF PHILOSOPHY

by

Reinhold Kloos

Diplom-Informatiker

E-Mail: r.kloos@soi.city.ac.uk

April 2013

Supervisor: Prof. Dr. Rainer Unland, University of Duisburg-Essen

Assistant Dean: Dr. Peter W.H. Smith, City University London

Department of Computing

School of Informatics

City University London

Institute for Computer Science and

Business Information Systems
University of Duisburg-Essen

ACTAS

iii

CONTENT

Content.. iii

Figures ... vi

Tables .. viii

Abbreviations..xii

ACTAS Abbreviations ...xiii

Introduction ... 1

1 Motivation ..1
1.1 The challenges of Service-Oriented Computing (SOC) ... 2
1.2 Introduction of ACTAS .. 4
1.3 Structure of the thesis.. 6

State of the Art .. 7

2 Service-Oriented Computing..7
2.1 Service ... 7
2.2 Electronic Service and Web Service ... 10
2.3 Aspects of services .. 11

2.3.1 1
st

 aspect of services: Different views on a service... 12
2.3.2 2

nd
 aspect of services: non-functional attributes .. 12

2.3.3 3
rd

 aspect of services: The inherent complexity .. 13
2.3.4 4

th
 aspect of services: The extended life cycle of services... 13

2.4 Summary... 16

3 The integration challenge .. 18
3.1 Motivation and Evolution of DIS middleware .. 19
3.2 Delimitation of Software Paradigms.. 21
3.3 Web Service standards... 24
3.4 Service Composition and Service Coordination... 27
3.5 Web Service Composition (WSC).. 31
3.6 Cloud Computing- offering computing resources as service... 33
3.7 Summary... 35

4 The semantic challenge ... 36
4.1 Ontology ... 36
4.2 Capability Descriptions with DL .. 39
4.3 Capability description in SWS ... 42
4.4 Predominant Discovery Approaches in SWS .. 43

4.4.1 OWL-S (formerly DAML-S) ... 44
4.4.2 Semantic Web Services Framework (SWSF) ... 45
4.4.3 Web Service Modelling Ontology (WSMO) .. 46
4.4.4 SAWSDL (formerly WSDL-S) .. 47
4.4.5 Selected Approaches of SWS .. 48

4.5 Summary... 49

5 Autonomic Service-Oriented Computing .. 50
5.1 Improvements of Service Discovery and Composition... 53
5.2 Semantic Web Services Execution Frameworks .. 55

5.2.1 METEOR-S ... 55
5.2.2 IRS .. 56

Content

 iv

5.2.3 SESA ... 56
5.3 Agents and Web Services... 57
5.4 Artificial Intelligence (AI) in SOC ... 58
5.5 Enhancements through new concepts and algorithms .. 59
5.6 Summary... 60

6 Problem Statement ... 60

ACTAS – Adaptive Composition... 61

7 Hypothesis of ACTAS ... 61

8 System Environment ... 63
8.1 Phase 1 – Composition Model and Service Description... 67
8.2 Phase 2 – Service Availability and Trading.. 69
8.3 Phase 3 – Service Request and Composition ... 69
8.4 Phase 4 – Checking constraints .. 71
8.5 Phase 5 – Grounding and Schedule of the Services .. 72
8.6 Phase 6 – Service Execution and Feedback .. 73

ACTAS - Service Model (S-Model).. 75

9 Introduction to Service Model (S-Model) ... 75
9.1 S-Model: Semantic Characteristics .. 80
9.2 S-Model: Property Classes ... 85

10 Service Description.. 88
10.1 Service Templates (ST) and SOER ... 89
10.2 The Environment Declaration ... 93
10.3 Description of compatibility .. 96
10.4 Constraints in the Service Description .. 99

10.4.1 Value Constraints ...100
10.4.2 Merge Constraints ...101
10.4.3 Exchange Constraints ..105

ACTAS - Request Model (R-Model).. 109

11 Request Model (R-Model).. 109
11.1 Service Request (SRe) ...112
11.2 Trading Request (TRe) ..114
11.3 The environment description of the R-Model ...114

ACTAS - Composition Model (C-Model) .. 117

12 Introduction to Composition Model (C-Model) ... 117

13 C-Model: The Composition Process .. 120
13.1 The Property Objects/Classes in the C-Model ...121
13.2 Step 1 : Getting Information ..127

13.2.1 Service Offer ...129
13.2.2 Actor Service Offer (ASO) ...130

13.3 Step2: Initialisation of the Composite Structure ...132
13.3.1 The Composite (Service) Structure (CompSt) ...133
13.3.2 Working with the Extended Composite (Service) Structure (CompSt-plus)..........................135
13.3.3 Initialisation of CompSt-plus and Selection of a Service Mode ...137
13.3.4 Value Constraints ...142

13.4 Step 3 : Service Discovery and Principal Compatibility ...144
13.5 Step 4 : Checking of Merge Constraints ...155
13.6 Step 5 : Checking of Exchange Constraints ..158

13.6.1 The access of information for the Exchange Constraint ...159
13.6.2 A closer look at the application of an Exchange Constraint...162
13.6.3 General Remark to the Application of Constraints ..164

13.7 Step 6 : Post-Processing ..165

ACTAS

v

Evaluation .. 169

14 ACTAS ... 169
14.1 Environment of ACTAS ...173
14.2 Service Design - “Building Blocks” of ACTAS ..175

14.2.1 Simple Semantic Characteristics ...178
14.2.2 Extended usability of Semantic Characteristics..180

14.3 Service Request ...182
14.4 Composition Process ..184

15 Case Study 1: Technical Services with translation ... 191
15.1 The ACTAS Administrator ..192
15.2 Translation Offer ...194

16 Case Study 2: Distribute Feature Composition (DFC) ... 198

17 Case Study 3: Supply Chain, B2B Integration .. 208
17.1 Offering the local solution in ACTAS ..210

18 Case Study 4: Weather Forecast Scenario ... 211

19 Case Study 5: Interpretation of Smart Grid as SOC .. 214
19.1 SOC for a smart grid..216
19.2 ACTAS for an enhanced service environment..220
19.3 Semantic Characteristics for smart grid scenarios ..223
19.4 Service Descriptions for smart grid scenarios ..227
19.5 Application of the Service Descriptions and Requests ...229

20 Limitations of ACTAS ... 233

21 Summary of evaluation ... 236

Conclusion .. 239

22 Conclusion and Future Research .. 239

Appendix .. 249

A Collection of used ontologies and ACTAS Entities ... 249
A-1 Used Ontologies ..249
A-2 ACTAS entities..250

A-2.1 Descriptions of used General Characteristics (GCh) ...250
A-2.2 Descriptions of used Compatibility Characteristics (CCh and RCh) ..251
A-2.3 Property Classes ..253

A-3 Formal definitions of Semantic Characteristics ...256
A-3.1 General Characteristics ..257
A-3.2 Compatibility Characteristics ..258
A-3.3 Compatibility Characteristics for Service Requests – Request Characteristics259

B NFP-Ontologies ... 261
B-1 NFP-Ontology for availability ..262
B-2 NFP-Ontology for provider ..263
B-3 NFP-Ontology for location (locative) ...264
B-4 NFP-Ontology for discount ..273

Bibliography... 275

Definitions .. 299

Examples .. 300

Index ... 301

Figures

 vi

FIGURES

Fig. 1 - Communication Service ... 10

Fig. 2 - Phases of the extended life cycle of e-services... 15
Fig. 3 - SOA .. 18
Fig. 4 - VPO with Working Zones .. 20

Fig. 5 - Agent Definition ... 22
Fig. 6 - Development of Software Paradigm... 22

Fig. 7 - Principal Multi-Agent-System of VPO environment ... 23
Fig. 8 - Web Service and ebXML standards ... 25
Fig. 9 - Horizontal and vertical protocols (adapted from [AloCas et al.2004]) 26

Fig. 10 - Business Service ... 29
Fig. 11 - Supply Chain (typical EAI application) ... 29

Fig. 12 - Business Process Tools [Bar2010 p. 18] .. 30
Fig. 13 - Service Models of Cloud Computing ... 33
Fig. 14 - The models of OWL-S ... 44

Fig. 15 - Elements of WSMO.. 46
Fig. 16 - OWL-S Virtual Machine (VM) [Pao2003] .. 55

Fig. 17 - SESA .. 56
Fig. 18 - Agents Environment of ACTAS... 64
Fig. 19 - MAS of ACTAS and life cycle of Service ... 65

Fig. 20 - Phase 1 .. 67
Fig. 21 - Phase2 ... 68

Fig. 22 - Phase 3 .. 70
Fig. 23 - Phase 4 .. 71
Fig. 24 - Phase 5 .. 72

Fig. 25 - Phase 6 .. 73
Fig. 26 - Elements of the S-Model .. 75

Fig. 27 - Semantic Description.. 81
Fig. 28 - Principal ontological categorization of Semantic Characteristics 83
Fig. 29 - Property Classes ... 86

Fig. 30 - Service Template data structure ... 92
Fig. 31 - Principal Compatibility for directed and non-directed composition 98

Fig. 32 - Me-Constraints for directed and non-directed composition 103
Fig. 33 - The different views on a Merge Property Object ... 104
Fig. 34 - Exchange Constraint with General Characteristic .. 107

Fig. 35 - Sequence Diagram .. 109
Fig. 36 - Visibility of Properties in CompSt ... 138

Fig. 37 - Initialised Composite Structure .. 141
Fig. 38 - Technical Service shown with principal compatibility 151
Fig. 39 - The Object Dictionary .. 174

Fig. 40 - Actor Service Offer (ASO) for Alternative Client Requests 183
Fig. 41 - Composite Structure (CompSt) with use of Multi Ports 186

Fig. 42 - Multi Port in an ASO for OWL-S Service Composition.................................. 187
Fig. 43 - Business Service with principal compatibility ... 188
Fig. 44 - Several compositions between selected Service Modes................................... 189

Fig. 45 - Example of a Translation Offer of ACTAS.. 194

ACTAS

vii

Fig. 46 - Audio-Video-Communication with Translation... 195

Fig. 47 - Alternative Example of Translation Offer.. 196
Fig. 48 - Audio-Video-Communication with alternative Translation............................. 197

Fig. 49 - Service Template for the Feature Composition example 203
Fig. 50 - Initialised Composite Structure (CompSt) with global GCh from SRe 204
Fig. 51 - Composite Structure with global GCh for Ex-Constraint 206

Fig. 52 - Weather Forecast Scenario ... 213
Fig. 53 - Smart Grid .. 215

Fig. 54 - SGMA adapted from [CEN2011]... 217
Fig. 55 - Smart Grid and ACTAS ... 220
Fig. 56 - Service Template/Offer for wind turbine scenario ... 227

Fig. 57 - Sketched Service Mode of the “Consumer Service” .. 228
Fig. 58 - Service Template for billing service... 228

Fig. 59 - Consumer Scenario applied by TrA ... 230
Fig. 60 - Principal Compatibility with applied Merge Constraints 231
Fig. 61 - Possible Service Request for the Billing Scenario ... 231

Fig. 62 - Billing Scenario with resulting Composite Service.. 232
Fig. 63 - New entities of ACTAS.. 240

Fig. 64 - ACTAS Overview .. 247

file:///C:/extradata/ph_d/Dokumente/Diss_Finale/diss_finale_Kloos_City.docx%23_Toc353915419

Tables

 viii

 TABLES

Table 1 - Applicability of “Unique Characteristics of Services” .. 9

Table 2 - Taxonomy of trading ... 16
Table 3 - Examples of criteria for the four aspects of services ... 17
Table 4 - Comparison between DL and FOL .. 38

Table 5 - Constructors of DL .. 39
Table 6 - Alternatives of matching for DL based Capability Descriptions....................... 41

Table 7 - Control flow constructs of workflows in OWL-S ... 44
Table 8 - Classification of OWL-S through the four aspects .. 45
Table 9 - Classification of SWSF (extension of OWL-S)... 45

Table 10 - Classification of WSMO through the four aspects .. 47
Table 11 - Overview of the life cycle.. 67

Table 12 - Elements of the S-Model ... 80
Table 13 - Option-Slots of Service Ports .. 95
Table 14 - Option-Slots of Service Modes and Common Part of Service Descriptions ... 96

Table 15 - Compatible sets of Option-Slots (cf. Table 13) ... 98
Table 16 - Elements of the R-Model ... 112

Table 17 - Option-Slots of Request Ports/TRe.. 115
Table 18 - Elements of the C-Model ... 119
Table 19 - Steps of the Composition Process.. 120

Table 20 - Flow Trace of Service Composition with CompSt .. 153
Table 21 - Points of Evaluation... 172

Table 22 - Terms for the description of the Composition Process.................................. 191
Table 23 - Telephone Features .. 201
Table 24 - Key requirements for the data network.. 219

Table 25 - Semantic Characteristics .. 226
Table 26 - Features of ACTAS ... 246

Table 27 - Assumed Ontologies for the classification .. 249
Table 28 - Used General Characteristics (GCh).. 251
Table 29 – Used Compatibility and Request Characteristics .. 253

Table 30 – Used Char Property Classes .. 255
Table 31 – Used Exchange Property Classes .. 255

Table 32 - General Characteristics (GCh) ... 258
Table 33 - Compatibility Characteristics (CCh) ... 258
Table 34 - Request Characteristics (RCh) ... 260

Table 35 - Nfp-ontologies ... 262

ACTAS

ix

ACKNOWLEDGEMENTS

I am most indepted to my supervisors Prof. Dr. Rainer Unland and Prof. Dr. Michael Schroeder

for their support. Sincere thanks I give to Prof. Bernhard Cohen, who was my second supervisor

and inspirator for a long period of my research.

I enjoyed working with my colleages and fellow students Tshiamo, Penny, Panos, Panayiota,

Aloysius, and Marcus. Their motivation kept me going. My gratitude goes especially towards Dr.

Swen Wagner, Dr. Jacek Gomoluch, Dr. Dominik Stein, and Dr. Stefan Hanenberg, who gave

me valued advice and help through proof reading as well as other phases of my disertation. The

support of Dr. Andrew Tuson, Marc Firman, Eric Smith, Dr. Eddy Parkinson, Veronika

Muntoni, Christina Braun, Bernd Göhing, and Gottfried Merkel, I will never forget.

Publications of my research are [KlUnBr2009], [KlUnBr2010], and [KlUnBr2012]. Early

publications of my research have been [KlReSc2002], [KlReSc2001], [KlHoSc2000], and

[KlScRe2000]. I started my research in software agents and services as a research fellow at the

institute of Secure Telecommunication of the Fraunhofer society (FhG-SIT, former GMD-SIT)

in Darmstadt, Germany. The declarative environment of ACTAS is based on my research with

Prof. Dr. Christoph Beierle for my academic title as a Computer Scientist with diploma at the

University of Hagen (cf. [BeKlMe2000]). The work was sponsored through two scholarships: a

one year program by the German Academic Exchange Service (DAAD) and a three year funding

by the City University London.

My thesis is dedicated to:

My Father

Otto Franz Alban Kloos

23.04.1934 – 25.01.2000

My Mother

Annemarie Kloos, née Karbaum

03.06.1929 – 04.07.2012

My Godfather

Georg Karbaum, who died 2006

Declaration

I grant powers of discretion to the Unversity Librarian to allow this thesis ro be copied in whole

or in part without further reference to me. This permission covers only single copies made for

study purposes, subject to normal conditions of acknowledgement.

ACTAS

xi

ABSTRACT

Mainly in business domains, the vision of gaining flexible, adaptive service environments
is based on the standardization and practical proliferation of (Semantic) Web Services,
ontologies, and agents. The standards of Web Services and their Service-oriented

Architectures (SOA) became the standard paradigm for software component integration.
Dynamic changes and the permanently increasing amount of available e-services of
different domains are a challenge of Service Discovery and Composition. Mediation

between different approaches and expert knowledge is often necessary for the
composition of services of different domains. Semantic enhancements, Autonomic
Service Discovery, and the research for more holistic concepts for the classification of e-

services are current attempts of overcoming this challenge, in order to reach the ultimate
goal of Autonomic SOC.

The thesis introduces concepts and models of a Service Discovery framework called

ACTAS (Adaptive Composition and Trading with Agents for Services). Aware that an

absolute definition of services does not exist, a classification of e-services was developed
on the base of four different aspects of services. Through these aspects, so-called
Semantic Characteristics are commonly agreed. As “building blocks” Semantic

Characteristics ease the Service Description, Service Discovery, and Service
Composition. Services and requests holding the same Semantic Characteristics are
principally compatible. In its semantic context, a Semantic Characteristic can declare

some properties through also commonly agreed Property Classes. These specific classes
of ACTAS enable the integration of algorithms into the declarative environment for the
checking of constraints and mediation of data. The constraints can check the plausibility

of property values before and after Service Composition. Additionally, Exchange
Constraints can interlink properties of different Semantic Characteristics. ACTAS
propagates the publications of Semantic Characteristics and Property Classes. A Multi-

Agent System (MAS) builds the middleware of ACTAS supporting the domain specific
policies of Service Provision, Service Trading, and the incorporation with the service
requesting application environment.

Abbreviations

 xii

ABBREVIATIONS

B2B Business-to-Business interface

B2C Business-to-Customer interface

BPEL, BPEL4WS Business Process Execution Language for Web Services

BPMs Business Process Management Systems

DAML DARPA Agent Markup Language

DFC Distributed Feature Composition

DIS Distributed Information System

DL Description Logics

DOC Distributed Object Computing

DSL Domain-Specific Language

EAI Enterprise Application Integration

FDL Feature Description Language

FOL First Order Logic

OWL-S Ontology Web Language for Services

SAWSDL,
WSDL-S

Semantic Annotations for WSDL
(Web Service Description Language)

SLA Service License Agreement

SOA Service-Oriented Architecture

SOC Service-Oriented Computing

(S)WS (Semantic) Web Service

SWSF Semantic Web Services Framework

WSMO, WSML Web Service Modelling Ontology / Language

WfMs Workflow Management Systems

ACTAS

xiii

ACTAS ABBREVIATIONS

ASO Actor Service Offer

AST Actor Service Template

CCh Compatibility Characteristic

Char Semantic Characteristic

CoA Composition Agent

CompSt
Composition (Service)

Structure

CompSt-

plus

Composition (Service)

Structure enhanced

Ex-Co Exchange Constraint

ExName
Exchange Name of Exchange

Constraint

Env

Environment (Value

Constraints, Exchange

Constraints,

and Option-Slots)

FA Facility Agent

GCh General Characteristic

Me-Co
Merge Constraint (Mediation

and Matching)

PA Personal Agent

PC Property Class

RCh Request Characteristic

ReA Request Agent

RM Request Mode

RP Request Port

SM Service Mode

SO Service Offer

SOER
Service Offer

Export Record

SP Service Port

ST Service Template

SRe Service Request

TrA Trader Agent

TRe Trading Request

Va-Co Value Constraint

ACTAS

1

INTRODUCTION

1 Motivation

We live in a world of services. Services performed by agents on behalf of others are part of our

daily life. A service is sensed as an asset with an inherent value and its consumption normally

involves the transfer of value and the generation of cost with the consequent need of its

settlement. In business for instance, supply chains demanded early on the discovery, composition

and planning of services through electronic services (e-services). In fact e-business became a

main area for the application of the service paradigm. Nevertheless, the development towards a

web of services will have its implication on many disciplines including associated ones like social

services and psychology for the support of the security of data and an improved observation of

the privacy of people.

Generally, a Service Requester can request services offered by Service Providers. The Service

Requester does not need a complete knowledge about the services; he 1 has to rely and trust on

the established interfaces and policies of the Service Providers. Business Services distinguish

relationships between a service and Service Client (B2C) as well as between two services (B2B).

The latter relationship follows matching rules determined by internal policies of businesses.

Other domains like Computer Supported Cooperative Work (CSCW) had their own ideas about

services; they thought of several Service Clients demanding Technical Services. The transparent

establishment of a communication service between two Service Clients with the currently

available communication facilities is an example of such a Technical Service. The term “Web

2.0”, introduced by [Kno2003], is used in the context of services for social networking and Cloud

Computing. The intent of the latter is quite similar to Technical Services of CSCW approaches.

However, it is combined with ideas of Business Services, because Cloud Computing propagates a

specifically scaled billing of computing resources offered in several ways.

The number of services, which will be offered on the Internet, is expected to rise dramatically

in the next few years. Technologies like Semantic Web [W3C2009a; W3C2009b] or Web Services

[BooHaa et al.2004; IBM2009] transform the Internet from a network of information to a

network of knowledge and services, generating dreams of Web3.0; also called Autonomic

Service-Oriented Computing [RamHol et al.2009; ToDePe2009], i.e. the reduction of the

requirement of manual, human intervention in service-oriented software scenarios including

learning of the users’ preferences. Research Projects, like e.g. Service Web3.0 [Eur2009; Ser2009],

drew already the picture of a new generation of the World Wide Web after Web2.0. Interestingly,

Tim Berners-Lee, inventor of the World Wide Web, questioned whether one could use the term

Web2.0 in any meaningful way, since many of the technological components of Web2.0 had

1 The use of a specific pronoun shall not imply any discrimination of gender.

Introduction

 2

existed since the early days of the Web[Ars2006].[IBM2006]. He strongly propagated the ideas of

Semantic Web and the web of services [Ber2003; TalWor2008], which led to the research of

Semantic Web Services (SWS) [BrzRek et al.2010; KlUnBr2010].

1.1 The challenges of Service-Oriented Computing (SOC)

Two main challenges appear with Service-Oriented Computing (SOC): (1) the integration

challenge and (2) the semantic challenge. The integration challenge describes the problem to

integrate and to compose services running on different systems. For the tackling of the

integration challenge, Business Services developed the multi-layered middleware of Distributed

Information Systems (DIS). The DIS approach was soon extended to an Enterprise Application

Integration (EAI), which enriched the composition mechanism with business logic like the

workflow management or petri nets. However, the developed environments for Service

Composition suffered under the integration problem due to the lack of standards.

The standards of Web Services changed the situation. They described Service-oriented

Architectures (SOA), offering Service Trading, Service Composition, and Service Coordination.

The goal of the latter was a coordinated starting of services in the phase of service deployment

(Deployment Phase). Phases of a life cycle of a Composite Service consisting of several

Component Services can be introduced in general: Service Design, Service Discovery, Service

Composition, Service Grounding, Service Deployment, and Service Consumption/Execution.

Component Services can be Abstract Services, which possibly enforce an anew Service Discovery

for Concrete Services, which can be deployed. Services can have an inherent complexity, i.e. their

orchestration (the description of the Component Services called for the realisation of one

Composite Service) and their choreography (the possible protocols of message exchanges

between the Component Services) can be hidden or transparent to Service Clients due to

company policies for instance. In Software Engineering, Service-oriented Architectures became a

standard paradigm for software component integration besides distributed objects and agents.

Although these terms are used in so many domains in various contexts with different purposes,

there is no commonly agreed and standardised distinction of the entities.

The second commonly mentioned challenge of Service-Oriented Computing is the semantic

challenge. In the standards of Web Services, the description of methods or messages is done in

the Web Service Description Language (WSDL). Depending on the model of the service

invocation, WSDL supports the synchronic call of methods in the style of Remote Procedure

Calls (RPC) or the asynchronic, message oriented invocation of services. The messages and

methods describe parameters. The semantic challenge is to overcome the heterogeneity and

ambiguity of the data presented by the parameters, in order to avoid semantic mismatches. The

resulting research area of Semantic Web Services (SWS) combines techniques of Semantic Web

with Web Services. The best known approaches of Semantic Web are Ontology Web Language

for Services (OWL-S) [W3C2009a] and Web Service Modelling Ontology (WSMO) [BruBus et

al.2005].

ACTAS

3

SWS approaches do not describe the functionality offered by a service through its messages,

operations, or orchestration, but through its service capability, which contains semantically

enhanced elements. The semantic classification of the elements used in a capability description is

done through the application of ontologies. Both Semantic Web Service standards (OWL-S and

WSMO) define or allow different kinds of capability descriptions. The mostly used capability

description in the context of OWL-S is called IOPE standing for Input, Output, Pre-Conditions,

and Effects.

The descriptions of (Semantic) Web Services are informal. That is well intended because in this

form, the Service Descriptions can be designed and exchanged in the World Wide Web network

easily. It needs approaches for the Service-Oriented Computing, in order to deal with the

information of these Service Descriptions properly, i.e. according to given policies of the

requesting application environment. New challenges for Service Discovery and Service

Composition arise due to dynamic changes of Service Descriptions as well as the permanently

increasing amount of available e-services of different domains in various semantic contexts. For

instance, the distinct laws in countries can define different semantic contexts for the

consumption of a service. Mediation between different approaches of SOC demands an expert

knowledge about their various Service Descriptions. Even the number and versions of standards

for Web Services increased in such a way, that standards were developed, in order to determine

compatible standards and their versions for the service deployment.

Therefore, the earlier mentioned goal of Web3.0, the Autonomic Service-Oriented Computing,

is still a long distance ahead. For achieving the goals of Autonomic SOC, several initiatives exist,

in order to create comprehensive frameworks that integrate the vision of SOA and SWS:

METEOR-S [VerGom et al.2005], IRS [CabDom et al.2006], and SESA [FeKeZa2008].

However, it might be that the vision can never be reached due to the inherent complexity of

Composite Services, i.e. the various involved interests, policies, and laws can lead to challenges

for the orchestration and choreography of Composite Services, which cannot be solved in

general. Nevertheless, many of these challenges of dealing are often already solved by some

domain specific approaches. Autonomic Service-Oriented Computing should take advantage of

these existing approaches. Thus, it might be a good idea of Autonomic SOC to concentrate on

the Service Discovery and Service Composition, in order to discover Service Providers offering

Candidate Services, which promise firstly to match the Service Request and secondly to be

composable with the other Candidate Services. The subsequent phases of the life cycle of the

found services should take advantage of the mentioned domain specific approaches for doing

further Service Composition, Service Grounding, and Service Deployment. Brokering concepts

like [PaDaDi2010], following the just developed idea of Autonomic SOC, are discussed in the

State of the Art chapter. Other approaches propose a context-based Composition Process

(ConWeSc [SaNaMa2005]).

Introduction

 4

1.2 Introduction of ACTAS

The thesis introduces ACTAS – Adaptive Composition and Trading based on Agents. ACTAS is

not another complete architecture supporting the whole Life Cylce of a service. It does not even

propagate another complete functional description of a service. ACTAS suggest the introducion

of a classification of services, in order to select services through their categories. It promises the

early exclusion of non-matching services in the phases of Service Discovery and Service

Composition through the classification of the services and the use of approved algorithms. The

algorithms are used, in order to check constraints valid in the semantic context of a certain

category of services. Services are selected and declared as principally compatible through the

categories, they belong to. ACTAS might only discover and compose Candidate Services, but the

adaptable discovery and composition should provide alternative Service Providers and

information for the subsequent phases of the life cycle of services.

ACTAS is based on a Multi-Agents System (MAS), which uses the pro-activeness of the

agents, in order to integrate the roles and policies involved in the SOC. Service Providers are

integrated through Facility Agents (FA). The Service Requester, originated in the applicati on

environment, is represented by the Request Agent (ReA). The ReA create an agent for the

Composition Process (CoA). In this way the Composition Process can be adapted to the policies

of the application environment. A Trader Agent (TrA) can discover and compose services

following its own policies. Due to its pro-active behaviour, the TrA could be also used for the

integration of existing trading approaches. ACTAS introduced the role of a Service Client, in

order to support Technical Services. A Service Client can be represented through a Personal

Agent (PA). The MAS of ACTAS builds the middleware for the declarative environment of

ACTAS. The declarative environment realizes Service Discovery and Service Composition

through a backtracking based on approved algorithms. In the thesis, the declarative environment

for the realisation of the Composition Process is described through the Composition Model (C-

Model).

Similar to WSMO, which distinguishes between the concepts “service” and “goal”, ACTAS

presents separate models for the description of services (Service Model, S-Model) and requests

(Request Model, R-Model). ACTAS is not restricted on Web Services, but e-services of any

domain could be addressed through the Service Descriptions and Requests of ACTAS. The

classification of services in ACTAS is defined through a special kind of ontological concepts, the

so-called Semantic Characteristics, which integrate several aspects of services in their semantic

description through relationships to ontological concepts of various ontologies. Aware that an

absolute definition of services does not exist, a classification of e-services through four different

aspects was developed: (1) the domain of a service, (2) its non-functional properties, (3) its

inherent complexity, created through policies, orchestration, and choreography, as well as (4) its

categorization in the phases of the service life cycle.

Commonly agreed Semantic Characteristics define a kind of quasi standard for the

categorization of services. On this basis, the Semantic Characteristics can be used for the

ACTAS

5

selection of services. A set of Semantic Characteristics addresses all services, which belong to the

category described through the intersection of the categories of the Semantic Characteristics

enumerated in the set. As “building blocks” Semantic Characteristics ease the Service Description

and Service Composition. Services holding the same Semantic Characteristics (so-called

Compatibility Characteristics) are principally compatible. ACTAS distinguishes between B2C

(Business-to-Client) and B2B like Service Composition. The B2C like Service Composition, i.e.

the (principal) compatibility between Service Request and Service Offer, is done through a

specific kind of Compatibility Characteristics named Request Characteristics that can be related

with ontologically defined user groups. ACTAS supports directed Service Composition, which

define a server and a client side for the composition as it is usual in B2C relationships. Non-

directed relationships, which can occur in the Service Composition of Technical Services, are also

covered by ACTAS.

Semantic Characteristics define additionally a semantic context for properties (so-called Char

Properties). Service Properties, i.e. properties of Service Descriptions in ACTAS, are always

declared as Char Properties in the semantic context of a Semantic Characteristic. Similar to the

association of a mediation algorithm with the mediator concept in WSMO, the Char Properties

are associated with algorithms for the information handling, the matching, and the mediation.

The research of ACTAS was concerned with the vision to take advantage of given algorithms.

The Semantic Characteristics allow an application of these algorithms in a fitting semantic

context. The algorithms are described through so-called Property Classes.

ACTAS defines three different kinds of constraints on the base of the algorithms associated

with properties through Property Classes: Value Constraints, Merge Constraints, and Exchange

Constraints. Algorithms for the handling of the information of a Char Property can be used for

the definition of Value Constraints, in order to describe for instance domain specific restrictions

valid in the Semantic Context of the Semantic Characteristic. Merge Constraints define the

application of matching algorithms on the level of the Service Properties. So-called Exchange

Constraints realize the mediation between Service Properties of different Semantic

Characteristics.

ACTAS advocates the publications of Semantic Characteristics and Property Classes, in order

to have commonly agreed concepts for the categorization of services as well as in order to have

proven and effective algorithms for dealing with the properties. The management of these

repositories as well as the association of algorithms with Char Properties could be the task of

ACTAS Administrators. A Service Designer uses the Semantic Characteristics for the Service

Description. A Service Request can be designed with the Semantic Characteristics and fitting

constraints.

The association of Property Classes with the Char Properties ensures fitting formalisms for the

various matching and mediation algorithms on the one hand. On the other hand, there is no need

for the development and searching of fitting algorithms for given formalisms of the Service

Description including non-functional attributes. Mediation algorithms can be applied more

Introduction

 6

precisely, in order to translate from one kind of formalism to another one. In principle, ACTAS

extends the idea of Semantic Web Services, which tackled the semantic challenge through the use

of semantically enhanced capability specifications of services. For this purpose, the parameters of

the functional description were ontologically classified. ACTAS classifies the services and uses

the resulting categories of services for the Service Discovery and Service Composition.

Additionally, approved algorithms associated with the Service Properties of the discovered

services are used for constraints.

1.3 Structure of the thesis

The thesis starts with a description of the State-of-the-Art of services and discovery frameworks.

The State-of-the-Art is parted in four parts. Chapter 2 has a closer look at a service and Service-

Oriented Computing (SOC). It compares the classical idea of services with e-services and

develops four aspects for the classification of services. The chapter 3 considers the approaches

for solving the challenges of integration in the domains of e-business and software engineering.

Web Services standards and Service Compositions are discussed. The Semantic Challenge for

SOC is covered in chapter 4, which rely on ontologies. Capability Descriptions, i.e. semantically

enhanced functional descriptions, are introduced, which are used in some of the covered

approaches of Semantic Web Services. The introduced aspects of services structure the

discussion of developments of Autonomic SOC in chapter 5. Holistic approaches with Semantic

Web Services Execution Frameworks are sketched. The State-of-the-Art ends with the problem

statement in chapter 6.

The description of ACTAS starts with the hypothesis (chapter 7) and the introduction of the

System Environment (chapter 8). In the subsequent chapters 9 and 10, the Service Model (S-

Model) covers the Semantic Characteristics and Property Classes as well as the Service

Description of ACTAS (chapter 10). The perspective is changed from the Service Provider to the

Service Requester with the Request Model (R-Model) introduced in chapter 11. The S-Model and

the R-Model deliver the informal data structures of ACTAS.

The Composition Model (C-Model), covered in chapters 12 and 13, defines a declarative

environment with data structures holding so-called Property Objects. Property Objects provide

the handle to the algorithms associated with the properties through the Property Classes. The C-

Model and the scope of the thesis are restricted to the Composition Process. The assumption is

made that fitting algorithms can be integrated into the declarative environment as for instance

Prolog modules. Other implementation instances of the algorithms could be accessible through

(statefull) Web Services. It was decided that the implementation of the MAS, the provision of

Property Classes, and the inclusion of their algorithms are not part of the current work of

dissertation. The evaluation in chapters 14 - 18 shows with various scenarios the feasibility of the

models of ACTAS. In the introduction of the models, examples are given with Technical

Services, in order to include non-directed Service Composition. The thesis concludes with future

research (chapter 22).

ACTAS

7

STATE OF THE ART

2 Service-Oriented Computing

In the last two decades, the (electronic) service (e-service) paradigm became dominant as a

presentation of remote applications and as a modular entity of Software Engineering in

distributed computing. The hype of Service-Oriented Computing (SOC) is based on Web

Service (WS) technology and its idea of Service-Oriented Architecture (SOA) for a web-

based, modular implementation of complex, distributed software.

In relation to Web 1.0, which is based on protocols and languages like HTTP, TCP/IP and

HTML, the term Web 2.0 (especially in context of social networking and Cloud Computing), was

introduced [Kno2003] with WS as a universal, standards-based integration platform. Besides the

integration of applications, WS technology increasingly integrates a standardised publishing,

transparent accessing, and specifically scaled billing of computing resources as they a re

propagated through grid [GuZaRo2009] and Cloud Computing [FuHao et al.2010; GraMax et

al.2010]. Also real-time computing built with Web Service technology became a subject of recent

research [HuaZha et al.2010; LiGaSh2010; TsaSha et al.2010]. One goal of the on-going research

is Autonomic Service-Oriented Computing [RamHol et al.2009; ToDePe2009], i.e. the

reduction of the requirement of manual, human intervention in service-oriented software

scenarios including learning of the users’ preferences. This is often phrased as Web 3.0.

E-services allow us the access of increasingly complex distributed software systems and

resources of formerly often separated, heterogeneous domains through a standardised

architecture. However, a commonly agreed idea of a service does not exist. Therefore, it is

necessary to have a closer look at the aspects of services and terminology, in order to achieve the

goals of autonomy.

2.1 Service

In our everyday life, we profit from services, which we perform ourselves, or which are

performed on our behalf. Such Manual Services are specified in Definition 1. The service

paradigm and it various aspects has been topic of research for decades [Kot1988, Kot2003;

LaPaSt2003; Lov1983, Lov1988; O'EdHo2002]. The need to describe a service is analogous with

the requirement for labelling goods or products. In comparison with a good, researchers tried to

define unique characteristics of a service. Definition 1 mentions four common ones. As Table 1

shows, these characteristics did not hold in all use cases, since the service paradigm differed

depending on the point of view of the researcher and the service domain.

State of the Art

 8

Generally, a service is not simply a function, it is a function performed by a Service Provider

on behalf of another entity, commonly the Service Requester or Service Client/Customer.

The consumption of a service transfers a value from the provider to the customer. The definition

of the service (Definition 1) also mentions the potential generation of costs, which has to be

settled (mostly) by the consumer of the service (service could be a Business Service). The costs

of a service are an example of non-functional properties (nfp) connected with a service.

Reliability, availability, and Quality-of-Service are further examples of non-functional properties

of services. A service with a bank is likely split into separate transactions, which have to be

controlled. The transactions could be services on their own. In this way, a service can be

composed on different levels of abstractions. This kind of abstraction of services leads to the

distinction between Composite Services, Component Services, and Basic Services or Atomic

Services.

Example 1 illustrates a simple Technical Service realising a telecommunication service, an

audio communication using a gateway service. The technical service is a Composite Service with

more than one Service Client. A telecommunication service can be described as a packaged set of

capabilities for exchange information over distances, perceived by human end user [Bet2008]. On

the one hand, a Technical Service can be treated as a Business Service, since it has to be paid for

the use of a telephone. Therefore, both Service Clients have a client-server relationship with the

service of the communication facility (cf. Fig. 1). On another hand, the Technical Service consists

of several Component Services of communication facilities, in order to realise the technical

function. The relationship between these Component Services of a Technical Service can be

called non-directed or peer-to-peer relationship, because both communication facilities are

equally involved. A Service Provider of a telecommunication service will only advertise a

telephone service, but not the technical Component Services for its realisation. The di fferent

view on a service is reflected in the Service Descriptions. Business Services distinguish between

Business-to-Customer Service Composition (B2C) and Business-to-Business Service

Composition (B2B).

Definition 1. Classic Definition of Service (Manual Service)

A service consists of actions performed by an entity on behalf of another.
It is an asset with an inherent value. The consumption of a service involves the
transfer of value and (mostly) the generation of cost with the consequent need of
its settlement.

The “Unique Characteristics of Services” are:

1. A service is intangible.
2. A service is heterogeneous.
3. The production of a service is inseparable from its consumption.
4. A service is perishable, cannot be inventoried.

ACTAS

9

It is up to the Service Provider, if he advertises only Concrete Services or an Abstract Service

(another kind of abstraction). For example, a travel agency might use Abstract Services, in order

to advertise journeys. The concrete journey is a result of negotiation between Service Requester

and Service Provider. The orchestration of Composite Services in Component Services and the

coordination of the execution of the functions of the Concrete Services are common challenges

of Service Providers and Service Clients. These challenges led to an inherent complexity of the

Service Description, which is disclosed to the different service users according given policies, e.g.

the orchestration may be transparent for a Service Client. The used policies can be used for a

categorization of services. Besides the inherent complexity, services can be categorized through

further aspects, which will be discussed in section 2.3.

Characteristic Service Category

Physical Acts to
Customers’ Bodies
(e.g. passenger
transport,
restaurant service)

Physical Acts to
Owned Objects
(e.g. freight
transport, repair,
health care)

Non-physical
Acts to
Customers’
Minds
(e.g. education,
entertainment)

Processing of
Information and
Communication
(e.g. cloud,
Web 2.0, CSCW)

Intangibility Performance is
ephemeral, but
experience may be
highly tangible and
even result in
physical changes.

Misleading
point:
performance is
ephemeral but
may physically
transform
possession in
tangible ways.

Yes. Yes.

Heterogeneity Yes.
Often hard to
standardize
because of direct
labour and
customer
involvement

Numerous
exceptions.
Service can often
be standardised

Numerous
exceptions.
Services can
often be
standardised

Numerous
exceptions.
Services can often
be standardised

Inseparability
of production
and
consumption

Yes.
During production

No.
Customer is
usually absent
during
production.

Only when
performance is
delivered “live”.

Many exceptions.
Customers are
often absent.

Perishability,
i.e. service
cannot be
inventoried
after
production.

Yes Yes Numerous
exceptions.
Performance can
often be stored
in electronic or
printed form.

Many exceptions.
Performance can
often be stored in
electronic or
printed form.

Table 1 - Applicability of “Unique Characteristics of Services”

State of the Art

 10

 A Communication Service Example 1

Fig. 1 shows the telecommunication between a
Service Client A and a Service Client B, which
might be requested through their avatars in the
working zone. A is using a mobile and B an IP-
phone. In order to establish the communication
connection between the two Service Clients, a
gateway or gatekeeper might be necessary for the
conversion of signals and protocols consistent
with different telecommunication standards. The
standardised telecommunication protocol H.323
[IEC2007] allows the voice over IP communication.

2.2 Electronic Service and Web Service

Early on, IT researchers and practitioners have commonly agreed about the importance and

potential of e-services in Distributed Object Computing (DOC) or Open Distributed Processing

(ODP) [ISOITU1996; ITUISO1997b; Joy2005]. An e-service was defined as an abstract,

electronically processable notion that must be implemented by a concrete agent (Definition 2),

which can be a concrete application, hardware, or a physical agent (e.g. Service Provider, actor in

case of a manual service). A service in this context [ITUISO1997a; ODP 2004] is for instance the

electronic exchange of information (“When goes the next train?”), the supply of computing

power (e.g. grid, cloud), the access of a manual service (e.g. flight, hair-cutting), the offering of

remote applications (remote procedure call (RPC), RMI, CORBA, CGI, servlets), or the access of

technical facilities (JINI, ODBC, JDBC [Fra2007; OraSUN2005; WalArn2001]). In e-business,

the necessary integration of the (distributed) resources of services with their application logic and

presentation was addressed through Distributed Information Systems (DIS).

Service-Oriented Computing (SOC) introduced the service as a new software paradigm

similar to an object. Due to the loose coupling, Software Services can be easier reused than

objects or modules, although their granularity is rather coarse. While initially services were meant

to be a simple object access protocol, the provision of functionality independent of its

implementation technology and execution location gained importance. SOC has to deal with two

challenges: the (extended) integration challenge and the semantic challenge. The former is

the challenge to integrate multiple independent and heterogeneous data repositories, processes,

and applications in a dynamic system environment. The later tries to avoid semantic mismatches

Fig. 1 - Communication Service

Definition 2. Electronic service (e-service)

An e-service is an abstract, electronically processable notion that must be
implemented by a concrete agent. Ideally, the implementation and location of the
agent is independent of the notion. The agent can be a concrete piece of software,
hardware, or a physical agent that sends and receives messages.

ACTAS

11

and to overcome the heterogeneity of data, in order to have a more reliable Service Discovery (cf.

[Syc2010; VetLen2005]).

 The standardizations of a Web Service (Definition 3) eased the integration of applications.

New functionality is created from existing building blocks and communication is enabled

between various elements. In contrast to the former approaches that addressed (at least partially)

similar goals, such as CORBA or Multi-Agent Systems (MAS), the approach of Web Services

takes advantage of simple, open, platform-independent protocols based on accepted Internet

standards. WS techniques and standards allow the encapsulation of existing code and the

integration of applications.

Berners-Lee [Ber2003] describes Web Services and their standards as belonging to the

information space based on URI links and namespaces with an unambiguous identity. UDDI

(Universal Description Discovery and Integration) [OAS2005] realises the name and directory

server, the Discovery Agency of Web Services. Web Services allow the creation of self-contained,

self-describing, modular applications that can be published, located, and invoked across the Web.

Web Services define functions that can be anything from simple requests to complicated business

processes. Once a Web Service is published, applications can discover and invoke the service

[W3C2006].

2.3 Aspects of services

Since the “Unique Characteristics of Services” do not hold for electronic services in all cases (e.g.

the delivery and reading of an e-mail separates the production and consumption of a service), the

next sections discuss four aspects of services specially introduced in this thesis, in order to

achieve a classification of services. Through this classification, services can be categorized.

Examples for criteria of this classification are shown in Table 3:

(1) Different views on a service,

(2) the non-functional attributes/properties (nfp) of a service,

(3) the inherent Complexity of a service, and

(4) The different phases of the life cycle of a service.

Definition 3. Web Service

A Web Service is a standardised electronic service [Ber2003], which uses URIs to
identify resources and is based on XML. It is characterized through a provided set
of functionality (e.g. in WSDL - Web Service Description Language, cf.
[FarLau2007a]) and Internet based message protocols like SOAP (definition is
based on [GudHad et al.2007]).

State of the Art

 12

2.3.1 1
st

 aspect of services: Different views on a service

The idea and task of a service differs with its application domain. For instance, a service in a

technical domain (Technical Service) can be distinguished from a serv ice in a mainly business

oriented domain (Business Service). A Technical Service (e.g. Fig. 1) can have peer-to-peer

Service Compositions and several Service Clients. A Business Service can have alternating client-

server bindings.

Software Engineering has its own views on services. It looks at Software Services as a

distribution model [ElfLay2002] and as a software paradigm [SaeJaf2005]. As a distribution

model, the applying software can subscribe to the whole functionality of a software service, or it

restricts its subscription to parts of the functionality (e.g. Cloud Computing). So-called

autonomous services can be used as general software modules, which are not stateless or fixed to

certain resources. Depending on the Service Provider the separations between autonomous

agents (Fig. 6) and autonomous services disappear.

A requester of a service (Service Requester) has another view on a service than the provider of

a service (Service Provider). Business Services distinguish between interfaces for Business -to-

Customer (B2C) relationship and Business-to-Business (B2B) relationship. It is a similar case with

Technical Services. Service Traders are acting with their assigned policies for Service Discovery

and Service Composition. In their construction of a semantically enhanced environment for

Semantic Web Services, Medjahed and Bouguettaya show that the community is another possible

perspective for describing services and their framework [MedBou2005]. The user roles of the

Service Client or the Service Requester inside of the community influence the reception of a

service. A manager will have another access on a service than a worker. For instance, a manager

might see more confidential data.

2.3.2 2
nd

 aspect of services: non-functional attributes

Non-functional attributes are considered to be constraints over the functionality of the service

[O'EdHo2002]. The literature alternatively speaks of attributes, properties, or parameters. In the

thesis, mostly the terms parameters and properties are used. Some non-functional properties

(nfp) are simply annotations like contributor, coverage, creator, date, format, identifier, language,

owner, publisher, rights, source, and version. Traditionally, Service Discovery of e -services works

with the functional description. The annotating non-functional properties are not really used for

the Service Discovery. This implies a general assumption of the traditional Service Discovery

environments that it is not likely that anybody wants only services of a certain publisher.

Nevertheless, this category of nfp can be quite useful for the selection of services (e.g. most

recent offered services). Another category of nfp is more helpful for several phases of the Service

life cycle (4th aspect of service): Service Discovery, negotiation, monitoring, and substitut ion of

services at run-time. This second nfp category describes service criteria like location, time,

availability, obligation, price, payment, discounts, rights, trust, Quality-of-Service (QoS), security,

ACTAS

13

intellectual property, rewards, provider, reliability, robustness, scalability, performance,

transactional, and channels (usually a channel describes the way how a service is delivered).

For instance in Example 1, it would be unacceptable for Service Discovery, if the IP-phone

was not accessible for spatial or security reasons, non-functional properties like availability of a

service have to be considered, in order to ensure that the Component Services can be deployed.

The dealing with non-functional properties like Service Quality, Settlement, or Warranty can

involve new Component Services. Therefore, the support of non-functional properties increases

the inherent complexity of a service (3 rd aspect of service).

The monitoring of Service Quality may lead to a stop of the Service Delivery, when the

detected values fall under a given threshold. A possible reaction to an interruption is the Service

Substitution. In the worst case of substitution, the phases of the life cycle have to be repeated, in

order to discover and deliver a new (component) service.

In the field of computer networking and other packet-switched telecommunication networks,

the traffic engineering term Quality-of-Service (QoS) refers to resource reservation control

mechanisms rather than the achieved service quality [EvaFil2007; Mar2007; Xia2008]. Quality-of-

Service is the ability to adapt priority to different applications, users, or data flows, or to

guarantee a certain level of performance to a data flow. For example, a required bit rate, delay,

jitter, packet dropping probability and/or bit error rate may be guaranteed. Quality -of-Service

guarantees are important if the network capacity is insufficient. The standards organisation FIPA

specified a Quality-of-Service Ontology [Dal2002b].

2.3.3 3
rd

 aspect of services: The inherent complexity

The inherent complexity of a service is created through Service Composition and Service

Coordination, i.e. that a service can consist of several Component Services, which have to

coordinate their message exchange in order to achieve the goal state of the service. The process

of Service Composition is recursive, since a Composite Service can be a Component Service of

another Composite Service. The terms of orchestration and choreography are discussed in

section 3.5. The choreography describes the behavioural aspect of services that means the

possible message exchange sequences, which are called a process. Different kinds of Service

Composition are distinguished depending besides others on the matching methods. The Service

Composition of WS with BPEL is often called process oriented, whereas the Service

Composition of SWS with Service Capabilities is rather service-oriented. The distinction between

Abstract Services and Concrete Services has to be mentioned in this context as belonging to this

aspect of services.

2.3.4 4
th

 aspect of services: The extended life cycle of services

In Software Engineering, a Software Development Process, also addressed as a Software

Development life cycle (SDLC), is a well-known structure imposed onto the development of a

State of the Art

 14

software product. As the software is often part of greater system environment, a software life

cycle can be considered as a subset of a systems development life cycle. There are several models

(e.g. Waterfall Model, Spiral Model, or Rapid Application Development) for processes. Each

model describes a variety of tasks or activities that take place during the process. Typical activities

in this context are Planning, Implementation, Testing, and Documentation. Some people

consider a life cycle model as a more general term and a software development process as a more

specific term. An international standard for software life cycle processes is ISO/IEC 122072. It

aims to be the standard that defines all the tasks required for developing and maintaining

software.

Objects, software agents, and e-services can be software paradigms for the construction of a

software product. They are the main entities of the activities during the mentioned process, and

they have to be deployed and maintained when the software product gets alive or executional in

the system environment. A manual service can directly be seen as a part of the system

environment. With the introduction of the e-service, a service as a paradigm (including manual

services) is also described through meta-information for the Service Discovery and Composition

on various levels of abstraction. The design and application of such meta-information leads to a

new, extended life cycle for Service Discovery, which is specific for the service paradigm. The

fourth aspect of services considers this extended life cycle of services from two perspectives.

According to the Service-oriented Architecture, a discovered service will be finally deployed by at

least one Service Provider. The deployment phase can be seen as the connection between the

Service Discovery life cycle and the software/manual (executional) life cycle of the service. In the

thesis, the Service Discovery life cycle is addressed with the term (extended) life cycle.

On the one hand, the service life cycle can be described in several processes from the

perspective of the Service Provider (Service Definition, Property Provision, Service Delivery) as

well as from the perspective of the Service Requester (Provider Discovery, Property Discovery,

Service Call). The Property Discovery and Property Provision are negotiating processes for the

refinement of the Service Properties. The result of the negotiations is a Service Level Agreement

(SLA). Service Call and Service Delivery are corresponding processes for the Service

Consumption phase.

On the other hand, the life cycle can also be described in six phases (Fig. 2): In Phase 1

(Service Design), the Service Provider uses a given Service Description language, in order to

describe the interface of the offered services (e.g. WSDL for Web Services). The Service Design

is followed by the Service Discovery consisting of three phases: Service Trading, Service

Matching, and Service Ranking/Checking. The SOA enables the publishing of the Service

Definitions in Phase 2, the Service Trading. Service Trading can be done actively through Service

Traders or passively with a Service Registry (for instance UDDI). An active Service Trading can

include Automatic Service Composition (i.e. the dynamic composition of a new service from the

2 http://en.wikipedia.org/wiki/ISO/IEC_12207

ACTAS

15

offered services). Active Service Trading is in principal independent from a concrete Service

Request. The Service Matching (Phase 3) will take advantage of the Service Trading, when no

fitting Service Provider is known (the process of Provider Discovery). The Service Request is the

starting point of the Service Discovery and Service Matching process of Phase 3, which ends with

the matching of Service Request and Service Offer in a successful case. In phase 4, the Service

Ranking, the found Service Offers are checked and eventually ranked. Service Negotiation

(Phase 5) is necessary for the refinement of Service Properties; it comprises the earlier mentioned

processes of Property Discovery and Property Provision. During Service Grounding, system

specific constraints for the Service Delivery (e.g. resource management) as well as coordination

issues are solved. Possibly, the phases 3 to 5 must be repeated, if (component) services do not

fulfil the resulting constraints of Service Negotiation/Grounding. In the Service Deployment

(Phase 6), the Component Services are scheduled and deployed. The Service Execution might

observe the Service Quality. In case of non-fulfilment of guaranteed QoS properties, earlier

phases have to be repeated. A feedback for learning and keeping up the Service Quality might be

provided at the end of phase 6.

Service Traders or Service Registries provide a vital aspect of services Discovery in SOA.

However, already Vasudevan [Vas1998] introduced a proposal for taxonomy of traders (Table 2).

Service Discovery can be based on a centralized or distributed Service Registry (cf. [RamHol et

al.2009]). One or several, federated Service Traders can be involved in Service Discovery. Peer-

to-Peer-Networks realise a federated Service Trading. A Service Broker is a Service Trader, which

enacts as the discovered service. Web Service standards does not define a trading, but a central

registry supporting the keyword of Service Offers: The Universal Description, Discovery and

Integration (UDDI) [OAS2005; Org2004] specifications define a registry service for Web

Services and for other electronic and non-electronic services. The UDDI consortium has released

guidelines on how to use WSDL to describe service interfaces and store them in UDDI registries

[CuEhRo2002].

Before the emergence of Web Services, ODP-Trading [Bea1997; Int1995] drafted a standard

for trading; this draft inspired several trading approaches in the nineties (e.g. , [JacMud1996;

MarMer et al.2001; PudMar et al.1995; VoBeIa1995]). These traders already included QoS

Fig. 2 - Phases of the extended life cycle of e-services

State of the Art

 16

attributes [Kos1999] and semantic enhancements with ontology based IOPE Capability

Descriptions [Ber2003; Klu2000b; Klu2000a].

In Table 3 - Examples of criteria for the four aspects of services, possible criteria for the

classification of services through the introduced aspects are listed. For instance a service could

belong to the domain of Cloud Computing and is described as SaaS from the perspective of the

Service Provider (1st aspect). The service can be linked with distinct criteria of reliability, cost and

settlement scheme (2nd aspect). The orchestration of the service might be completely transparent

for the user, due to company policies (3 rd aspect). The third aspect also distinguishes between

Abstract and Concrete Services. Finally, the Service Description can be proprietarily adapted to

the specific Cloud Services of a given Service Provider, who also offers an own Trading

Environment for the available Cloud Services. At last, the Service Provider demands a distinct

protocol for the handling of his services. In this way, the Service Provider generated several

criteria belonging to the 4 th aspect of services (phase 1, phase 2, and phase 5), which led to the

so-called “Lock-in-Effect” (cf. section 3.6).

2.4 Summary

The chapter showed that a commonly accepted definition of services does not exist, because the

idea of a service changes with the domain and the perspective of the user. Alternatively, four

aspects of services were discussed, which could be used for the classification of services.

Two challenges of SOC were pointed out: (1) the integration and (2) the semantic challenge.

The former comes up at the integration of applications of different Service Providers, since

various resources and actors have to be included, incompatible data schemata need mediation, as

well as communication protocols, i.e. the choreography, must be harmonised. The semantic

challenge looks for distinct informal descriptions of service functionality.

The integration challenge was tackled with the Web Service standards. Web Services define

communication protocols, describe the functional interfaces, and allow a Service Discovery based

on structure, syntax, and vocabulary. Semantic Web Service (SWS) extends the used vocabulary

of the functionality description with semantics and pragmatics. SWS techniques ease the

Autonomic Service Discovery, because they are an answer to the semantic challenge. The next

Criterion Description

Knowledge
Representation

Advertising of Service Offer to the trader (push scheme, pull scheme)
Functional, semantic, adaptive (gained at runtime)
Hierarchical or flat name/directory space (e.g. X.500 hierarchical, URI flat)

Matching
Heuristic

Property-based or Artificial Intelligence (AI) concept-based

Service Invocation Trader can be a matchmaker or broker (enactor)
Federation
Approach

Single (monolithic) trader or cooperating (federated) traders.

Table 2 - Taxonomy of trading

ACTAS

17

chapters have a closer look at the integration challenge, the semantic challenge, and the

Autonomic Service Discovery.

Aspect of Services Examples

1.) View on service Domain: e.g. CSCW, software engineering, supply chain

 Role in SOC: Service Provider, Service Requester, Service Client

 Role of user: e.g. Administrator, Travel Agent, Researcher

 Kind of cloud service: IaaS, PaaS, or SaaS

2.) Non-functional Aspect e.g. QoS, trust, reliability, availability, user preferences
3.) Inherent Complexity, orchestration, choreography, coordination, transaction

 Abstract Service vs. Concrete Service

 Workflow Management Systems (WfMs)

 Business Process Tools (cf. Fig. 12)

 company policy, law, political correctness
4.) Life cycle of service Phase 1 - Service Design

• Functional view – syntactical or semantically enhanced

• Service Request specification – requester view
• Mediation – data, process, and protocol level

• Service Composition on service and/or process level
• non-functional properties – keywords or concepts

Phase 2 – Service Trading

• The kind of trading – Matchmaker, Broker, or P2P
• Registry federation – central, distributed, decentral

• Preferences, Learning, Trust
• Trading Policy – keywords only, concepts, or Data Mining

Phase 3 – Service Matching
• Property based or enhanced concepts

(e.g. IR in OWL-MX as an enhanced concept)

• Functional Matching
• only input/output parameters or complete IOPE

• Intersection, plugin, subsumes, equivalence (exact)
• Matching of Abstract Services or Concrete Services

Phase 4 – Service Checking/Ranking

• Preferences
• Constraints

• Prioritisation of Service Providers
• Availability of Resources, Reservation

Phase 5 – Service Negotiation and Service Grounding

• Negotiation of further Service Properties
• Agreeing on Concrete Services if Abstract Services matched

• Tools for Service Composition on process level
• Agreement on Web Service standards (e.g. WS-I)

Phase 6 - Deployment and Execution
• Deployment Environment

• Monitoring QoS

• Robustness
• Integration into the application environment

(e.g. VPO)
• Feedback (especially for learning of Preferences)

Table 3 - Examples of criteria for the four aspects of services

State of the Art

 18

3 The integration challenge

The integration challenge can be split in two tasks that have to be solved:

 The first task is the integration of resources and actors into the environment of an

application, whereby the resources and actors are possibly located in a dynamic and

distributed environment.

 The second task is the integration of applications, in order to take advantage of existing

solutions.

In e-business, the first task was tackled with (Distributed) Information Systems (DIS) (cf.

[AloCas et al.2004 section 1]), which offered an application as an e-service. Since the

environment of a DIS was mostly under control of one enterprise, the applica tion integration

could often also be realized in the application logic layer of the DIS, because the policies and

security rules of the controlling enterprise could be adapted accordingly.

The challenge of the application integration increased, when the applications were running on

separated DIS environments controlled by different enterprises. The DIS concept had to be

extended through the concept of Enterprise Application Integration (EAI), in order to allow

application integration over several enterprises. SOC with the composition of services came alive

and it has moved mainstream with the introduction of the standards of Web Services for the last

decade, as the realisation of DIS with EAI extensions became realistic.

The Service-oriented Architecture (SOA)

allows the dealing with dynamic environments. The

Service Provider can advertise a service with a

Discovery Agency. Through this Discovery Agency, a

Service Requester can discover advertised services,

which have a Service Description fulfilling the Service

Request (Fig. 3). From 2007 onwards, WS technology

initiated Cloud Computing, which extended the SaaS

concept in the direction of a general e-service (cf.

Definition 2).

In this chapter, the integration challenge is

illustrated. DIS middleware approaches are discussed and the standards of Web Services

introduced. Finally the paradigm of Cloud Computing is presented. In the subsequent thesis, DIS

and EAI are used synonymously for distributed information systems, which encompass the EAI

concept of application integration.

Fig. 3 - SOA

ACTAS

19

3.1 Motivation and Evolution of DIS middleware

In the domain of Computer Supported Cooperative Work (CSCW), the first task of the

integration challenge became for instance apparent in the supporting of a world-wide dispersed

project-team (Example 2). A Virtual Project Office (VPO) showed with avatars the currently

working project members. The interface integrated various services: information services,

business services, and technical services. Additional context information was linked with so-called

working zones. The availability of the services and the number of people currently working at the

project changed constantly. Additionally, the team members were not bound to specific locations,

since they could access the VPO interface through the Internet. In order to establish

transparently a communication service, the currently accessible communication facilities of the

intended Service Clients have to be discovered and deployed automatically. Without WS

technology, VPO became a non-modular approach. The middleware was realised with a Multi-

Agent System (MAS) and resources were accessed through technologies like JINI or ODBC. The

transparent access of resources already reflects the utilisation idea of Cloud Computing.

However, Cloud Computing relies on the service paradigm, in order to have a standardised

interface and on-demand accounting (cf. section 3.6).

JINI3 [WeiBel2002] offered an early, Java based solution of the integration challenge in the

domain of technical services. Technical facilities became accessible with a unified interface as

technical services (e.g. in VPO). A Service Provider could advertise a JINI service through a

lookup service (LUS) with a Service Registrar object to the service. The LUS returned a Java

proxy, specifying how to connect directly to the service. The availability of services was addressed

in JINI through the concept of leasing. When a service registered with a LUS, a lease of a

specified duration was granted. Leases had to be periodically renewed. In this way, JINI

addressed availability and the Service-oriented Architecture (SOA) (Fig. 3) on the level of

resources. The disadvantage of JINI was its proprietary standard depending on Java.

The classical three-layer design of an Information System integrates the Application Logic

Layer as middleware into a Presentation Layer and a Resource Management Layer. Wrappers like

JINI in the Resource Management Layer allowed the reaction on changing resource

environments without the need of changing the application logic. The service (Definition 2)

paradigm became the external presentation of the application and was introduced as a specific

user interface.

Early DIS approaches evolved from the Remote Procedure Calling (RPC) concept of Open

Distributed Processing (ODP). The RPC-based systems were soon extended with transaction

control. The resulting TP Monitors were according to [AloCas et al.2004] long time the most

known and stable technology of DIS middleware (IBM CICS, MS MTS, BEA Tuxedo). ODP

3 Jini.org, 24.11.2010

State of the Art

 20

standardised services as interfaces and they considered availability (Service Template/Offer) and

SOA like concepts in its standardization [ISOITU1996] similar to the discussed concepts of JINI.

The middleware technology changed with the introduction of object oriented programming

and Distributed Object Computing (DOC). Object Brokers and Object Monitors (the latter were

Object Brokers extended with approved TP Monitor techniques) took over. Remote Method

Invocation (RMI) allowed the RPC access in Java. Object repositories like Java Beans realised the

offering of business algorithms independent of concrete applications.

 A Virtual Project Office (VPO) Example 2

It was the goal of the project
Virtual Project Office (VPO)
[BahBur et al.1999; ReiBah et
al.2000] to support the project
work within a world-wide
dispersed team. The virtual
working area was designed like a
physical working area. It offered
different working zones. The
principal VPO in Fig. 4 consists
of seven zones: a conference
zone, a normal working zone
with some desks, a special
working zone for undisturbed
work, a presentation zone, an
informal communication zone, an archive or library zone, and a general service zone. In
the virtual working area of VPO, a team member was shown as a personalised avatar. The
avatar of a person could only be in one VPO and one concrete zone. The symbolic
representations stood for specific services of information requisition, communication and
co-operation. For instance, when the avatar of a team member entered the conference
zone, then he became automatically part of an on-going online conference. In a non-
disturbed zone, only asynchronous communication was generally possible. The
positioning of an avatar in a certain zone also signalled the kind of conversation wanted.
The challenge of the VPO environment was the transparent establishment of the services.
For instance a technical communication service could only be established with the
currently available communication facilities of the team members, who wished to become
Service Clients. Thus, some non-functional attributes like accessibility, security, and
resource management were involved. The services of the communication facilities had to
be composed and coordinated. For this purpose, the Service Discovery mechanism had to
observe the technical compatibility as well as the current environment.

The most popular object brokers were those based on Common Object Request Broker

Architecture (CORBA), defined and standardised by the Object Management Group (OMG)

[OMG2008]. CORBA standardised the mapping of the Interface Description Language (IDL) to

different programming languages. Object Brokers also provided an encapsulation for location

independence through Object Request Brokers (ORB), which advertised the access to the server

objects and could act as brokers for the object access through interoperability with other ORBs

using the General Inter-ORB Protocol (GIOP). The system architecture of CORBA provided a

Fig. 4 - VPO with Working Zones

ACTAS

21

set of CORBA services (e.g. transaction, events, security) for the object access and a set of so-

called CORBA facilities, which were higher-level services needed for the support on application

level. The CORBA facilities were distinguished between vertical facilities like supply chain

support and horizontal facilities like information management.

However, EAI realised through CORBA middleware turned often out as incompatible, since

the implementation was not included in the standardization. The goal of an alternative approach,

Distributed Computing Environment (DCE) [Hou1996], provided by the Open Software

Foundation (OSF), was the provision of a standard implementation, which the vendors could

then use and extend as needed for their own products. By using the same basic implementation

of RPC, the hope was that the resulting products would be compatible [AloCas et al.2004 p. 43].

Even when DCE made a point and was used in some EAI middleware, it was rejected as too

restrictive by most developers.

A new class of middleware, the Message-Oriented Middleware (MOM) allowed asynchronous

bindings between client and server and made peer-to-peer bindings possible. Asynchronous RPC

was introduced and the TP Monitors were extended with persistent message queuing (MQ)

supporting local and remote queues (e.g. Microsoft Message Queuing, Java Message Service

(JMS)). Message Brokers, which are part of many EAI middleware architectures, are a specific

kind of Message-Oriented Middleware that has the capability of transforming and filtering

messages as they move through the queues. They can also dynamically select message recipients

based on the message content. In terms of basic infrastructure, Message Brokers are just queuing

systems. The only difference is that application logic can be attached to the queues. This feature

allows designers to implement more sophisticated interactions in an asynchronous manner. For

instance DIS environments with Enterprise Application Integration (EAI) can dynamically deal

with the integration of applications of a known type without a change of the application logic

(Tibco ActiveEnterprise, BEA Web Logic Integration, WebMethods Enterprise, Microsoft

BizTalk, and IBM WebSqhereMQ).

The evolution of the Web allowed standardised access of services through CGI processes or

servlet threads on the server side and applets on the client side with HTTP tunnelling firewalls.

An Application Server as DIS middleware unified the presentation of services over the Web

including the provision of Web Services. The .NET and JavaEE initiatives offer the main

development environments for Web based DIS.

3.2 Delimitation of Software Paradigms

A decade ago, a new software paradigm became popular: the Autonomous Software Agent

[Woo2000] (Fig. 6). A Software Agent had the features of autonomy, re-activeness, pro-

activeness, and communicativeness. A re-active Software Agent perceives and changes the

environment (Fig. 5). The pro-activeness of Software Agents allows the integration of logic and

the concepts of Distributed Artificial Intelligence (DAI), which allowed the creation of intelligent

State of the Art

 22

agents (e.g. BDI-agents [Woo2000]) for simulation, and distributed learning. Due to their

communicativeness, several Software Agents can work pro-actively together in a Multi-Agent

System (MAS) [HuhSte2000]. A group agent can work as an integration of several agents. For

instance the virtual project offices and their working zones in Example 2 could have each an

associated group agent, which controls the access of its working zone or VPO, respectively

(Zone Agent (ZA) and Team Agent (TA) in Fig. 7). A ZA could recognize the request of a

communication between team members. An initiated negotiation between the Personal Agents

(PA) of the Service Clients and the available Facility Services (FS), managing the communication

facilities (CF), led to the deployment of the communication service.

MAS middleware (e.g. Jade [Gri2010]) allows the creation and operation of MAS. Agents can

be seen as carrying the vertical protocols of the application logic. The horizontal protocols are

delivered by platforms or places. Autonomous agents can migrate from one place to another one,

in order to take advantage of different protocols or services. Since standardization is the base of

Application Integration, FIPA (Foundation for Intelligent Physical Agents) [Dal2011], the

standards organization for agents and Multi-Agent systems was officially accepted by the IEEE

as its eleventh standards committee on 8 June 2005. FIPA specifications represent a collection of

standards which are intended to promote the interoperation of heterogeneous agents and the

services that they represent. Long time, the standards for agents and agent-based systems lacked

integration in non-agent software engineering technologies. The association with IEEE was a not

really successful attempt to overcome this lack.

JADE [BePoRi1999; Cai2009; Gri2010] of TILAB is a FIPA-compliant [Dal2005] MAS

middleware. It allows the coordination of multiple FIPA-compliant agent platforms and their

agents through the use of standard FIPA-ACL [Dal2002a]. Among other features it supports

agent behaviours, asynchronous messaging, and multiple communication protocols, including

RMI, CORBA, HTTP, and JMS. JADE provides mechanisms for resource discovery and several

security features. The extension Wade [Cai2010] implements a workflow system on top of agents.

A MAS middleware, which is service-oriented but does not claim to be FIPA compliant, is

JIAC (Java-based Intelligent Agent Componentware). JIAC V [DAI2008] is a Java-based agent

architecture and framework that eases the development and the operation of large-scale,

distributed applications and services. The framework supports the design, implementation, and

agent

environment

perceive

change

Fig. 5 - Agent Definition

Entity

Object

Agent

 Autonomous Agent

Fig. 6 - Development of Software Paradigm

ACTAS

23

deployment of software agent systems. The entire software development process, from

conception to deployment of full software systems, is supported. JIAC allows a reusing of

applications and services. The focal points of JIAC are distribution, scalability, adaptability and

autonomy. The current version of JIAC incorporates ActiveMQ-based messaging, transparent

distribution, service-based interaction as well as semantic service search and selection.

The distinction between objects, agents, and services is not absolute and no generally agreed

definition of any entity exists. On the one hand, an agent offers a message interface, which can be

accessed as a presentation for instance through a browser over Web. On the other hand, the

implementation of a service could be interpreted as a non-autonomous agent, which reacts on

requests (cf. Fig. 6). An e-service is an abstract notion that must be implemented by a concrete

agent (Definition 2). This agent can be a piece of software or hardware that sends and receives

messages, while the service is the resource characterized by the abstract set of provided

functionality. The realising agent of an e-service can be an autonomous software agent. In this

way, (group) policies, planning, negotiating, and learning can be integrated in the dis tribution

model of Software Services. In Software Engineering, services and agents are generally seen as

coarser software components in comparison to distributed objects. They do not support

Communication protocol

VPO 1

TA

ZA1 …

ZAn

VPO 2

TA

ZA ZA ZA ZA

PRi

FS FS FS

UA

Browser

FS FS FS

Person k

VPO-Places

PA-Places

User-Places CS CS

DS

UA

Browser

PR1 PRm

IS IS DS CS

DS CS

PRi
PRk

 …

IS DS CS

…

CF CF

Migration

 PA 1

 PAk

DS

Person 1 Person k

Fig. 7 - Principal Multi-Agent-System of VPO environment

State of the Art

 24

inheritance and have in so far an easier usable interface, which is independent of the

programming language used to implement the interface. The conceptual elements of objects like

unique object identification, methods, class and instance variables, inheritance, and other

concepts are not part of the Web Service model.

The introduced middleware approaches of a DIS including MAS middleware did not really

work out due to three main reasons: (1) Complexity, (2) Lack of standardization, and (3) Political

causes. An example for the latter was the mutual neglect of proprietary standards of concurrent

companies. The complex and non-standardised communication protocols led to a difficult

implementation, incompatibility and non-acceptance (e.g. MS DCOM was never completely

compatible with SUN JavaEE due to proprietary standards).

In the past decade, the standardisation of Web Services (WS) [BooHaa et al.2004] was accepted

as an answer to the integration challenge and an improvement for the realisation of DIS [AloCas

et al.2004]. In the publication [DicWoo2005], Wooldridge and Dickinson compare Web Services

and Software Agents. They argue that agents provide a distinctive additional capability in

mediating user goals to determine service invocation. Huhns [Huh2006] sees that services

themselves developing in the direction of software agents, and that services acting together can

function as computational mechanisms in their own right. Thus, they significantly enhance the

ability to model, and manage complex software systems. Service Discovery and Service

Composition can take advantage of software agents. On the one hand, the software agents can

enact the services, in order to find a feasible Service Coordination. On the other hand, in a

horizontal architecture, they can play pro-active roles in the Service Composition, in order to

adapt different policies for the composition, to enact an involved actor, or to sense the context of

non-functional attributes.

In the next section, the standards of Web Services are considered. In the following sections,

the perspective on the integration challenge is extended to Application Integration.

3.3 Web Service standards

Web Services solve the integration challenge through the use of standardised and open web

technology, from URIs as the main addressing scheme over XML as the basic description

language to the use of Internet protocols for message transport. Web Services are integrated

through the exchange of XML messages as well as their creation is based on XML messages.

The Web Service standards are built bottom up, i.e. they begin with a simple transport

protocol (SOAP) and Service Description (WSDL). The transport protocol SOAP [GudHad et

al.2007] was first introduced as “Simple Object Access Protocol” supporting a RPC access. Web

Services soon adapted the MOM approach and SOAP was renamed to “Service-oriented

Architecture Protocol” (SOAP) or “XML Protocol” (XMLP). SOAP just defines a general

pattern of how XML Web Service messages have to look like. Additionally, the standard outlines

message exchange patterns and the encoding of XML type information. The message transport

ACTAS

25

uses mostly HTTP. However since HTTP is a server-client binding, the transport layer can

alternatively use an e-mail protocol like SMTP, or a Message Queuing System like JMS, in order

to realize peer-to-peer or point-to-multipoint (MEP) bindings (cf. [StGrAb2007]). XML-RPC and

REST (Representational State Transfer) protocols are two alternative transport protocols to

SOAP. XML-RPC claims to be easier to use than SOAP for RPC bindings. REST is in principle

a more restricted and strict SOAP protocol [BooHaa et al.2004]. “RESTful” applications use

basic Web protocols like HTTP, whereas SOAP uses only a few commands of HTTP like HTTP

POST.

Web Services Description Language (WSDL) is defined in XML and is used for the

description of the Web Service interfaces. It describes how incoming and outgoing messages look

like and where such messages are available (in terms of URI). It defines the methods, data

encoding formats, and protocols supported by a service. Once such a definition exists and gets

published, a Service Client can derive directly (e.g. with an XML parser) the outgoing messages

for the service call. The Service Provider knows the possible incoming messages. Supporting

tools allow the generation of binding code for the service and the accessing client application.

WSDL offers message oriented and RPC oriented access.

The Universal Description, Discovery and Integration (UDDI) [Org2004] specifications

define a registry service for Web Services with centralised repositories. A UDDI registry service

can be implemented as a Web Service that manages information about Service Providers (White

Pages), service classification (Yellow Pages) as well as service implementations, and service

metadata (Green Pages, tModels). The UDDI V2.0 and 3.0 specifications have been approved as

Fig. 8 - Web Service and ebXML standards

State of the Art

 26

OASIS Standards and are maintained by the OASIS UDDI Specification technical committee

[OAS2005]. UDDI is mainly used for the storage of WSDL interfaces through so-called tModels

[CuEhRo2002]. The tModels were introduced in UDDI, in order to store additional information

in the repository. In the publication [AkkFar et al.2005], the World Wide Web Consortium

(W3C) describes the storing of WSDL-S descriptions in UDDI registries.

For the deployment of a Web Service application standards are supplemented. In Fig. 9, a basic

architecture of the application logic of a Web Service agent is shown. The middleware layers hold

the horizontal protocols and a set of vertical protocols realising the functions of the Web Service.

The horizontal protocols do the basic and secure messaging, which is extended with protocols

for transaction, reliability, and security. So-called business processes are standardised for the use

as vertical protocols. They depend on the domain, the enterprise environment, and the different

policies valid in the context (cf. section 3.4). The implementation of Web Service can be based on

one of these vertical protocols. The middleware controls the given business process. Every

implementation of a Web Service is based on basic horizontal protocols, like WS-Transaction,

WS-Security, and WS-Addressing.

WS-Transaction (WS-TX) [OAS2009c] standards are relevant for the support of transactions,

e.g. the transaction management of databases. Sub-standards are WS-Coordination [FeiJey2009],

WS-AtomicTransaction [OAS2009a], and WS-BusinessActivity [OAS2009b]. WS-Coordination is

a meta-protocol, which builds an extensible framework of providing protocols that coordinate

the actions/operations of distributed applications/services. WS-Coordination describes how

services can make use of predefined coordination contexts, in order to subscribe to a particular

role in a collaborative activity. It can also be used independently from the other WS-Transaction

standards (described in [AloCas et al.2004]). WS-Transaction provides a framework for

incorporating transactional semantics into coordinated activities. The supported transactions can

Fig. 9 - Horizontal and vertical protocols (adapted from [AloCas et al.2004])

ACTAS

27

be simple (atomic transaction) or include complex business logic (business activity). The

registered services can be freely distributed, since the propagation of activity is supported.

WS-Addressing [ChrFer et al.2004] proposes a protocol-neutral mechanism for specifying

endpoint references of services within SOAP messages. WS-Security (Web Services Security,

short WSS) [OAS2006b; OAS2006c] addresses the original security weakness of Web Services.

The protocol specifies how integrity and confidentiality can be enforced on messages and allows

the communication of various security token formats, such as SAML, Kerberos, and X.509. Its

main focus is the use of XML Signature and XML Encryption, in order to provide end-to-end

security on application level. WS-Trust [NadGoo et al.2007] extends the WS-Security

specification with managed and signed Security Tokens for a trustful interaction of subjects of

possibly different domains.

3.4 Service Composition and Service Coordination

Enterprises have different policies, servers, and data formats. The orchestration into Component

Services might be hidden due to company policies. The Service Composition is determined

through B2B or B2C relations. Fig. 11 shows a classic case: A supply chain is composed of

several services provided by different companies with their proprietary policies and

environments. In the supply chain, the interactions are implemented through the use of different

(distributed) information systems. Companies maintain extensive customer, product, and supplier

databases. The involved systems are heterogeneous: different operating systems, interfaces, and

functionalities. They reside in different geographic locations. Each department is autonomously

managed. It uses its systems to perform a variety of department-specific functions whose needs

and goals are not necessarily aligned with those of the integrating application. Non-existing

standards and the confidential character of the business policies (e.g. a company may not want to

reveal its suppliers) made application integration involving several enterprises a difficult task.

Standardized interaction models for the Application Logic Layer helped to realise the concepts

of Enterprise Application Integration (cf. [AloCas et al.2004]), i.e. the integration of applications

running on middleware systems with heterogeneous enterprise environments. The service

paradigm, introduced as an interface description, which does not comprises object concepts like

inheritance, eased the loose coupling of applications of different enterprises.

The integration of applications extents the integration challenge to Service Composition and

Service Coordination. In the Service Composition, Basic or Atomic Services become Component

Services of a Composite Service, which itself can become a Component Service of another

Composite Service. Different domains developed their own ideas of integration logic, i.e. the

matching of compatible Component Services for the composition. An Atomic Service can be

advertised as an Abstract Service by the Service Provider. The determination of the Concrete

Services of a Composite Service is task of the Service Grounding. In the Service Deployment, the

State of the Art

 28

applications (or agents) of the Concrete Services have to be deployed, and the execution of these

applications has to be coordinated.

The application integration logic in an EAI middleware involves business processes, the

choreography of several applications, and the orchestration of an application in several sub-tasks.

A choreography, which is also called a coordination protocol [AloCas et al.2004; BooHaa et

al.2004] (in this thesis, coordination is a matter of deployment), is a model of the global sequence

of operations, states, and conditions that control the interactions involved in the participating

services. It is a multiparty (at least 2 parties) communication protocol, in which a party can adopt

several roles. A choreography between two parties is often called a conversation ([Pre2007]).

Example 4 shows a choreography with a (composite) Business Service. The order of the

messages is constrained. The client sends an inquiry for a travel with insurance. He accepts the

offer of Travel Agency 2 with receiving a bill and communicates consequently with the bank. The

server or client role of a Component Service depends on the current business relationship.

 Supply Chain - EAI Example 3

The responding to an RFQ (Request for Quotation) (Fig. 11) involves checking the
availability of the product, the production schedule, and an extended checking with
suppliers for delivery dates and prices for the required components. Processing the
purchase order may involve interacting with a warehouse control system that indicates the
current stock levels of the requested product and where it can be obtained. As part of the
order fulfilment step, the purchase order may be forwarded to a manufacturing system. In
this case possible additional steps are the purchase of components from suppliers, the
arrangement for delivery dates, the schedule of the production and the testing. Finally,
shipment and billing also require interactions with invoice databases.

Commonly, a choreography declares the constraints of the communication protocol globally.

In the case of the supply chain (Fig. 11), it might clarify the communication protocol between

customer, supplier and warehouse. Nevertheless, a global choreography can be transformed in a

local choreography, which describes the exchange of messages from the viewpoint of one party

complying with the constraints of the global choreography. A local choreography could for

instance declare the constraints of the messages sent and received by the customer (for details cf.

[AloCas et al.2004]). Messages between the supplier and warehouse are transparent for the

customer, but the choreography might allow that he gets a confirmation message from the

warehouse, although he sent the related order message to the supplier in the first place. Such

local choreographies can be used for the matching of Component Services (e.g. [MarPim2010]),

in order to achieve a Service Composition on process level.

 Booking of a Travel Example 4

When a person wants to book a travel, he makes an inquiry at a Travel Agency. If the
inquiry comes out with a satisfying result, he will make a booking. Finally, the chosen
travel agency requests a “Billing” service. The person serves this request with
“consuming” a paying service of a bank.

ACTAS

29

The message interaction prescribed by a

choreography results in the completion of

some useful common business goal. The

orchestration specifies the order, in which

concrete services are invoked, and the

conditions under which a certain service

may or may not be invoked; in particular, it

defines the sequence and conditions, in

which one Web Service invokes other Web

Services in order to realize some useful local

business goal. Since the introduction of

message oriented DIS, the invocation of a service has been connected with a message and in this

way it became part of a communication. Therefore, the terms (local) choreography, coordination,

and orchestration have no generally excepted delimitation in the literature.

In e-business, business processes are closely related to choreography and orchestration.

Business processes of a supply chain are for example purchase orders, price negotiations,

shipping management, and request for quotations (RFQ)). In duality with the distinction between

DIS and EAI, private business processes and public business processes (also called collaborative

Fig. 10 - Business Service

Fig. 11 - Supply Chain (typical EAI application)

State of the Art

 30

business processes) are distinguished. Business processes are declared as private, if they are

internal to an enterprise. Workflow Management Systems (WfMs) are seen as the “executing”

environments of application integration for business processes of a confined domain (e.g. within

a company) having a centralized enactment engine, i.e. they are often realised in the application

logic layer of a DIS. Business Process Management Systems (BPMs) claim to follow a more

general EAI approach for the application integration of public business processes.

Many standards for the management and description of business protocols were defined and

dismissed over the last decade (cf. Fig. 12). Business Process Management Notation (BPMN)

[Mar2003] is a graphical user interface of a BPM system of OMG. Another graphical support of

the Business Process Management offers UML (especially Activity Diagrams). Other BPM tools

support the B2B relationship description (e.g. RosettaNet [TrPrCo2003], or the Business Process

Specification Schema (BPSS), which is part of ebXML standards). Business Transaction Protocol

(BTP) [OAS2010] is a protocol for managing complex, B2B transactions over the Internet.

For the “execution” of business processes, they have to be related with existing services. The

XML Process Definition Language (XPDL) of the Workflow Management Coalition (WfMC)

and the Business Process Modelling Language (BPML) [OAS2003] of the Business Process

Management Initiative (BPMI) are languages for the process “execution” of BPM models. The

ebXML standards also defined their process execution environment (cf. section 3.5). However,

BPML is described as obsolete in [Ko2009] and the globally accepted standards for process

Fig. 12 - Business Process Tools [Bar2010 p. 18]

ACTAS

31

“execution” are now Web Service standards like WS-BPEL of OASIS as an orchestration

language and WS-CDL as a choreography language (cf. Fig. 12). These standards are discussed in

the next section.

3.5 Web Service Composition (WSC)

Web Service Composition can be done on service level with the WSDL descriptions (section 3.3)

or their semantic enhancements, the Capability Descriptions (section 4.3). For the Web Service

Composition on process level further standards were introduced, in order to integrate the

execution of business processes designed with BPMs middleware (cf. section 3.4). Examples of

these Web Services description standards are Process Specification Language (PSL) of the

National Institute for Standards and Technology (NIST) [ISO2004] and Business Process

Execution Language (BPEL4WS, WS-BPEL, BPEL) [AndCur et al.2003; IBM2007b;

ManMcI2003; Vas2007]. Both standards define orchestration languages, i.e. they describe the

process of a service with its invocation of other services from the local perspective of the service.

PSL was developed for addressing the semantic challenge (section 4) of orchestration languages.

It is based on RDF and OWL. The terms of its described business processes are semantically

enhanced [GrüMen2003].

BPEL became a popular standard orchestration language for BPM workflow orchestrations

(cf. Fig. 12). BPEL4WS (Business Process Execution Language for Web Services) (BPEL for

short) [AndCur et al.2003; IBM2007b] is a process modelling language supporting abstract and

executable processes. The introduction of abstract processes is useful for describing business

processes (cf. Fig. 9) in general; while executable processes may be compiled into invokable

services. Composite Services are modelled as directed graphs where the nodes are services and

the edges represent a dependency link from one service to another. Canonical programmatic

constructs (like e.g. SWITCH, WHILE, and PICK) allow directing an execution’s path through

the graph.

BPEL was released along with two other specifications: WS-Coordination and WS-

Transaction, in order to achieve transaction control and coordination of Concrete Services. These

standards are discussed in deep in [AloCas et al.2004]. WS-Coordination describes how services

can make use of predefined coordination contexts, in order to subscribe to a particular role in a

collaborative activity. For instance distributed applications operating in a heterogeneous

environment can create a context, in order to propagate an activity to other services and to

register for coordination protocols (cf. [KumNan2005]). WS-Transaction provides a framework

for incorporating transactional semantics into coordinated activities. WS-Transaction uses WS-

Coordination to extend BPEL, in order to provide a context for transactional agreements

between services. BPEL4D of Bohn [Boh2009] extends BEPL for the support of processes of

technical services accessing devices. BPEL4People [IBM2007a] integrated people into the

workflow processing. BPTX [Xia2007] supports long running transaction.

State of the Art

 32

The choreography of Web Services was supported through several standards. Early on, a

conversation model of component integration using Web Services was developed. Such a model

was supported through the specifications of CS-WS (Conversation Support for Web Services).

The model contained so-called Conversation Policies (CP), which describe the message formats

as well as timing and sequencing constraints of the involved Web Services. The standard Web

Services Conversation Language (WSCL) [BanBar et al.2002] as a choreography language

introduced so-called abstract interfaces of Web Services. These abstract interfaces allowed the

hiding of the inherent complexity of services. For instance, some company policies demand this

encapsulation.

More recent standards for the support of choreography are grouped under the name WS-

choreography. WS-choreography standards [W3C2004] describe the choreography of Web

Services separately. In this context, two standards were introduced: Web Service choreography

Interface (WSCI) [ArkAsk et al.2002; BroCan et al.2004], and Web Services choreography

Description Language (WS-CDL) [KaBuRi2004; KavBur et al.2005; KaWaHu2007]. WSCI (XML

interface language for interaction between Web Services) allows the description of client -server

relationships with a local choreography (cf. section 3.4). WS-CDL supports peer-to-peer

communication with a global choreography (cf. section 3.4). WS-CDL became popular, whereas

WSCI, WSCL, and CS-WS are described as obsolete in [Ko2009].

A choreography description language like WS-CDL permits the descriptions of how Web

Services can be composed, how service roles and associations in Web Services can be established,

and how the state, if any, of composed services is to be managed. The research of Kang

[KaWaHu2007] extends the choreography language to WS-CDL+ for choreography of

applications in general. Tools allow the generation of single process orchestrations (e.g. BPEL)

from a choreography language, i.e. a view on the choreography from the perspective of a specific

service (local choreography).

Web Services were not the first attempt of standardization of e-services for business. An

example for earlier standards for e-services over Web was ebXML (Electronic Business using

XML) [OAS2006a] (Fig. 8). The ebXML standards were advanced by OASIS and UN/CEFACT

and approved as ISO 15000. Similar like the standards of Web Services, their goal was to enable

enterprises of any size and in any geographical location to conduct business over the Internet.

The holistic and top-down defined approach of ebXML is an all-in-one solution and places

emphasis on the business and its processes. The definition of the ebXML standards started

before the establishment of the Web Service standards. Nevertheless, some Web Serv ice

standards like e.g. SOAP were integrated. The standards of ebXML are ready for deployment and

during the first years of experience the specifications have matured. In contrast, Web Service

specifications have been usually developed independent of each other, leading to a sometimes

incoherent but flexible technology. Additionally, Web Services have a good vendor support since

all major players on the IT market engage in SOA. A comparison between the standards of Web

Services and ebXML can be found in [Ger2006].

ACTAS

33

The standards of ebXML directly support orchestration and choreography (EAI aspects) and

security features. They define Collaboration Protocol Profiles (CPP) as well as Collaboration

Protocol Agreements (CPA). The ebXML services are advertised through CPP descriptions in a

common repository; the CPA functioned as Service Licence Agreement (SLA). In this way, the

Service Discovery of ebXML is more precise than the one of Web Services through WSDL

descriptions in UDDI repositories. However, the standards of ebXML do not tackle the semantic

challenge. In some areas, interoperability brings the two approaches together, for example, by

using the Universal Business Language to describe business documents or by following the

UN/CEFACT Modelling Methodology to acquire knowledge about business processes. After all,

the main difference will remain that the top-down design approach of ebXML will continue to

yield different results and addresses different audience than the bottom-up approach of Web

Services.

3.6 Cloud Computing- offering computing resources as service

Since 2007, the term Cloud Computing has

moved mainstream in SOC (cf. [GraMax et

al.2010]) due to a large scale research project

of Google, IBM, and a number of other

universities. It propagates an approach of

providing a transparent access of computing

resources and virtual IT-infrastructure as

service in an abstract, dynamically needs

adapted and accountable way. The

accounting shall be on-demand. The

transparent character of the usage, provided

in a not further specified part of a network

(mostly Internet or intranet), is reflected in

the metaphor or symbol “cloud”. Cloud

Computing is explained as an approach, which goes beyond Software-as-a-Service (SaaS),

Organic Computing [Org2010] and Virtualisation (methods for accessing computing resources

transparently).

Cloud Computing is still an evolving paradigm and no commonly accepted definit ion exists

until now. A popular definition of the National Institute of Standards and Technology (NIST,

[NIS2010]) states: Cloud Computing is a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or Service Provider interaction.

Fig. 13 - Service Models of Cloud Computing

State of the Art

 34

NIST defines three Service Models of Cloud Computing (Fig. 13): (1) Infrastructure-as-a-

Service (IaaS), (2) Platform-as-a-Service (PaaS), and (3) Software-as-a-Service (SaaS). The

infrastructure layer, also called “Cloud Foundation”, is the lowest Service Model layer of Cloud

Computing. Together with the next layer PaaS, IaaS is also called “Cloud Housing”. IaaS

provides an environment of virtual servers. An example is Elastic Compute Cloud (EC2)

[ama2009] of Amazon. The advantage of using this infrastructure as a service in comparison to a

traditional data centre is the scalability. In principle, the Service Client can increase and reduce

the number of virtual servers on demand. He has full access rights on the virtual hardware and

can install new applications. However, the customer must also do the system administration.

The platform layer (PaaS) supplies a server for an application of the Service Client. The

customer copies the application onto the server, in order to get it executed. The application

acquires the physical resources transparently. The Service Client does not have to do any system

administration any longer. Examples are Windows Azure of Microsoft, App Engine of Google,

and force.com of Salesforce.com.

The application layer represents the top model of the Service Models (SaaS) of Cloud

Computing. The customer can use an application provided in the cloud, which is modular,

service-oriented, dynamic, distributed, and multi-client enabled. Since the success of the

application can possibly not be quantified by the Service Provider, the accounting according with

the load is difficult. Known examples of SaaS in Cloud Computing are Google Docs as well as

Microsoft SkyDrive Office Web Apps, Exchange Online, SharePoint Online, Office

Communication Online, and LiveMeeting.

One can distinguish between three main kinds of cloud: (1) Private Cloud, (2) Public Cloud,

and (3) Hybrid Cloud. In a Private Cloud, services are provided and consumed by actors of one

company (Enterprise Cloud). In this way, the effort for the system management is kept low and

the cloud could be used for experiments (Exploratory Cloud). For security reasons, the number

of actors could be further reduced to the members of one department (Departmental Cloud). A

Public Cloud allows principally everybody to be a Service Client or Service Provider. However,

data security and system administration become more difficult. A Hybrid Cloud is likely a Private

Cloud, which becomes temporary a Public Cloud, when additional resources have to be allocated

in periods of high resource demand.

In the case a customer is an employee of a small company and the cloud service is not used

permanently, then the advantages of the customer should be firstly a financial gain through on-

demand accounting, secondly, the saving of additional local resources, and thirdly an efficient use

of resources. Critics argue that the data security would be endangered with curious Service

Providers like Google. National and international laws have to be considered and updated.

Additionally, performance problems can occur, when the customer wants to have an effective

data encryption. Finally, a customer will likely become locked with one Service Provider since the

cloud interfaces are not standardised (Lock-in-Effect).

ACTAS

35

Cloud Computing can be delimited from similar terms. Grid Computing intends the common

using of computing resources, which have no central control. Cloud Computing possesses a

Service Provider that centrally controls, provides, and offers resources, which are accessed by one

Service Client. Similar, peer-to-peer networks have the purpose of taking load of the servers

instead of offering the resources as a service like Cloud Computing does. Critically looked at the

definition of Cloud Computing, it turns out that IaaS as well as PaaS have their application logic

for transparent providing and accounting of the infrastructure or the platform, respectively. From

this point of view, they are both SaaS with goal-restricted applications. In the end, the idea of

SOC goes beyond Cloud Computing, since it involves application integration, i.e. the

composition of services.

3.7 Summary

SOA solutions are the next evolutionary step in software architectures. SOA is an IT architecture,

in which functions are defined as independent services with well-defined, invokable interfaces.

An important issue in today’s design of software architectures is to satisfy increasing software

complexity and flexible solutions. Classic EAI projects are expensive and inflexible due to costs,

proprietary solutions, and tightly coupled interfaces. The Service Discovery and an improvement

of the Service Design become increasingly important.

However, the centralised Service Discovery with UDDI, no semantic enhancement of WSDL

descriptions, the weak security of SOAP, the high number of standards, and the incompatibility

between different versions of the standards were recognized as weaknesses of Web Services.

Especially, the support of BPM leads to the introduction and dismissing of several standards. The

recognized weaknesses of Web Services are concern of further research.

The discussed standards WS-Security, WS-Trust, and WS-Addressing improved the security

weakness. However, these standards produce a number of factors that a client has to consider

before interacting with a service. In order to overcome the resulting integration challenge, an

extension of WSDL was introduced with the standard WS-Policy [VedOrc et al.2007]. It defines a

set of generic constructs for defining and grouping policy assertions, which represent alternative

sets of possibly optional requirements of the service for the interaction. For autonomic

computing, the client must be able to interpret these policy assertions and adapt its behaviour

accordingly.

The high number of Web Service standards and their incompatibility of versions was

addressed through WS-Interoperability (WS-I) [OAS2011], which introduced so-called profiles

containing sets of compatible standards and their versions. In order to ensure interoperability of

Web Services, they can declare their conformance with a certain profile version. The versions of

the profiles are often declared in a way that services of a lower version are still interoperable.

Keyword-based Service Discovery with the centralised repository of UDDI became unpopular,

because of an unreliable identification of potential services and a costly, mostly non-existing

State of the Art

 36

management of unavailable services (cf. [FeKeZa2008 section(s) 8.3]). The first UDDI Business

Registry (UBR) nodes, run by IBM, Microsoft, SAP, and NTT Com, were shut down at the

beginning of 2006. Alternatively, Web Services can be described on various levels of abstraction

for the Service Discovery. The publication of [FeKeZa2008] delimits discovery based on

keywords, simple semantic descriptions, and rich semantic descriptions. Distributed repositories,

peer-to-peer networks, and MAS as alternative approaches are discussed (cf. [RamHol et

al.2009]). WS-Discovery [ModKem2009] describes a distributed repository with multicast

addressing of service groups. The research in SOC was extended to advanced aspects of services:

semantically enhanced functional descriptions (e.g. IOPE capabilities), non-functional aspects

(hybrid Service Discovery), context-awareness, and Autonomic SOC. The resulting semantic

challenge and the automation of SOC are discussed in the next two chapters.

4 The semantic challenge

The semantic challenge is to avoid semantic mismatches and to overcome the heterogeneity of

data, in order to have a more reliable Service Discovery (cf. [Syc2010; VetLen2005]). The

Semantic Web Services (SWS) research is concerned with the semantic challenge. It is based on

the research of Semantic Web, which introduces ontologies for the semantic categorization of

terms.

It was recognized that the Service Composition on process level of BPEL based on WSDL

leads to a complex Service Discovery process. Therefore, the functionality offered by a given

service is described in SWS not any longer with its messages, operations, or orchestration, but

through its Capability Description, which contains semantically enhanced elements. The

semantic categorization of the elements is done through the application of ontologies. The

Service Capability is meant primary for discovery and selection purposes, i.e. the capability is used

on the one hand by the Service Provider for the advertisement of the service functionality. On

the other hand, the Service Requester takes advantage of the Service Capability, in order to

determine whether the service meets its functional needs. Additionally, the Service Capability

allows a Service Composition on service-level. The next sections look at ontologies and Service

Capabilities. Approaches of SWS are discussed in section 4.4.

4.1 Ontology

Ontologies are commonly used in artificial intelligence and knowledge representation for

conceptual classification schemes. The computer science usage of the term ontology is derived

from the much older usage of the term in philosophy, where it means the study of being or

existence. In the context of computer and information sciences, an ontology is an explicit

formal specification of a shared conceptualisation. It defines a set of representational primitives

with which to model a domain of knowledge or discourse (cf. [Gru2009]). The ontologies are

ACTAS

37

organized by concepts (also called classes or sets), properties (or attributes), and relationships. An

ontology contains besides a hierarchy of concepts organized by the subsumption relation (often

called isa, subtype, or subclass), additional 'semantic relations' that specify how one concept is

related to another. These additional semantic relations define part-of relations and other

constraints.

A categorisation of ontologies themselves can be made according to their subject of

conceptualisation (cf. [StGrAb2007]): Top-level Ontology, Domain Ontology, Task Ontology,

and Application Ontology. A Top-level Ontology (also called upper ontology or foundational

ontology) attempts to describe very abstract and general concepts that can be shared across many

domains and applications. Due to their generality, they are typically not directly used in

applications but for other ontologies to be aligned to. Domain Ontologies capture the

knowledge within a specific domain of discourse, such as medicine or geography. Task

Ontologies depict the knowledge about a particular task, such as diagnosing or configuring.

Further narrowing the scope, Application Ontologies provide the specific vocabulary required to

describe a certain task enactment in a particular application context. Application Ontologies

make use of both Domain and Task Ontologies. They describe e.g. the role that some domain

entities play in a specific task.

Ontologies are typically specified in languages that allow abstraction away from data structures

and implementation strategies; in practice, the languages of ontologies are closer in expressive

power to first-order logic than languages used to model databases. For this reason, ontologies

are said to be at the “semantic level”, whereas database schema are models of data at the

“logical” or “physical” level [Gru2009]. By using ontologies to enrich the description of services,

their semantics become machine-interpretable, and users are enabled to pose concise and

expressive queries. Furthermore, logical reasoning can be used to discover implicit relationships

between search terms and Service Descriptions as well as to flexibly construct taxonomies for

classifying services. Mediation allows the translation between related ontologies and the

adaptation of terms of distinct domains or user perspectives.

On top of RDF and RDFS, languages based on XML, W3C standardisation efforts have

produced the OWL family of Ontology Languages for the description of Semantic Web

ontologies. Ontology Languages are based on logics like Description Logic (DL [FraDie et

al.2005]) (e.g. OWL-DL [BecHar et al.2004]), Frame-Logic (F-Logic, ObjectLogic

[KiLaWu1995]) (e.g. WSMO/WSML [BruBus et al.2005], SWSO/SWSL [BatBer et al.2005]),

First Order Logic (FOL) and others. In contrast to description logic based formalism, the

semantics of F-logic are normally that of a closed world assumption. F-logic is generally

undecidable; whereas DL based on SHOIN logic is decidable and with an open world

assumption. F-Logic is more expressive than DL.

First-Order Logic (FOL) is used for annotating and matching pre- and postconditions of

operations. FOL is a branch of logic that is based on individuals and the relations (predicates)

State of the Art

 38

between them. FOL permits the formulation of quantified statements about some or all the

individuals in the universe of discourse. Predicates in FOL take only individuals as arguments and

quantifiers only bind individual variables. The goal of logic inference in FOL is to check whether

a given knowledge base KB (a collection of sentences) entails a sentence A (), i.e.,

whether A follows logically from KB. Entailment in FOL is semidecidable, i.e. every entailed

sentence can be found, but for non-entailed sentences, it is not always possible to decide whether

they are entailed or not, because the logic inference might not finish. Despite these theoretical

limits, automated theorem provers can solve many hard problems in FOL. Inference procedures

often employed include resolution and term rewriting.

Description Logics (DL) are a

family of knowledge representation

languages, which can be used to

represent the terminological

knowledge of an application

domain in a structured and formally

well-understood way. The name

description logic refers, on the one

hand, to concept descriptions used

to describe a domain and, on the

other hand to the logic-based

semantics which can be given by a translation into first-order predicate logic. DL was designed as

an extension to frames and semantic networks, which were not equipped with formal logic-based

semantics. Description Logic was given its current name in the 1980s. Before this, it was called

(chronologically): terminological systems and concept languages. The first DL-based system was

KL-ONE (by Brachman and Schmolze, 1985).

Generally, Description Logic is a subset of First Order Logic (cf. Table 4). It consists of an ABox

and a TBox. The TBox contains rules based on atomic concepts (predicates of arity one) and

atomic roles (predicates of arity two). ABox contains objects, i.e. instances of the concepts. The

semantic level is defined through an interpretation (). The set is the domain set of all

objects in the ABox. The symbol is a mapping of objects of to the atomic concepts and

atomic roles, respectively. An atomic concept A is mapped with a subset . The mapping

of an atomic role P is a subset . The TBox contains concepts (e.g. C, D, E) as well

as roles (e.g. R), which defined through concept definition , concept inclusion , and

concept inverse inclusion with the constructors and semantics given in Table 5. The

inclusions define hierarchies of concepts.

DL comprises different kinds of description logics. One important and influential description

logic is called ALC. ALC introduces the special concepts nothing and thing , (

). It supports the operations Negation of concepts, Conjunction, Disjunction,

DL FOL

 (() (())

 (() (() ()))

 (() ())

 (() ())

Table 4 - Comparison between DL and FOL

ACTAS

39

and Value restriction (Table 5). Domain and Range of a role can be expressed with the value

restrictions (Domain: , Range:).

An extension of ALC is the description logic SHOIN(D):

 Roles have additional properties like being transitive, symmetric or inverse to other roles.

 Roles can be arranged hierarchically.

The formula in DL is translated in FOL (() ()).

 Individuals in the ABox can be compared.

 Nominals, i.e. concepts, which directly enumerate (or restrict) their individuals, are possible in
the TBox.

 (General) Number restrictions are possible in the TBox (Table 5).

 Besides abstract roles, additionally concrete roles are allowed, which can have an

assignment of datatype values such as integers of strings to individuals.

4.2 Capability Descriptions with DL

In their Capability Description, requesters and providers of services want to express which

service instances they are willing to accept, i.e. which ones they request or provide, respectively .

In order not to list all the different services explicitly, they take use of Abstract Service

Descriptions. Describing a set of objects in DL is done by using concepts. In this way, the set of

Concrete Services described by an Abstract Service is the set of service instances acceptable to a

Service Requester or Service Provider, respectively. With an interpretation , these service

Syntax Description Semantic

Negation of
concepts

()

Intersection,
Conjunction

()

 Disjunction ()

 () {
 ()

}

Value restriction
(existential)

() {
 ()

}

Number
restriction

() {
 { }

 { () }
}

General
Number
restriction

() {
 { }

 { () }
}

Table 5 - Constructors of DL

State of the Art

 40

instances map to the extension of a DL concept that represents the Abstract Service. The

concept is specified by a set of DL axioms , which can be associated with the Capability

Description of a service.

In equation (4-1) the possible axioms of a “shipping” Service Provider are listed. They

specify the concept : “Shipping items from any city in UK to a city in Germany, which have a

weight less than 50 kg”. The second axiom of assures through general restrictions that the

concept really has the properties of going from exactly one city to another one. The

Concrete Services
 could contain among others the two service instances for shipping a 50 kg

package from Plymouth to Bremen and for shipping a 25 kg barrel from Dover to Hamburg.

It becomes obvious that the roles declare properties of services and their constraints. The

value variety of properties can be fixed to certain values with nominals (e.g. { }

like in) or ranging over the instances of a certain concept (e.g.).

Obligatory properties are introduced with an existence restriction (e.g.

like in). An axiom with () does not restrict the value of an obligatory

property . Number restrictions of the roles cover the multiplicity constraints of properties (e.g.

 () in). Through the number restriction a property can

be declared as a single-valued property. Alternatively, an axiom can declare a multi-valued

property. The axioms in can also contain for the covered services a range-covering of a

property through an axiom like . Such an axiom with the use of an inverse role

means that in every possible world (i.e. in all interpretations I) for any instance or value

belonging to the concept a service instance y in exists, which holds as property this

instance. Translated in FOL, this axiom can be written as (() [() ()]).

In the axiom declares that the services are offered from any city in

the UK.

The axioms can be used by the Service Provider, in order to advertise his shipping services.

In a similar way, the Service Requester could define axioms for the Capability Description of

 {

 ()

 ()

}
(4-1)

 { ()}
(4-2)

 {

 { }

{ }
{ }

}
(4-3)

ACTAS

41

the requested services. Both sets of axioms can be used by a DL reasoner, in order to determine

matching of the capabilities by inference. The matching algorithm is based on a common

knowledge base KB and the two Capability Descriptions and . The Service Requester in

(4-3) wants to find a Service Provider, who offers services, which go from Plymouth and Dublin.

The KB in (4-2) declares Plymouth and London as belonging to the concept UKCity.

In the chapter “Discovery” [StGrAb2007 pp. 211–244], Grimm discusses three alternatives of

matching for a DL reasoner using the sketched model (Table 6):

(1) intersection matching (()),

(2) subsumption matching in both ways ((),

 ()),

(3) and non-disjointness matching (()).

 However, matching based on logical inferencing is computationally costly and demands high-

quality semantic Service Descriptions. To realise a practical discovery framework for large -scale

real-world scenarios, the different techniques for matching and retrieval needs to be combined

appropriately with regard to architectural issues.

Function Formula Intuition

 ()

 ()

Is there a way to resolve

unspecified issues such that and

 specify some common service

instances?

 ()

 ()

Do the service instances of

encompass the service instances of

 regardless of how unspecified

issues are resolved?

 ()

 ()

Do the service instances of

encompass the service instances of

 regardless of how unspecified

issues are resolved?

 ()

 ()

Do and specify some

common service instances,

regardless of how unspecified issues

are resolved?

Table 6 - Alternatives of matching for DL based Capability Descriptions

State of the Art

 42

For the equations (4-1) to (4-3), the matching () holds, because the

concept is satisfiable with respect to since Plymouth is a UK city, and it

is in the range of the -role of both (and). The matching ()

also holds, because in all interpretations the given concept is satisfiable, due to the definition of

Plymouth as an in KB. In [StGrAb2007], the Non-Disjointness matching is described

with some advantages, but it has to use range-covering and it hits some deficits of expressiveness

of DL. The subsumption matching alternatives do not hold for the equations. Grimm illustrates

in [StGrAb2007] the advantages of all matching alternatives and their possible combinations.

4.3 Capability description in SWS

For Capability Descriptions of services, various SWS annotation frameworks include information

about input and output parameters, state-transition-based notions, explicit taxonomic

classification, or high-level abstract properties of a service. The Capability Descriptions allow a

service-based Service Composition like shown in [FujSud2009] or [Hab2009]. Ontologies are

used for the realisation of semantically enhanced categorization of parameter types of the service

operations and messages as well as for the semantic enhancement of constraint properties. State -

transition-based notions, used for the behavioural description of the operations, go back on

Hoare logic. The Capability Descriptions of SWS approaches, namely SAWSDL, OWL-S, and

WSMO, are subsequently discussed.

Hoare logic is a formal system that provides a set of logical rules for reasoning about some

properties of a computer program, including determining whether a given program provides a

formally defined functionality. The intended functionality of a program Q is specified in terms of

initial preconditions (P), i.e., assertions about certain properties of the values taken by the

relevant variables before the program initiation and the relations among them, and

postconditions (R), i.e., assertions about the values after execution. The relation between the

preconditions and postconditions is formulated as so-called Hoare triples of the form P[Q]R

which can be interpreted as follows: “If the assertion P is true before initiation of a program Q,

then the assertion R will be true on its completion.’’ Specifications based on pre- and

postconditions can be used for discovering software components or services with a required

functionality.

In OWL-S, the Capability Description can be described in short as IOPE (Input, Output,

Precondition, and Effect). IOPE was already known to Web Services independent t rading

approaches like LARKS [SycWid et al.2002]. The set Input contains the type declarations of the

input parameters which are necessary for the execution of the services, whereas the set Output

contains the declarations of variables, which are an output of the application of the service.

SAWSDL just extends the functional descriptions of WSDL with XML tags for the

preconditions and effects. However it is missing the inclusion of an ontology language like for

ACTAS

43

instance OWL in the standards of OWL-S. The Precondition and Effect can be compared with

preconditions and postconditions of the Hoare logic.

The capability class in WSMO consists of the four elements hasPrecondition, hasAssumtion,

hasPostcondition, and hasEffect. The hasPrecondition and hasPostcondition expressions make

axiomatic statements about the expected input and output variables, i.e. WSMO does not only

enumerate the declarations, but states with logic expressions what information must be available

for the service to be executed and what information will be available after the service has been

executed. The hasAssumption and hasEffect expressions are again comparable with the

preconditions and postconditions of the Hoare logic. They make statements about the assumed

state of the world prior to the execution and the guaranteed state of the world afterwards.

Generally, the standards of SWS discovery frameworks define the domain-independent part of

the ontology vocabulary in terms of which Capability Descriptions are to be defined. In order to

completely describe the capability of a service, additional vocabulary originating from a Domain

Ontology becomes necessary. For instance a service within a logistic domain would include

additional concepts like “Transportation”, “Container”, or “Location” for a less ambiguous

Capability Description.

The decision of using WSDL as Service Description or the semantically enhanced Service

Capability belongs to the Service Design of a service. Every Discovery Agent has to implement

an appropriate search and matching algorithm. The Service Design and the Service Discovery are

phases of the life cycle of a service, which is introduced in the next section. The algorithms of the

phases and the inclusion of specific Domain Ontologies mean additional effort and ambiguity in

the application of SWS standards.

4.4 Predominant Discovery Approaches in SWS

The motivation for the research in Semantic Web Services (SWS) was the recognition that the

centralised and functional discovery of Web Services based on WSDL and UDDI as well as their

composition can be improved through semantic annotation based on ontologies [Gri2007].

Hartmann [HarSur2004] shows that, for practical implementations, Semantic Web technologies

must consider aspects such as scalability and reliability. There are various efforts that investigate

the different techniques of Semantic Web Services in the context of Service Discovery. Many of

them are tightly coupled with the Service Capabilities (cf. section 3.7). Results of this research in

SWS are standards like SAWSDL (Semantic Annotations for WSDL and XML Schema)

[FarLau2007b] (formerly WSDL-S [AkkFar et al.2005]), WSMO [BruBus et al.2005], and OWL-S

[MarBur et al.2008], which are built on the standards of Web Services. A review of Semantic Web

Service Discovery methods can be found in [LeKiKa2010].

State of the Art

 44

4.4.1 OWL-S (formerly DAML-S)

The Defence Advanced Research Projects Agency

(DARPA) developed a markup language for the

description of ontologies, the DARPA Agent Markup

Language (DAML), which was based on DL. In the

process of standardizations by the World Wide Web

Consortium (W3C), DAML was renamed to Ontology

Web Language (OWL). OWL-S (formerly DAML-S)

is an approach for providing an ontology, which allows

the description of Web Services. The OWL-S Service

Profile is a representation of the operations provided by the service. Service Descriptions are

instances of the (static) OWL concepts of the Service Profile. Top-level ontologies can be

defined for the parameters in the functional description and for the Service Profiles themselves.

OWL-S based approaches use the Service Profiles and Domain Ontologies, in order to decide the

matching of Service Request and Service Advertisement (cf. [PaoKaw et al.2002]). However, the

standard of OWL-S does not specify specific matching algorithms or Domain Ontologies, nor

does the standard define a data format specific for the Service Request. In [SinHuh et al.2005],

they show that the Service Profile can be integrated into UDDI with the t-models.

OWL-S/UDDI [OAUDxm2008] matchmakers use the Service Profile for Service Discovery with

UDDI. However, OWL-S offers more than just advertisement and discovery; it also integrates

other aspects of the life cycle with the Service Model and Service Grounding.

The Semantic Web Service standards of OWL-S [MarBur et al.2008] reflect the introduced life

cycle in Fig. 2. The service concept in OWL-S links the Service Profile, Service Model, and

Service Grounding (in Fig. 14 the names of the models and their relationships are shown as they

appear in the markup language). A Service Profile represents a service, which is described by a

Service Model. The service supports a Service Grounding. The Service Profile model contains the

Service Description for the Service Discovery. The Service Composition on process level is

Fig. 14 - The models of OWL-S

Control Flow Construct Meaning

Sequence/Unordered
The constructs define a list of processes that are
executed in sequence or in a random order.

Conditionals if-then-else statements

Loops while and repeat-until statements

Multithreading and
synchronization

These constructs split the process in multiple threads,
and rendezvous (join) points

Non-deterministic choices
Constructs allow an (arbitrarily) select of a process
from a set.

Table 7 - Control flow constructs of workflows in OWL-S

ACTAS

45

described by a Process Model, which is an instance of the Service Model. The OWL-S Service

Model is the description of the service. Atomic Processes in the Process Model of OWL-S are

linked through the Service Model with a service, which has a support link to the real service most

often accessed through its WSDL file. In the Process Model processes can be chained to form a

workflow. OWL-S includes the control flow constructs shown in Table 7.

4.4.2 Semantic Web Services Framework (SWSF)

The Semantic Web Services Framework (SWSF [BatBer et al.2005]) consists of the ontology

SWSO and the language SWSL. SWSO can be seen as an extension and refinement of OWL-S

due to the underlying richer language SWSL (in comparison to the language OWL DL), which

describes more in detail the Service Composition on process level with the Process Specification

Aspect of

Services
Comment

1) View
 no special Service Requester view

 Hierarchy of Service Profiles possible –

could be used in the direction of domains

2) non-
functional
attributes

 Only the service profile contains non-functional attributes: name, description, and

actor. However, there are no special concepts for these attributes.

3) Inherent
Complexity

 Workflow support

 service-level composition

 orchestration like BPEL

4) life cycle

Phase 1:
 Service profile partly based on the Process Model for Service Description

 IOPE Service Capability

 Ontologies for parameter types

 Ontology for service profiles

Phase 2: UDDI extension for OWL-S

Phase 3: No special matching standardised
Phase 5: Grounding support through model
Phase 6: WSDL-files linked with Grounding model

Table 8 - Classification of OWL-S through the four aspects

Aspect of Services Comment

1) View Even more business oriented than OWL-S

2) non-functional attributes

3) Inherent Complexity Business process support

4) life cycle
Phase 1: Own language

Phase 3: Open for extended querying

Table 9 - Classification of SWSF (extension of OWL-S)

State of the Art

 46

Language (PSL [ISO2004]). The Service Model of OWL-S is rather an extension of BPEL and

WSCI [ArkAsk et al.2002]. The publication of [BatBer et al.2005] describes a discovery use case,

where the Service Descriptions are expressed with SWSL-rules, and the discovery is realised by

executing rule-based queries. The querying is performed with transaction logic, which is a rule-

based formalism that supports the explicit representation of change.

4.4.3 Web Service Modelling Ontology (WSMO)

Web Service Modelling Ontology (WSMO [BruBus et

al.2005]) provides like the Service Profile of OWL-S the

semantically enhanced description of a service for the

Autonomic Service Discovery (in our categorisation, this

enhancement of the Service Description is covered with

the Service Design of the 4 th aspect of services). WSMO

has its conceptual basis in the Web Service Modelling

Framework (WSMF [FenBus2002]). It refines and

extends this framework. Additionally, it develops a formal ontology and a set of languages

(WSML based on different logics). WSMO identifies four top-level elements as the main

concepts of the Service Description: ontologies, services, goals, and mediators.

The ontologies provide the terminology. Ontologies are useful for the definition of domain

terminology and the description of the relevant aspects of the goal and service elements. The

descriptions of a service comprise the capabilities (functional view, 1 st aspect), non-functional

attributes (2nd aspect), and its internal working (described by a so-called interface, 3rd aspect). The

Service Provision and Service Advertisement are done through the service element. The Service

Request uses the goal element. WSMO distinguishes between the Service Requester and the

Service Provider view (1st aspect of service). The mediators describe elements that handle

interoperability problems between different WSMO elements on data, process, and protocol level

(choreography).

The comprising Service Description of WSMO provides a unifying view of a service. The

functional value of the service is captured by its capability (Capability Description of WSMO was

compared with an IOPE capability in section 4.3). The interface description in the service

element is meant for the Service Grounding (4 th aspect of our categorization). It describes how

the functionality of the service can be achieved by providing a twofold view: (1) choreography

(decomposes a capability in terms of interaction with the service), and (2) orchestration

(decomposes a capability in terms of functionality required from other services). This interface

description delivers the means to interact with the Service Provider in order to request the actual

performance of the service, or to negotiate some aspects of its provision.

The Service Request also contains with the goal element an interface description. It allows the

Service Requester to request a certain interface in the service element, i.e. to say something about

the wished choreography or orchestration. In this way, the Service Requester can influence the

Fig. 15 - Elements of WSMO

ACTAS

47

inherent complexity of a service (this aspect of the Service Discovery environment, we covered in

our categorization with the Service Grounding phase in the 4 th aspect of services).

A classification of the SWS approaches OWL-S, SWSF, and WSMO through the four aspects

of services is shown in Table 8, Table 9, and Table 10, respectively. The aspects of services were

discussed in section 2.3. Only criteria, which make the approaches special with regard to the

aspects, are listed.

4.4.4 SAWSDL (formerly WSDL-S)

Semantic Annotations for WSDL and XML Schema (SAWSDL) [FarLau2007a] is a direct

extension of descriptions in WSDL with annotation tags. SAWSDL replaced WSDL-S [AkkFar et

al.2005] since it includes additional annotations for the support of federated registries . As

SAWSDL does not specify a language for representing the semantic models, it does not claim to

be a fully-fledged description framework/ontology, i.e. it stays ambiguous in the formulation of a

semantically enhanced Service Description or Service Request. However, SAWSDL provides

annotation mechanisms by which concepts from the semantic models can be referenced from

within WSDL, WS-BPEL, and XML Schemata components. The annotation tags contain

references to semantic models of ontologies or capabilities, similar to the ones in OWL-S or

WSMO. They allow Web Service developers to annotate their Web Services with their choice of

ontology language (e.g. UML and OWL). SAWSDL is part of the METEOR-S project ([VerGom

et al.2005], cf. 5.2.1), which compasses the direct inclusion of semantic enhancements in the

standards of Web Services for the support of autonomic service computing. SESMA [Pee2005]

was an alternative approach in this direction.

Aspect of

Services
Comment

1) View
 Support of Service Provider view (service)

 Support of Service Requester view (goal)

 Mediation between different views (mediation)

2) non-functional
attributes

Every element (service, goal, mediator, ontology) has non-functional
attributes, but no special data types or methods are standardised.

3) Inherent
Complexity

 Interface description allows constraints for choreography and orchestration

 Composition on service-level with capabilities

4) life cycle

Phase 1:
 Goal and Service for a separate description of request and service

 Service capability

 Ontologies with mediation for constraints

Phase 2: Adaption of Service Trading through links on mediation
algorithms

Phase 5: Constraints for negotiation through interface description

Table 10 - Classification of WSMO through the four aspects

State of the Art

 48

4.4.5 Selected Approaches of SWS

In the domain of distributed open information retrieval, queries may span across multiple data

resources with multiple levels of data heterogeneity and the involvement of users with multiple

levels of understanding. A semantic mediation approach based on OWL is described in

[Hua2008], which eases data interoperability and the tolerance of data heterogeneities. As part of

this project, a decentralised directory service with QoS criteria has been developed to improve

the availability of metadata repository, so that if the central directory is unavailable, distributed

repositories can take over Service Discovery. The implementation is based on the MAS

middleware JADE. In the same domain, the approach of [AnSaRa2008] includes Service

Composition. Here the proposed algorithm makes use of OWL-S ontologies, and explicitly

returns the sequence of atomic process invocations that the client must perform in order to

achieve the desired result. When no full match is possible, the algorithm features a flexible

matching by returning partial matches and by suggesting additional inputs that would produce a

full match.

In the domain of processing of geographical data (geoprocessing), the approach described in

[LutMic2007] looks for the Service Composition of data providing and geoprocessing services in

a globally distributed, special data infrastructures. The approach overcomes the ambiguities of

natural languages and low precision in keyword-based alternatives. The Capability Descriptions

of services in OWL-S comprise geospatial operations and their requirements. The matching is

based on function subtyping.

The approach of [GurZei2005; YeChe2006] involves Service Discovery, Service Composition

on service-level, self-healing, and automated Service Grounding based on the deductive program

synthesis theory. The implementation of a Composite Service is extracted from the proof. The

IOPE Service Capabilities of services are translated into first-order logic axioms. The Service

Capability of the query also transforms into a FOL formula. An automatic theorem proofer is

used for the generation of the poof.

In the approach of [KvaRon et al.2005] in the biomedical domain, Grid Services are annotated

with shared Domain Ontologies, algorithms for automated Service Composition with matching

of Service Capabilities are proposed, and a selection of the gained workflows is based on a trade-

off between the types of semantic matches in the workflow and the number of Component

Services.

ACTAS

49

4.5 Summary

In this chapter, the semantic challenge of dealing with e-services was covered. The main step for

overcoming this challenge is the semantic enhancement of the functional description of the

service. Such a semantically enhanced functional description is usually called a Capability

Descriptions. The semantic of Capability Descriptions is generally based on ontologies.

Ontologies can be described through logic languages. A Service Discovery approach using

Capability Descriptions based on Description Logic was illustrated. However, such kind of

approach needs expert knowledge and is time consuming in its application.

The currently favoured solutions in the context of Web Services and the semantic challenge are

originated in the area of Semantic Web Services. WSMO and OWL-S define SWS languages

based on XML. In Table 8 and Table 10, these approaches were classified with statements based

on the four aspects of services introduces in section 2.3. Both languages demand expert

knowledge in formal logics (especially DL) in order to define the meaning of Web Services

[LauLar et al.2007]. OWL-S is based on ontology description language OWL, but includes some

other languages for the description of capabilities (e.g. Knowledge Interchange Format, KIF).

WSMO was designed from the beginning as a set of layered languages of logic, especially WSML.

The ontology base of WSMO is given with its conceptual model, i.e. WSMF (Web Service

Modelling Framework).

The service concept in OWL-S links the profile, service model, and grounding. The profile of a

Web Service can be positioned in a hierarchy of profiles. In this way, a hierarchical categorization

of services could be created. However, since the criteria for this categorization are arbitrary and

not based on an agreed semantic, this hierarchization of service profiles can only be of practical

use in a very restricted domain of services.

WSMO introduces besides services so-called goals, in order to support the different views on

services of Service Requester and Service Provider. In OWL-S, the Service Profile is used for the

Service Request and the Service Offer. OWL-S supports mediation only as a part of the

underlying Web Service infrastructure. For a semantic description, WSMO relies on loose

coupling with strong mediation. It uses the four elements service, goal, ontology, and mediator.

WSMO includes mediators between goals, which allow the definition of goals by refining existing

ones. A goal is linked with a service through another mediator type, which means flexibility for

the matching (phase 3 of 4th aspect of services).

Considering the third aspect of services, WSMO explicitly defines the orchestration of the

service through describing the other services or goals. WSMF, the conceptual model of WSMO,

allows a more robust approach of the orchestration than OWL-S. The use of goals in the

orchestration description includes descriptions of the required functionality instead pointers to

the concrete Service Providers in advance. Similar to BPEL, the Service Providers are specified in

the Grounding Model of OWL-S. This could lead to a drawback, when one of the chosen Service

Providers is not available. However, an explicit orchestration description, especially in terms of

State of the Art

 50

some process languages, is easier maintainable, can exist independently of a specific requester

agent, and can be passed between agents as a data structure. This approach is used to a great

extent by the OWL-S virtual machine.

The second aspect of services, i.e. the non-functional Service Description is partly considered

in SWS: The OWL web service ontology offers "placeholders" for the description of non-

functional service properties, along with a minimal number of specific non-functional properties.

In the context of the OWL-S profile, the non-functional properties of services are considered to

be almost entirely domain specific. The Web Services Modelling Ontology (WSMO) uses Dublin

Core metadata as the core properties, and then extends these to include some web service

properties. The model is extensible and caters for domain-specific inclusions. The Web Services

Description Language (WSDL) presents an entirely functional view of services and was not

intended to attempt the description of the non-functional properties of services.

Concluding, it can be stated that Service-oriented architecture became the standard paradigm

for software component integration. However, with the permanently increasing amount of

available services and dynamic changes, the complexity of such service infrastructures, their

maintenance, and consequently the expenditures spent for their operation increase equally. In

order to deal with these effects, a higher degree of automation as well as categorization of

approaches and ontologies became necessary. The ultimate goal is Autonomic Service-Oriented

Computing discussed in the next chapter.

5 Autonomic Service-Oriented Computing

Formal representations of services and matching are required for a principal pre-selection of

services. The pre-selected services have to be further tested if and on which level they satisfy a

given Service Request. Subsequently, negotiations with the Service Providers are necessary,

before a deployment can happen. The consumption of the service might end with a user

feedback or a settlement of the involved costs. The automation of this life cycle of services is

addressed through Autonomic Service-Oriented Computing (Autonomic SOC).

The goal of Autonomic SOC is a reduction of human intervention following some ideas of

Autonomic Computing, which traditionally aims at automating of business processes and

workflows. An enumeration of requirements for autonomic Service Composition and discovery

can be found in the survey of [RamHol et al.2009]. The goal of Autonomic SOC includes the

overcoming of challenges discussed in previous chapters: (1) the integration challenge (scalability,

robustness, and a flexible matchmaking) as well as (2) the semantic challenge (semantically

enhanced Service Description and an improved Service Discovery).

ACTAS

51

The additional challenges of Autonomic SOC are

 Dynamic changes of Service Offers and user preferences,

 Permanently increasing amount of available e-services of different domains,

 The extremely rising number of approaches with innovative algorithms in the area of

(Semantic) Web Services,

 The quantity of Web Service standards and their versions,

 Mediation between different approaches and expert knowledge is often necessary for

the composition of services of different domains or Service Designs.

 The inherent complexity of services and the various (implicit) policies in this context.

Autonomic SOC was introduced as a goal in the e-business domain, which was traditionally a

main force for the development of SOC. Nevertheless, other domains have a similar interest in

this goal and take advantage of developments in the area of (Semantic) Web Services.

Requirements similar to Autonomic SOC arise for instance with the transparent use of technical

facilities, which is a main concept of CSCW and Cloud Computing.

The advent of mobile computing devices as well as the development of wireless, ad-hoc

networking technologies has led to the growth of infrastructure-less environments. Smart phones

couple computational power for services with the ability to connect to other small devices. The

research of [WeeWar2010] includes the operational context described through non-functional

properties, like location, performance, power and network, in order to manage services and

device access. A federated approach for Technical Services in a Wireless Mesh Network (WMN)

is described in [KrKrKu2009]. Mobile environments can lie at the edges of Internet, i.e. they

might be disconnected/sparsely connected to the rest of the world. These challenges of

Technical Services, which are in principle the integration challenges discussed in context of VPO

(Example 2), are now addressed by the research in context of Cloud Computing as for instance

Distributed Web Services Discovery Middleware for Edges of Internet [HaMaKü2010]. In order

to address the access to such edges of Internet, they proposed and experimentally evaluated an

interoperability middleware that synergizes known techniques of DIS: P2P technology, message

queuing support, and a passive distributed UDDI repository for Web Services discovery and

invocation.

The above enumerated challenges of Autonomic Service-Oriented Computing appear so

severe that an achievement of the ultimate goal appears to be impossible. However, further

solutions for narrowed down domains and applications can and will be achieved. Semantic

enhancements, Autonomic Service Discovery, and the research for more holistic concepts for the

classification of e-services are current attempts of overcoming these challenges. Especially

Autonomic Service Discovery relies on existing Web Service environments, in order to deal with

the discovered Service Candidates. Execution Frameworks follow another idea, a complete

support of the whole life cycle. They start with Service Discovery based on SWS solutions and

State of the Art

 52

use Web Service technologies for the deployment and execution of the services. It may be

remarked that OWL-S was developed with the same idea in mind. The following sections have a

closer look at some approaches in the direction of Autonomic SOC.

The survey is structured through the mentioned aspects of services:

1st aspect of services: The survey concentrates on the e-business domain, but it is not

restricted through the perspective of one of the involved parties (e.g. Service Provider, Service

Requester, and Service Trader).

2nd aspect of services: In Autonomic SOC, non-functional properties of services gain in

importance and they are more integrated into the solutions. The approaches are not any longer

mainly concentrated on the functional aspect. Hybrid Service Discovery environments

incorporate non-functional aspects (e.g. [KvaRon et al.2005; WuRan et al.2007]).

3rd aspect of services: The bunch of policies coming with the orchestration and

choreography of services is a big challenge for the Autonomic Service-Oriented Computing. It

leads to the narrowing of the application domain. Some approaches integrate Workflow

Management. The third aspect is for the chosen solution of ACTAS of less interest in this

survey.

4th aspect of services, Service Design: The Service Description looks for concepts that go

beyond the semantic enhancements of SWS. Some of these concepts like Query Languages,

coming like SWS from the Semantic Web research, can be more associated with Service

Matching. The new concepts for the Service Design allow a categorisation of services and the

recording of users’ preferences for their ranking (e.g. [GaRuRu2010]). Alternative languages

like the Unified Modelling Language (UML) are used for the Service Description [SpaZis2010].

4th aspect of services, Service Discovery and Composition: Expectedly, the main effort

of research of Autonomic SOC belongs in this category. Especially the Service Matching relies

increasingly not only on property-based, but concept-based matching, i.e. methods of AI like

for instance Information Retrieval (IR) are applied (e.g. OWLS-MX [KluFri et al.2009]). The

research uses languages and concepts developed mainly in the area of Semantic Web (e.g.

Query Languages, e.g. WSML-MX in the case of OWLS-MX), in order to extend the Web-

based solutions of (Semantic) Web Services. Hybrid Service Discovery methods integrate, like

previously mentioned, the non-functional aspects of services.

4th aspect of services, the other phases: The earlier stated Execution Frameworks

propagate the support for all phases of the life cycle of a service relying on methods of SWS.

The need for more adaptability led to the renaissance of MAS and the inclusion of external

algorithms like the mediator of WSMO.

ACTAS

53

5.1 Improvements of Service Discovery and Composition

Semantic Web Services (SWS) semantically enhanced the functional Service Description of Web

Services through annotation based on ontologies [Gri2007]. Service Trading is not directly

addressed. First approaches relied on a centralized service registration with UDDI. In [AkkFar et

al.2005], the World Wide Web Consortium (W3C) describes the storing of WSDL-S descriptions

in UDDI registries. Several extensions were proposed and implemented, in order to extend the

keyword access (UDDIe [ShaRan et al.2003]), the storage of non-functional attributes

[BilSin2004; WaZhSu2004], or a semantic enhancement [AkkGoo et al.2003]. An alternative

keyword-based search of service was offered with Woogle [DonHal et al.2004]. Service Discovery

based on keywords, simple semantic descriptions, and rich semantic description (comparable to

the DL Capability Description in section 4.2) are explored in [FeKeZa2008 section(s) 8.3-8.5].

The weak points of keyword based repositories like UDDI and Woogle became obvious, because

a Service Discovery with an abstraction of services on level of keywords is in no way precise

enough.

The survey of [RamHol et al.2009] categorizes the Service Discovery approaches through two

dimensions: (1) the federation of the trading (centralized, distributed, and decentralized) (4th

aspect, phase 2), and (2) the Service Description (syntactical, hybrid, semantically enhanced) (4 th

aspect, phase 1). It evaluates to which extent existing Service Discovery frameworks fulfil the

criteria of Autonomic Service Discovery. The criteria used for the classification of the approaches

in [RamHol et al.2009], Service Trading and Service Description, belong to the phase 1 and

phase 2 respectively of the fourth aspect, introduced in section 2.3.

Besides Service Trading, the Service Discovery is based on Service Matching. The matching of

a Service Request with a Service Description of a Service Offer can involve several aspects of

services. A (structural) functional matching checks if the arity of the methods and the types of

their input and output parameters fit together. Many approaches ([PaoKaw et al.2002;

PeNiHu2009]) consider several degrees of matching for the types (for instance: exact, plug-in,

subsumes, and fail). Alternatively, graphs can be used for matching like UML class-diagrams for

the functional matching ([HaReMa2004; SpaZis2010]). In some approaches [SpaZis2010], the

names of the methods are compared in a linguistic way. Capability matching of semantically

enhanced notations also includes Preconditions and Effects (e.g. IOPE capability on page 42).

WSMO introduces the “goal” element for the requester´s desires, which has to match with the

capability of a Web Service definition of a Service Offer. The inherent complexity of a service is

considered through the behavioural functional matching which takes advantage of BPEL or

WSCL descriptions. Non-functional attributes, like Quality-of-Service (QoS) and calculated

similarity distances, are in particular used for the selection and ranking of found Service Offers.

Additional constraints (hard and soft) are also applied for the selection of services.

State of the Art

 54

The mediation of WSMO allows an adaptable Service Matching, i.e. the use of Service

Matching algorithms on data, which is defined in distinct semantic contexts or formalisms. Some

proposed standards of SWS extend the Service Matching to the methods of AI. The DFKI4,

proposes a Service Matching approach for various SWS standards (OWLS-MX [KlFrSy2006;

KluFri et al.2009], WSMO-MX [KluKau2009], and SAWSDL-MX [KlKaZi2009]), which

enhance the property-based Service Matching through methods of the IR (Information

Retrieval). In the internet document [Klu2008], Matthias Klusch compares several Service

Matching approaches. Service Matching approaches rely often on Query Languages (e.g.

iSPARQL [KiBeSt2007] for the approach OWLS-iMatcher). Query Languages belong to the

research area of Semantic Web. Nevertheless, they are also used for the investigation of

repositories of Semantic Web Services, in order to find matching services based on the similarity

of their properties/data. There have been proposals for query languages to support Web Services

Discovery. In [BeeEya et al.2006], the authors propose BP-QL a visual query language for

business processes expressed in BPEL. The Unified Service Query Language (USQL), an XML-

based language to represent syntactic, semantic, and Quality-of-Service search criteria is described

in [PanTsa2009]. An extension of USQL that incorporates a behavioural part has been proposed.

The support of the design process (phase 1) of service-based systems is also a possible

application of Query Languages.

Several techniques have been proposed for Web Services Composition, many based on AI

planning (e.g. [PisBer et al.2004]) or on logical deduction like Linear Logic (LL) in

[RaKuMa2004]. The AI planning-based Service Composition uses methods of AI for generating

a plan for composition before the actual Service Composition is performed. Improving the

accessibility of cloud services for non-computing experts is the concern of [BroGos2010]. It

promise to ease the discovery, selection, and use of clusters within a cloud.

The checking and ranking phase (phase 4 of the life cycle in Fig. 2) is addressed in

[GaRuRu2010]. Service Discovery and especially Service Ranking is often based on users’

preferences. The description model of these preferences is many times ad-hoc and depends on

the discovery framework, the domain, and the context of the environment. In order to ease the

Service Ranking, [GaRuRu2010] figures out a lack of a general, comprehensive, and user-friendly

preference model, which has to be overcome. The proposed model is based on query preference

model known from database systems. A concrete implementation of the model in WSMO is

outlined.

4 http://www.dfki.de/web, Deutsches Forschungszentrum für KI, German Research Centre for AI

ACTAS

55

5.2 Semantic Web Services Execution Frameworks

For achieving the goals of Autonomic SOC, several initiatives exist to create comprehensive

frameworks that integrate the vision of SOA and SWS (METEOR-S, IRS, and SESA). In a

semantics-enabled world, the coordination between systems is executed through the use of well

(semantically) described services. The services have, according to the discussed life cycle of a

service (cf. section 2.3.4), to be discovered and selected on the basis of requirements, then

orchestrated and adapted or integrated.

5.2.1 METEOR-S

SAWSDL is part of the METEOR-S project [VerGom et al.2005], which wants to extend

semantically the basic standards of Web Services. In this way, METEOR-S supports the phases

of the life cycle of a service (4 th aspect of services). METEOR-S Web Service Discovery

Infrastructure (MWSDI [Kaa2003a]) incorporates semantic into UDDI with the t-models, in

order to have firstly separate registries associated with domains, and secondly an own Domain

Ontology for each of these registries. METEOR-S supports mediation and the Service

Composition of BPEL. The latter is part of the METEOR-S Web Service Composition

Framework (MWSCF [Kaa2003b]), which makes use of semantic process templates. The

executable BPEL representation is generated with an explicit process dataflow of found concrete

Web Services. The Service Discovery of METEOR-S includes the domains in a static way, i.e.

through the use of separated registries.

Fig. 16 - OWL-S Virtual Machine (VM) [Pao2003]

State of the Art

 56

5.2.2 IRS

IRS III [DomCab et al.2004] is a framework and implemented infrastructure which supports the

creation of semantic Web Services according to the WSMO ontology. IRS III has four main

classes of features which distinguish it from other work on semantic Web Services. Firstly, it

supports one-click publishing of ‘standard’ programming code. In other words, it automatically

transforms programming code (currently it supports Java and Lisp environments) into a Web

Service, by automatically creating the appropriate wrapper. Hence, it is very easy to make existing

standalone software available on the net, as Web Services. Secondly, by extending the WSMO

goal and Web Service concepts users of IRS III directly invoke Web Services via goals, i.e. IRS

III supports capability-driven service execution. Thirdly, IRS III is programmable. IRS III users

can substitute their own semantic Web Services for some of the main IRS III components.

Finally, IRS III services are Web Service compatible – standard Web Services can be trivially

published through the IRS III repository and any IRS III service automatically appears as a

standard Web Service to other Web Service infrastructures.

5.2.3 SESA

The global architecture of Semantically Enabled Service-Oriented Architectures (SESA)

[FeKeZa2008] comprises several layers between so-called stakeholders and the Service Providers:

(1) stakeholders forming several groups of users of the architecture, (2) problem-solving layer

building the interface for stakeholder access, (3) Service Requesters out of the problem-solving

layer, (4) Middleware providing algorithms for the integration and interoperation of services, and

(5) Service Providers offering the services. The middleware consists of a Broker Layer and a Base

Layer (Fig. 17). The Broker Layer holds algorithms for discovery, selection, negotiation,

composition, choreography, mediation, grounding, fault handling, and monitoring. The Base

Layer provides exchange formalism as well as resources for storage and communication. The

Fig. 17 - SESA

ACTAS

57

architecture comprises layers, which were introduced in section 3.3 (Fig. 9) as horizontal layers,

which are besides other functions responsible for execution management and security. SESA is

based on WSMO and its Web Service Modelling Language (WSML). A reference implementation

of SESA was done with the Web Service Execution Environment (WSMX).

5.3 Agents and Web Services

Service-Oriented Computing can benefit from Multi-Agents system technologies by adopting the

coordination mechanisms, interaction protocols, and decision-making tools designed for Multi-

Agent systems. JIAC V [DAI2008] is a MAS middleware following this idea. The publication of

[PoToTu2007] speaks of agent-based SOA, the integration of the agent technology with other

strategic technologies like Web Services, workflow, rule engine and semantic Web. The paper of

[BroUro et al.2009] demonstrates the use of a decentralised Multi -Agent system, in order to

support the discovery, selection, and negotiation of services. MAS frameworks used for the

Service Composition incorporating negotiation can be found already in [PreByd et al.2001],

which introduces an algorithm for Service Composition through negotiation with multiple

auctions, in order to meet the needs of the Service Clients. Dickinson [DicWoo2005] argues that

agents and Web Services are distinct. Agents provide a distinctive additional capability in

mediating user goals to determine service invocations. The paper of [DicWoo2005] illustrates one

approach using reactive planning to control web-service invocation by BDI agents.

In [MahSpa2010], researchers of the City University introduce a MAS framework supporting

the SLA negotiation for service-oriented systems. Combined with dynamic Service Discovery, the

paper shows, how MAS frameworks can propagate the vision of Autonomic SOC. Candidate

services are recognized, which can be used for a Service Composition. The agreed but not

enforced SLA is guaranteed for a certain period, in order to ensure the availability of the services

in the Deployment phase. In this way, the approach supports non-functional aspects of

availability.

A MAS based framework, which supports the Service Composition by non-IT-experts, is

MAMS introduced in [ThiKon et al.2009]. MAMS is an application of the agent middleware

JIAC V [DAI2008] (cf. section 3.2). The MAMS service framework provides an infrastructure for

the creation, deployment and execution of Service Compositions. It offers a graphical service

creation environment like WfMs (cf. page 30) as well as a service execution platform based on

intelligent agents. A service is represented through an agent. MAMS claims the improvement of

scalability, management, and stability. Service Matching, runtime load balancing, and self-healing

mechanisms could be tested with this environment.

A framework based on a Multi-Agent system made up with agents occupying five distinct

roles, namely a Planning agent, an Execution agent, a Composition agent, a Discovery agent, and

a Monitoring agent, is the approach introduced in [ChMeGh2010]. Obviously the approach tries

to support the whole life cycle of a service, in order to achieve Autonomic SOC. However, it can

State of the Art

 58

be doubt that the variety and the inherent complexity of Composite Services in the different

domains, which also incooperates policies and business processes, can be covered with agents,

especially when one looks at the execution and monitoring of services.

5.4 Artificial Intelligence (AI) in SOC

The Service Description in an alternative language, i.e. UML, shows an approach of the City

University [SpaZis2010]. It is an UML-based framework in the domain of Software Engineering,

which looks at the composition and integration of software systems composed of autonomous

services and other mostly locally available software code. The idea of autonomous services is

similar to autonomous agents (cf. Fig. 6 and section 2.3.1). In order to support the development

of these systems, it is necessary to have new methods, processes, and tools. The framework

adopts an iterative process in which software services that can provide functional and non-

functional characteristics of a system being developed are discovered, and the identified services

are used to reformulate the design models of the system. The framework uses a query language to

represent structural, behavioural, and quality characteristics of services to be identified, and a

query processor to match the queries against service registries. The matching process is based on

distance measurements between the queries and service specifications. A prototype tool has been

implemented. The work has been evaluated in terms of recall, precision, and performance

measurements.

A subsection of the domain information retrieval using artificial intelligence is data mining. A

special field of data mining became the recorded access pattern of Web logs. This information

can be processed and compressed in so-called Web Access Pattern trees (WAP trees). PLWAP

algorithm uses a preorder-linked, position coded version of WAP tree and eliminates the need to

recursively re-construct intermediate WAP trees during sequential mining as done by WAP tree

technique. The approach of [WanTsa et al.2010] extends these data mining methods to

Composite Service Discovery. They utilize a PLWAP-tree algorithm to analyse the relationship

among Web Services from Web Service usage log. In this way, concerning the introduced aspects

of services, this approach combines methods of the matching phase with special algorithms for

the trading phase. They generated time-ordered sets of Web Services, which could be exploited,

in order to integrate them into a real business process. The papers shows, that according to

mining results Web Services can be integrated into a Composite Service with Service

Composition based on process level, i.e. a dynamic orchestration.

ACTAS

59

5.5 Enhancements through new concepts and algorithms

Enterprise Application Integration (EAI) can dynamically deal with the integration of

applications due to the use of Message Brokers (cf. section 3.1). [PaDaDi2010] introduces Service

Application Integration (SAI) with message-based Service Brokering and dynamic Service

Composition for a loose coupling between Service Providers and Service Clients. In this way, the

publishing and discovery of services, the base of SOA, would not be any longer a prerequisite.

The dynamic Service Composition of SAI is based on an Artificial Intelligence (AI) planning

approach and on the adoption of an ontology-based functional profile encoding information for

enabling automatic information extraction and combination in the Service Composition chain.

Dynamic service reconfiguration and automated enactment is also topic of [SplBra et al.2009].

The publication speaks of Open Matching Architecture, i.e. the matching of services is not

limited to a pre-determined set of matchers and repositories. The proposed architecture consists

of three, previously developed, components: the CoWS template-based reconfiguration service,

the Knoogle MatchMaker service, and the Triana workflow enactment engine.

The publication of [SaNaMa2006] points out that the solution of the semantic challenge

should consider the context of the composition and execution of Web Services. Needs,

preferences, and Service Capabilities vary over time. Contextual details allow a kind of

categorization of these service characteristics for an improved tracking, bringing Web Service

advertisements and user requests together. The approach of [NoSaZa2007] develops ontologies

for preferences and capabilities expressed with SAWSDL. [MicChi et al.2007] discuss a context-

based mediation approach, in order to solve semantic heterogeneities between composed Web

Services.

In the project ConWeSc (Context-based Semantic Web Services Composition) [SaNaMa2005],

an alternative approach to OWL-S namely OWL-C (Ontology Web Language-based Context

Ontology) for context aware SWS was developed. Similar to the challenges of EAI, the

composition of Web Services, originated from different Service Providers, has to mediate

between various service contexts. For the semantic challenge, the Service Providers will agree on

an appropriate ontology. For the coordination and the integration challenge, the context of the

Service Providers, for instance the local time, is important, in order to avoid conflicts.

[SaNaMa2006] introduces a typing of Web Services and constraints like maximum number of

available Web Service instances. The approach distinguishes between Composite Service,

Abstract Service (simply addressed as Web Services), and Concrete Services (addressed as service

instances). Accordingly, a context can be declared with a C-context, W-context, or I-context type,

respectively. Based on these service contexts, fitting security contexts (CSec/WSec/ISec -

contexts) can be derived.

The paper [StAlJo2008] mentions that context-awareness is highly desired across several

application domains. SWS technology supports the automatic allocation of resources for a given

well-defined task. However, it does not entail the discovery of appropriate SWS representations

State of the Art

 60

for a given situational context. A situational context depends on the domain, its complete notion

in all its facets is (too) costly, and real-world situations show a too big variance. The publication

proposes a model derived from the idea of Conceptual Spaces: Conceptual Situation Spaces

(CSS). CSS is aligned to established SWS standards and enables the description of situation

characteristics as member in geometrical vector spaces. Semantic similarity between situations is

calculated in terms of Euclidean distances between CSS notions. The approach extends SWS

descriptions with the context information of CSS. In this way, the matchmaking can include the

similarity-based real-world situation characteristics.

5.6 Summary

Semantic technologies can facilitate the integration of services by means of semantic Service

Descriptions and artificial intelligence methods. On the one hand, it can be argued that a burden

for service processing and performance araises from the complexity of semantic languages as well

as integration techniques that depend on logical reasoning. On the other hand, the difficulties of

management of Service Descriptions rise dramatically with their complexity, when there is no

autonomic control. The logical reasoning can efficiently help to resolve inconsistencies in Service

Descriptions as well as maintain interoperability, when these descriptions change. Therefore,

SWS seems to open up the way for Autonomic SOC, the vision of providing services

transparently like electricity today. Cloud Computing is following this idea, but it still has to

adulate from Software Distribution ideas towards the complete Autonomic SOC with extended

service integration and an support of services as a software paradigm.

6 Problem Statement

The State-of-the-Art discussed the existence of many approaches for overcoming of challenges

occurring with integration and diverse semantics of e-services. These approaches are based on

their proprietary methods and repositories, which are often domain specific. However,

Autonomic SOC means that services of different domains and service environments should be

discovered and become composable with a minimized involvement of human beings. Thus, the

Service Discovery has to integrate autonomic mediation for properties of various Service

Descriptions, in order to be adaptable to different interfaces and ontologies. It will be a future

challenge to provide appropriate algorithms and ontologies, in order to ease the Service

Discovery and Service Composition. A problem for the Autonomic SOC will be always the

inherent complexity of services (3 rd aspect of services) originated often from proprietary policies.

The Lock-in-Effect of Cloud Computing is an example in this direction. Cloud Computing is also

an example for the integration of services of technical and business domains. In summary, it

appears that Autonomic SOC has to adopt a framework character, in order to integrate existing

Service Discovery environments.

ACTAS

61

ACTAS – ADAPTIVE COMPOSITION

7 Hypothesis of ACTAS

The State of the Art showed a variety of approaches of Service Discovery, Service Composition,

and Service Matching introduced for the overcoming of the challenges of SOC and developed

with the ambitious goal of Autonomic Service-Oriented Computing. In the presentation, the

approaches were partly classified through the presented four aspects of services. In this chapter,

the hypothesis of ACTAS [BeKlMe2000; KlHoSc2000; KlReSc2002; KlUnBr2009, KlUnBr2010]

– Adaptive Composition and Trading based on Agents - is introduced and its points shortly

illustrated. ACTAS is a framework defining three models for services, requests, and a declarative

Composition Process. The goal of ACTAS is the discovery and composition of multiple

solutions of SOC with the consideration of their semantic context.

The goals of Service Requesters have to be compared with the Service Offers. The Service

Matching is about finding common elements in the descriptions. Depending on the level of

detail, in which these entities are considered, the models of services can be described at varying

levels of abstraction. At the most fine-grained level in the aspect of the functional description of

a service, services can be seen as concrete state transitions from a pre-state to a post-state (the

Capability Descriptions of SWS). On a more abstract level, services can be understood as abstract

objects characterized through their properties. On this level of abstraction, services can be

considered as instances of ontological concepts. A Service Description describes such a concept

traditionally from its functional aspect.

It is the idea of ACTAS to use concepts for the classification of services (Semantic

Characteristics), which describe the services with various aspects. Some of these concepts are

used for the discovery of services and for the description of compatibility (Compa tibility

Characteristics). The classifications are semantically described through relationships with criteria

Overview

The application of ACTAS …

1. reduces the effort for the discovery and composition of services,

2. takes advantage of existing algorithms for dealing with Service

Description, Service Matching, and Service Mediation,

3. allows the definition of Service Composition,

4. adapts to the policies of the parties involved in SOC,

5. supports availability control.

ACTAS – Adaptive Composition

 62

originated on the four aspects of services introduced in section 2.3. The hypothesis of a reduced

effort of Service Discovery and Service Composition (bulletin 1 of hypothesis) is based on the

assumption that services belonging to the same intersection of categories are more likely to be

compatible. Such services are called principally compatible.

In a subsequent step, constraints working on the level of Service Properties will check the

selected services closer through approved algorithms fitting to the categories of these Candidate

Services (bulletin 2 of hypothesis). First of all, each Service Property will be examined, if its

information fits to the constraints valid in the semantic context of the categories of a Candidate

Service (Value Constraints). Secondly, the compatibility will be tried on the level of the Service

Property, i.e. the information of the Service Properties of two principally compatible services is

tested for matching (Merge Constraints). Finally, constraints are checked for the information held

in several Service Properties of the Composite Service (Exchange Constraints). The last checking

can realize a mediation of information.

The categories for Service Requests are closer defined with relationships to ontological

concepts for the classification of user groups, in order to declare which kind of Service Clients

shall have access to the services belonging to these categories. In this way, categories for the

description of B2C interfaces for specific groups of Service Clients can be introduced (bulletin 3

of hypothesis).

The Multi-Agents System of ACTAS provides software agents acting pro-actively complying

with the policies of the parties involved in SOC: Service Provider, Service Requester, and Service

Trader (bulletin 4 of hypothesis). ACTAS introduces the additional role of a Service Client for

the support of Technical Services. The Composition Process is initiated from the user

application. Therefore, it can be performed by agents, with a pro-active behaviour adapted to the

application.

The non-functional criterion “availability of services” plays a special role in the selection of

Service Candidates. On the one hand, categories of services could be defined; whose members

support a certain availability control algorithm. On the other hand, selection of any Service

Candidate is senseless, if the service is not any longer available in the Deployment Phase, due to

the fact that the Component Service and its resources were not reserved. Therefore, availability

control has to be part of Service Discovery in Autonomic Service-Oriented Computing. The data

model of ACTAS supports availability control through the agent of the Service Provider (bulletin

5 of hypothesis).

The goal of the thesis is the proof of the feasibility of ACTAS as a framework for the

discovery and composition of services. Data models for the keeping of informal data of the

Service Description and the Service Request were defined: Service Model (S-Model) and Request

Model (R-Model). A third model, the Composition Model (C-Model) realises the Composition

Process with a declarative environment. It is possible to translate the hierarchical data structures

of the S-Model and R-Model into e.g. XML format, in order to transfer their information over

the Internet. The C-Model should incorporated handles to the access of implementation

ACTAS

63

instances of algorithms associated with the Service Properties. The C-Model and the scope of the

thesis are restricted to the Composition Process. The assumption is made that fitting algorithms

can be integrated into the declarative environment as for instance PROLOG modules. Other

implementation instances of the algorithms could be accessible through (statefull) Web Services.

It is not the goal of the thesis to implement these algorithms, their interfaces, or the environment

of the Multi-Agents Systems.

8 System Environment

ACTAS uses a Multi-Agent system providing these kinds of agents (cf. Fig. 18): Request Agent

(ReA), Facility Agent (FA), Trader Agent (TrA), and Composition Agent (CoA). Principally, the

MAS environment also includes a Personal Agent (PA) representing an application user, i.e. a

potential Service Client. The ReA realizes the interface to the user application. The FA fulfils

several tasks: (1) the publishing of the Service Offer of a Service Prov ider, (2) the availability

control of the Service Modes, (3) a potential reservation of a selected Service Mode, (4) a

resource management., (5) the negotiation with other Facility Agents about their found

Component Services, and (6) the deployment of the service, when the service is not an Abstract

Service. In the case of an Abstract Service further orchestration will take place in the Service

Grounding phase after the processing of ACTAS (cf. section 8.5). (A principal Sequence Diagram

is in Fig. 35 at the beginning of the description of the R-Model.)

ACTAS assumes the generation of the Service Request inside of the Application Environment

leading to the addressing of the ReA. Subsequently, the ReA creates a CoA for this request. . In a

simple case, a web browser together with an add-on could take over the role of a ReA with its

Application Environment. In a successful Service Discovery, the CoA will come back with a set

of Service Candidates. Since the ReA is related to a defined application, the algorithm of the CoA

can be adapted to this application. Thus, a CoA could for instance deliver exactly one matching

service or return multiple candidates, depending on the policy of the application. In the latter

case, it is up to the negotiation phase to select a service for the Service Level Agreement (SLA).

The composition task of the CoA is comparable with the composition of concurrent processes.

In comparison to the methods of coordinating concurrent processes, the principal methods of

composition can be discussed.

In some MAS based approaches (e.g. [KünMat2006; MüKoBr2006]), each (component)

Service Candidate is represented through an agent, in order to let them actively test the

compatibility among each other. In ACTAS, the differentiation of the agents is oriented at the

distinct phases of the life cycle and the involved user roles. The pro-active behaviour of federated

trader agents forms the trading phase. The CoA supports the Service Matching and Service

Selection. Personal Agents and Facility Agents include user roles.

The System Environment introduces several user roles: ACTAS Administrator, Service

Administrator, Service Designer, Service Provider, Service Requester, and Service Client. The

ACTAS – Adaptive Composition

 64

Request Agent takes over the role of the Service Requester. ACTAS as a framework for the

automation of the Service Discovery introduces Semantic Characteristics and Property Classes as

new entities. It is the task of ACTAS Administrator to provide a semantic classification and a

publication for these entities.

The Service Provider operates the FA, in order to publish and provide his services. A Service

Provider can take over several roles: on the one hand, he will compose Service Descriptions as a

Service Designer using the ACTAS entities, which might include a possible automatic adaption of

the Service Descriptions. On the other hand, the services and their resources have to be managed

in a role as a Service Administrator. It is a basic idea of ACTAS that only a Service

Administrator/Designer, responsible for a certain family of services, can describe properly a

Fig. 18 - Agents Environment of ACTAS

ACTAS

65

service with its properties, its compatibilities, and availability. However, many Service Discovery

approaches for example in (Semantic) Web Services take a kind of “God-view”, i.e. the services

have to use the given formalism of the Service Description lacking of adaptation to other kind of

service (e.g. technical ones), and of the support of availability control. ACTAS distinguishes

between Service Templates and Service Offers. Additionally, the new entities of ACTAS allow an

adaptation of the semantic context and of the used algorithms. The new entities also allow an

adaptation of the Service Request to a fixed group of Service Requesters/Clients.

Web Services describe only two user roles: Service Requester and Service Provider. This is due

to the simple scenario of SOA, where the Service Requester will a lso become the Service Client

later on. ACTAS introduces the additional role of Service Clients, in order to provide a more

general framework for the Service Discovery, where a service can have several Service Clients

(e.g. a Communication Service).

In Fig. 19 and Table 11 an overview of the life cycle of services together with the MAS of

ACTAS is given. In the following sections, the System environment is described more in detail.

The symbol of ACTAS in the schematic figures in these sections needs an elucidation. First of all,

it illustrates the involvement of ACTAS. Secondly, several agents of ACTAS (FA, TrA) can have

besides the main declarative environment of the CoA their own declarative environment of

ACTAS, in order to deal with the Service Offers and to perform an extended checking of

matching (cf. section 8.3). Therefore, it is symbolized that the agent communication goes

Fig. 19 - MAS of ACTAS and life cycle of Service

ACTAS – Adaptive Composition

 66

principally through the interpretation of the federated declarative environments of ACTAS in the

first four phases. The Service Offers construct properties and constraints with the Property

Classes, i.e. the declarative environment has to provide an interface to the referenced external

algorithms for data-setting, matching, and mediation. This is also symbolized.

Phase Description

Phase 1 –
Service Design

 In the Service Design, the ACTAS Administrators create and

publish the new entities of ACTAS ((1) in Fig. 19): Property
Classes and Semantic Characteristics. The publication of these
entities is done through ontological repositories, in order to
achieve a commonly agreed semantic.

 Service Providers build Service Templates with these elements
((2) in Fig. 19).

 The Facility Agent (FA) publishes Service Templates and
Service Offer Export Records (SOER).

Phase 2 –
Service Trading

 ACTAS distinguishes between Service Templates (ST) and
Service Offers (SO). The agents use ST and SOER for the
construction of a Service Offer (SO).

 The federated Trader Agents (TrA) select and compose services
with both ST and SO according their policies ((3) in Fig. 19).

Phase 3 –
Service Matching

 In the beginning of the Matching Phase (phase 3), the Service
Request Agent (ReA) receives the Service Request (SRe) of the
application environment ((4a) in Fig. 19).

 ReA creates for the processing of the Service Request a

Composition Agent (CoA) ((4b) in Fig. 19).

 The CoA communicates with the Facility Agents and Trader
Agents, in order to find principally compatible Service Offers,
described with the same kind of characteristics ((5a) in Fig. 19).

 The CoA uses the found SOER, its ST, the Property Classes of
the referenced Characteristics and the Value Constraints of the
Service Description for creation and initialization of Service
Offer (SO) with the principally compatible Service Mode ((5b)
in Fig. 19).

Phase 4 –
Service Checking

 Enhanced constraints of the services have to be checked:

 So-called comparable Service Properties are checked with the

Merge Constraints, i.e. it is tested if the properties can be
matched with established matching algorithms including a
potential necessary mediation. In communication with the FA
or PA, the availability or acceptance of the service and its
resources can be clarified.

 Constraints between the Service Properties, so-called Exchange
Constraints, have to be checked.

ACTAS

67

Phase Description

Phase 5 –
Service Grounding

 The oncoming phases are out of control of ACTAS, which

might start a Service Discovery process on their own depending
on the orchestration. However, the information gained in earlier
phases can be used for the Negotiation and Grounding Phase
(Phase 5). The Facility Agents can play an active role in the
Negotiation Phase with the Service Requester. The Negotiation
Phase concludes with the Service Level Agreement (SLA),
which is a premise for the Service Grounding ((6) in Fig. 19).

Phase 6 –
Service Execution

 Service Deployment ((7) in Fig. 19), the execution of the service

((8) in Fig. 19), and a potential feedback is the last phase.
Feedback could be used for learning of users’ preferences.
Actor Service Templates (AST) could be introduced to the
models of ACTAS for keeping the users’ preferences.

Table 11 - Overview of the life cycle

8.1 Phase 1 – Composition Model and Service Description

In the first phase, ACTAS Administrators describe and publish the entities of the S-Model of

ACTAS: Property Classes as well as Semantic Characteristics. The entities have semantic

descriptions and relations between each other. The Semantic Characteristics have properties and

constraints declared with the Property Classes. The Service Designer will design Service

Descriptions with the “building blocks” of ACTAS. Several alternative Service Descriptions of a

service are hold in Service Templates as Service Modes. The Service Administrator considers

Fig. 20 - Phase 1

ACTAS – Adaptive Composition

 68

which Service Modes are really offered and which Value Constraints for the properties they

currently have. For the publication of these considerations, so-called Service Offer Export

Records (SOER) are used.

In order to consider the availability of a service the model distinguishes between Service

Templates and Service Offers. The Service Provider controls the Service Description and its

availability through the Facility Agents (FAs). The FA advertises the Service Template in the

second phase. When a service becomes available, it publishes and manages Service Offer Export

Record (SOER) accordingly. A SOER has a unique identity; and the Service Repository of a FA

contains the Service Templates and current Service Offer Export Records (SOER). The

ontological repositories of the ACTAS entities allow the building of Service Offers from the

Service Templates. It is the task of the Service Administrator to automate the publication of the

SOER through a Facility Agent. Due to the ontological semantic description of the ACTAS

entities, the Service Administrator can also reflect on an automatic adaptation of its Service

Templates, e.g. a new Service Mode could be automatically added; when the FA recognized that

the service could be also offered with currently requested Semantic Characteristics.

Fig. 21 - Phase2

ACTAS

69

8.2 Phase 2 – Service Availability and Trading

The Trader Agents can fulfil at least two tasks. On the one hand, they can follow their own

composition policy, in order to collect or compose services of potential interest for a given

application domain. On the other hand, the Trader Agents can integrate the access to external

trading environments of other approaches of autonomic Service Discovery. In case of

composition, the TrA can become the FA of the found Composite Service.

The Trader Agents use the SOER for the creation of a Service Offer based on its Service

Template. Service Offers based on Service Templates fitting to the policy of the TrA are

continuously collected and possibly composed to new Composite Services (Fig. 21). The Trader

Agents (TrA) could also pre-select Service Templates without looking for valid SOERs, in order

to be more adaptive with a greater selection of potential Service Candidates. An example for such

a policy in COR (cf. Example 2) could be the pre-selection of Service Descriptions of

communication facilities, which are available for team members of a certain VPO. However, the

traders only deliver matching Service Offers to an actual Trading Request, i.e. they answer only

with currently valid SOERs to Trading Requests.

A Trading Request is firstly tested on principal compatibility, i.e. a TrA checks if a Service

Offer exists with an interface holding the same set of Semantic Characteristics like the Trading

Request. Semantic Characteristics used for the checking of the principal compatibility are called

Compatibility Characteristics. Secondly, the TrA could check the matching of values of

comparable properties between principally compatible Service Offer and Trading Request. The

Property Classes enable the use of established algorithms for the data setting, matching, and

mediation.

8.3 Phase 3 – Service Request and Composition

The Request Agent (ReA) is part of the application environment. When the need of a service

arises in the application, the ReA starts the Composition Process of ACTAS. The Composition

Process is described through the Composition Model or short C-Model. The Composition

Process uses the data, which was collected and managed in the preceding phases.

The Service Requester, i.e. the application together with the ReA, generates the Service

Request, which can be on behalf of several Service Clients. A communication service (cf.

Example 1) is an example for such a case. Consequently, a Service Request in ACTAS can consist

of several Client Service Requests. Service Request describes the desired service from the view(s)

of the Service Client(s). Therefore, the model introduces a special kind of Compatibility

Characteristics, which are called Request Characteristics. Finally, the Request Agent creates a

Composition Agent (CoA), which is responsible for the generation of a so-called Composite

Structure.

ACTAS – Adaptive Composition

 70

The CoA composes the Composite Service through the building of Service Offers using the

Data-Value algorithms given with the Property Classes. The initial data structure built from the

Service Request is an Actor Service Offer (ASO) for each Client Server Request. Thus, the Client

Server Requests and therefore the whole Service Request become data structures dual to the

Service Offers. The general policy of the CoA is to find principally compatible Service Offer to

the ones, which are already part of the Composite Structure (including ASOs). Two Service

Offers are principally compatible if both have a Service Port as interface holding the same set of

Compatibility Characteristics. This principal compatibility idea is equal to the one discussed in the

context of a Trading Request (cf. section 8.2). This means, the CoA will look for Service Offers

as long as open Service Ports exist. For an enhanced matching of Service Offers, further

constraints have to be checked in phase 4. The principal compatibility leads to a selection of a

Service Mode. The result of the third phase will be a number of Service Candidates.

In the Service Discovery, the Facility Agents and Trader Agents are actively involved. ACTAS

does not have a central repository. Each FA decides if it can offer a service holding the requested

characteristics. Normally, this is done with the Service Template. However, since the entities of

ACTAS are hold in an ontological repository having a semantic description, a new service mode

could be dynamically generated. It is up to the publishing FA and TrA, if they extend the test of

Fig. 22 - Phase 3

ACTAS

71

the principal compatibility to the checking of the matching of comparable properties. In the

terms of ACTAS, this means the agents could additionally check Merge Constraints in the

context of their declarative environment. The next phase will include the checking of Merge

Constraints in the context of the declarative environment of the CoA, i.e. the data of the whole

composite structure and its domain ontologies (cf. section 4.1) can be involved.

8.4 Phase 4 – Checking constraints

The Composition Result of the phase 3 was a first collection of Service Candidates. In a simple

case, a Service Candidate is a Service Mode of a Service Offers, which is principally compatible

with a Service Request (more precisely a Client Request of the Service Request). In a more

complex case, the principally compatible Service Candidate is a Composite Service with also

principally compatible Component Services.

In the phase 4 of the Service life cycle, constraints for the selection of matching Service

Candidates are performed. Firstly, the matching auf the Component Services and especially the

matching of the Service Offer with the Service Request are tested. This is done through the so-

called Merge Constraints. The interface of a (Component) Service, i .e. of a Service Mode of a

Service Offer, is its Service Port. Since a Service Request and a Candidate Service as well as the

Component Services of the Candidate Service are called principally compatible, their Service

Ports must hold the same sets of Compatibility Characteristics.

Fig. 23 - Phase 4

ACTAS – Adaptive Composition

 72

During the checking of Merge Constraints, the so-called merging of the Service Properties of

principally compatible Service Ports takes place. Every Service Property was as a Char Property

declared in the same Compatibility Characteristic. Thus, pairs of comparable Service Properties

are created through the principal compatibility holding the same Merge Property Classes. The

Merge Property Class is a mean for the import and realisation of matching algorithms and if

necessary mediation algorithms, in order to cope with the case that the data of the merging

Service Properties are based on different ontologies or units. The Merge Property Classes are

used for the creation of Merge Property Objects

Other constraints could be checked directly by the Facility Agents. The Facility Agents could

offer a resource management, which could include a reservation of resources for services, in

order to ensure that the service could be deployed later on. This demands a transaction control

and locking.

8.5 Phase 5 – Grounding and Schedule of the Services

In the fifth phase of the Service life cycle, a found Service Candidate has to be grounded, i.e. a

Concrete Service has to be found, which can be deployed and executed. Therefore, the Service

Grounding can involve the recursive call of other Trading and Service Discovery environments.

Fig. 24 - Phase 5

ACTAS

73

However, before a Service Grounding can take place, possibly, a Service Candidate has to be

selected from several ones found as Composition Result in phase 4. Facility Agent will always

check the Service Offer Export Records of the Service Candidates, in order to find out if the

used Service Offers are still valid.

The information for the Service Grounding might be at least partly already known to the

Facility Agent. Nevertheless, the settlement of the Service Candidate and the getting of the

Service Grounding information demand a negotiation with the other involved Facility Agents

(Fig. 24). The goal of the negotiation is to find a Service Level Agreement (SLA) for the most

prospective Service Candidate. The Request Agent, the Personal Agents as well as the potential

Service Clients and Service Providers can also be involved in the negotiation. It is an advantage,

that ACTAS already includes agents for an active negotiation and coordination of services. The

Service Requester might be involved in confirming the results of the Service Composition with

the application environment.

8.6 Phase 6 – Service Execution and Feedback

In a last phase, the Service Deployment and Service Execution/Consumption take place. There

will take place a direct communication between the services and the Service Clients in the end

(Fig. 25). Additionally, the feedback of the Service Clients can be of interest.

The Service Composition includes the Service Clients as so-called actors. In the data-structure

of the Composite Service, the actors are represented through so-called Actor Service Offers

(ASO). In future research, ACTAS will use the client feedback for learning. A so-called Actor

Fig. 25 - Phase 6

ACTAS – Adaptive Composition

 74

Service Template (AST), stored in the Personal Agent of a Service Client, will coll ect for every

Service Request the Facility Agents of services recognized of high quality (QoS). Afterwards, the

AST could be used for the initialisation of the ASO of the Service Client for an identical Client

Service Request, in order to address the collected FAs prioritised.

It will be the concern of future research to consider further ways how a so-called Actor

Service Template (AST) can help in the generation of an ASO. Another goal of future research

will be the support of the monitoring of service qualities during the Service Execution. When a

Component Service had to be replace due to bad quality issues, then ACTAS could be ask for

delivering of a replacement Component Service.

ACTAS

75

ACTAS - SERVICE MODEL (S-MODEL)

9 Introduction to Service Model (S-Model)

ACTAS distinguishes between S-Model, R-Model, and C-Model. The support of the Service

Design (Phase 1 of the extended life cycle of servicea as described in section 2.3.4 - 4th aspect of

services: The extended life cycle of services) is covered with the S-Model. The R-Model is an

extension of the S-Model and covers the information data structures of the Service Request and

the Trading Request. The active phases of Service Discovery (Service Trading (Phase 2), Service

Matching (Phase 3), and Service Checking/Selection (Phase 4), cf. section 2.3.4 for life cycle as a

general aspect of services) are addressed with the C-Model, introduced in chapter 12. This

chapter introduces the building elements of the S-Model, whereas the next chapter presents the

Service Description of ACTAS more in detail.

In order to design a more general Service Description, it was essential to get clarified what a

service is. This was the research interest of many scientists in the past as shown in the State -of-

the-Art. Additionally, it turned out that the aspired automated discovery, composition, and

execution of services through the agents need a support for reasoning about services. Some

approaches like METEOR-S (cf. section 5.2.1) work with separated repositories for Service

Offers of different domains. However, section 2.3 (Aspects of service) showed that services

could be categorized by other criteria than the point of view of their application domain.

Fig. 26 - Elements of the S-Model

ACTAS - Service Model (S-Model)

 76

Alternatively, ACTAS proposes a multi-ontological categorization of the area of services. The

services are not any longer kept in separated repositories, but dynamically classified through the

association of commonly agreed Semantic Characteristics, which can be recognized by the agents.

Generally, an ontology categorizes the instances of the problem domain through its schema,

which consists of concepts, relations, and attributes. A repository of instances together with their

ontology schemas is called an ontological repository in this thesis. It is essential to know what

kind of instances is addressed through the named concepts of an ontology schema, in order to

choose the fitting constructors for expressions over concepts of different ontological

repositories. In the case of the same kind of instances, the concepts can be directly combined (i.e.

through intersection or union); otherwise relations have to be defined between the instances.

Table 5 - Constructors of DL showed constructors with classifying concepts for the application

of these instance relations inside of logical expressions.

Services as instances can be categorized based on various criteria like e.g. their application

domains, the user roles of their Service Clients, statements about their life-cycle phases as for

example the degree of abstraction of their Service Description, or the supported non-functional

properties in the different phases. The later example combines the 2 nd aspect (non-functional

attributes) with the 4 th aspect (phases of the life cycle) (cf. section 2.3). Ontologies, which provide

schemas for these criteria, exist. In the appendix A, for instance nfp-ontologies are listed.

 ACTAS introduces so-called Semantic Characteristics as commonly agreed concepts for the

categorization of services, which are defined through the combination of concepts of “criteria

ontologies”. Each Semantic Characteristic can become a free composition of ontological

classified criteria, i.e. it gains a semantic meaning. For example, a concept of an ontology for

Service Design classifying services according to certain Service Description formalisms (e.g.

WSMO, OWL-S, or WSDL) could be intersected with a concept of another ontology

categorizing services according their application domain (e.g. communication services, Customer

Relationship Management (CRM), processing of geographic data) (cf. section 2.3.1). A result

could be a characteristic defined for services as instances doing Customer Relationship

Management (CRM), which are offered through a WSMO Service Description. It is obvious, that

the WSMO Service Descriptions of this service category will be comparable since they are based

on similar domain ontologies.

A Service Offer in ACTAS shows its categorization through its associated set of Semantic

Characteristics. A Service Request can just ask for a service of this category through demanding

the same set of Semantic Characteristics. Following this model, a characteristic can as a first

purpose support the Service Discovery and Service Selection as they describe the principal

compatibility of services. Semantic Characteristics for this purpose are called Compatibility

Characteristics. Two services are called principally compatible when they can agree on one

Service Mode holding the same set of Compatibility Characteristics. Therefore, a Compatibility

Characteristic can be seen as a commonly agreed, standardized delimitation of the area of

services, in order to support the Service Discovery, Service Matching, and Service Selection. A

ACTAS

77

special kind of Compatibility Characteristic useable in a Service Request is a Request

Characteristic. A Request Characteristic is related with an ontology categorizing user roles.

Therefore, it possibly indicates a restriction of the user group, but also allows an adapted Service

Description for this user group.

Secondly, a Semantic Characteristic is a commonly agreed semantic context for properties,

similar the attributes of an ontology. These properties are called Char Properties. However in

contrast to the attributes of ontologies, algorithms are linked with a Char Property, in order to

control its content. Therefore, a Semantic Characteristic is also an agreement on algorithms. This

leads to mentioned support of Compatibility Characteristics for the Service Matching (Phase 3 of

the life cycle, cf. Fig. 2). Since principal compatibility means identical sets of Compatibility

Characteristics, it also causes the same sets of Char Properties. In the terms of ACTAS, the

properties of two services become “comparable” and their “merge” algorithms can be used for

the checking of matching constraints involving possibly mediation on the level of each Char

Property. The application of mediation might become necessary, when for instance the data of

comparable properties are based on different ontologies. In ACTAS, this is called the merge of

comparable properties and the checking of Merge Constraints.

Thirdly, a Semantic Characteristic opens up the possibility to access annotating criteria in a

commonly agreed way. In the discussion about non-functional properties (section 2.3.2) (nfp) of

services, it was mentioned that some of them have annotating purpose (e.g. the information

about the provider, cf. appendix section A). Normally, this kind of nfp is not involved in the

Service Discovery, but they are possibly useful for the Service Selection (Phase 4) and Service

Negotiation (Phase 5). Thus, it is of advantage to have commonly agreed access methods of such

properties. Therefore, a so-called General Characteristic can be introduced in ACTAS, which

is related to a concept of an ontology classifying such an annotating criterion. Associated with a

service, such a General Characteristic indicates the support of this annotation to the agents.

ACTAS does not work with explicit service repositories. The facility agents (FA) have the

active role of publishing Service Offers (SO) through a Service Offer Export Record (SOER)

based on Service Templates (ST). A ST consists of several Service Modes, which are defined

through their distinct set of Semantic Characteristics. A FA should be proactively able to decide

whether it can offer a service candidate if necessary through an additional Service Mode, when a

Service Request asks for a specific set of Service Characteristics, which the FA could provide. For

this purpose, the FA has to know the semantic relationships of Service Characteristics. The

ontology of the Service Characteristic should support this decision of the FA. The publication

through ST and SOER allows the FA firstly to keep control over the Service Modes of a service,

secondly it can adapt the Service Offer to the current state of the service, and the FA could

thirdly “reserve” resources for the deployment of a service in a selected Service Mode.

The Service Description in ACTAS through Service Templates and Service Offers,

respectively, leads to a fourth purpose of Sematic Characteristics: acting as “building blocks” of

the Service Descriptions. Compatibility Characteristics and their special kind, the Request

ACTAS - Service Model (S-Model)

 78

Characteristics, are used for the description of compatibility. Annotating criteria are added with

General Characteristics. The Char Properties are linked with algorithms for the access and merge,

in order to support constraints of their values (Attribute Constraints, Value Constraints) and

constraints of their so-called merge (Merge Constraints). Char Properties appearing in a Service

Description are called Service Properties. Finally, Exchange Constraints declare constraints

between different Service Properties. In this context, General Characteristics can be introduced,

which offer Char Properties for the holding of accumulated results of Exchange Constraints. For

instance reliability (an nfp, which is not only annotating, cf. section 2.3.2) could be checked for

each Component Service of a Composite Service. In the case that reliability is also of interest on

the level of the Composite Service, a General Characteristic of the mentioned type could offer

the fitting algorithms with its Char Properties. Together with Exchange Constraints involving the

reliability values of the Component Services and the Composite Service, reliable Composite

Service could be selected in phase 4.

 Inside of the declarative environment of ACTAS covered with the C-Model, the Char

Properties and necessary entities for the access of the Char Properties inside of the constraints

appear as objects, which wrap algorithms/methods. This leads to the framework character of

ACTAS. The linked methods allow an initialisation, setting, and checking of the Char Properties

and its constraints. In Definition 6, Property Classes are introduced for the description of these

“objects”. Ontological repositories of Property Classes, Semantic Characteristics, and

eventually Exchange Constraints offer the “building blocks” to the Service Designer of ACTAS.

Element Description

Semantic Characteristic
(Char)
• General Characteristic

(GCh)

• Compatibility Characteristic

(CCh)

• Request Characteristic (RCh)

• A (Semantic) Characteristic is an ontological concept for
the categorization of services through several aspects.
(Service Ontology with Characteristics as concepts.)

• It can be used for the description of compatibility between
services (CCh).

• Service Requests can be given for specified user groups

(RCh).

• It is the semantic context for the declaration of a set of
Char Properties.

• Integration of (established) algorithms linked with Char
Properties and constraints.

• The semantic context also allows the initialization of the
Char Properties with specific Value Constraints including
fitting Application Ontologies through the linked
algorithms.

• Standardized access of annotating non-functional properties

(GCh).

• Building blocks for the Service Design, in order to create
Service Description together with Exchange Constraints
(GCh and CCh). This leads to ontological Repositories for
the Semantic Characteristics.

ACTAS

79

Element Description

Property Class
• Char Property Class

• Merge Property Class

• Exchange Property Class
• Service Property

• In the description of a Semantic Characteristic and of an
Exchange Constraint, the Property Class is a pointer to an
algorithm. This can be for instance a Web Service or a
Prolog module. (The latter extending the declarative
environment of ACTAS directly.)

• In the declarative environment of ACTAS, the Service
Properties appear as objects, which wrap as adaptors the
access of the algorithms.

• Any Char Property whose Characteristic is part of a Service

Description is called a Service Property.

• A Char Property offers methods for the setting of
constraints for the values of its attributes (Value
Constraints). Other methods will allow the return of
information about the current attribute values.

• A Merge Property is declared for the “merge” of two Char
Properties of the same Property Class. Its merge method
can wrap established matching and mediation algorithms.

• An Exchange Property offers a set of methods for the
exchange of several Char Properties of different classes.

Constraints
• Attribute Constraints

• Value Constraints (Va-Co)

• Merge Constraints (Me-Co)

• Exchange Constraints

(Ex-Co)

• The algorithms of the Property Classes, especially the ones
of Char Properties, include naturally constraints for the
values of its attributes. These so-called Attribute
Constraints cannot be changed.

• The semantic environment of a Characteristic, a Service

Template, and a Service Offer (through the SOER) describe
additional Value Constraints for the Char/Service
Properties. The Value Constraints in a SOER can overwrite
the ones in a ST. The Value Constraints use the methods of
the Char Property Classes.

• With each Char Property in a Compatibility Characteristic is
linked a Merge Property Class. In the C-Model, the merge
algorithms of this class are used for a compatibility check.
These so-called Merge Constraints combine two Char
Properties of the same class. They allow the framework like
inclusion of established matching and mediation algorithms.

Exchange Constraints are built over several Service Properties
declared with different Property Classes. They use methods of
Exchange Properties. Exchange Constraints allow the checking
of constraints between Service Properties appearing in different
contexts of a Composite Service (cf. C-Model).

ACTAS - Service Model (S-Model)

 80

Element Description

Service Template (ST)
• Service Mode (SM)

• Service Port (SP)

• A ST is a Service Description of a service, which sums up
different Service Modes how a FA can principally offer a
service.

• The Service Modes have Service Ports, in order to describe
the compatibility of services with the use of Compatibility
Characteristics.

• The Facility Agents (FA) in the model of ACTAS exports
Service Templates as XML-files.

• Service Templates could be used by Trader Agents for a

principal composition of new Composite Services, which
could be offered by the Trader Agent as a FA.

• A FA can dynamically extend a ST with another Service
Mode, when it recognizes that it could deliver the
Compatibility Characteristics requested by a Service
Request (cf. C-Model).

Service Offer Export
Record (SOER)

• Service Offer (SO)

• ACTAS supports the availability control of services through

the distinction between Service Offer and Service Template.
Therefore a FA exports SOERs related to a certain ST as
XML-files.

• Through a SOER, the FA determines the validity of a SO
based on a ST. A SOER contains a time stamp and a
unique identity.

• A SOER describes the currently available Service Modes
and can overwrite the Value Constraints of the Service
Template.

• A SO is built from the ST and a current SOER in the
declarative environment of an agent.

• A FA can offer the possibility to reserve a selected Service

Mode of a Component Service in a found Composite
Service (cf. C-Model) on the basis of a specific SOER.

• ACTAS observes the availability of services. Therefore, a
FA exports a description of an available service with a
SOER, which is based on a Service Template. The SOER is
also an XML-File. It describes the currently available
Service Modes and the values of the properties. The latter
are set by so-called Value Constraints.

Table 12 - Elements of the S-Model

9.1 S-Model: Semantic Characteristics

A Semantic Characteristic is a commonly agreed ontological concept for the categorization of

services, and additionally a semantic context for the description and declaration of properties

(especially so-called Char Properties) through Property Classes (introduced in the next section).

The constraints on values of a property given with its Property Classes (so-called Attribute

Constraints) can be further specified through Value Constraints (Va-Co) (Constraints are

discussed in section 10.4), in order to adapt the values to the semantic context. In the models of

ACTAS

81

ACTAS (S-Model and C-Model), Characteristics are a key-element and are used for two

purposes: Firstly, the description of services in general and secondly the description of their

compatibility. Together with Exchange Constraints, which describe constraints involving

several Char Properties, they become like “building blocks” for Service Descriptions and Service

Requests.

In ACTAS, the Service Providers describe the services. Therefore, the description is done

mainly from the perspective of a Service Provider. Compatibility Characteristics are used for

the description of compatibility between services as well as between a service and a request. A

service is called principally compatible with another one if it holds the same Compatibility

Characteristic(s). A special kind of Compatibility Characteristic is a Request Characteristic

used for the description of Service Requests and their compatibility to Service Offers. The

definition of the ontological concept linked with a Request Characteristic includes the relation

Fig. 27 - Semantic Description

Definition 4. (Semantic) Characteristic (Char)

 ()

 ()

 ()
 ()

 ()

There are two different kinds of characteristics:

 General Characteristic (GCh)

 Compatibility Characteristic (CCh)
They are described by:

 Name or identification of characteristic ()

 Description of the semantic/ontology of the Characteristic (SemDescr) (cf.
Definition 5)

 Their environment (Char_Env), which contains the settings of the value-

constraints of the Property Classes (() and the exchange-

constraints ().
 The Properties of the characteristics are described by Property Classes (cf.

Definition 6)

 A Request Characteristic (RCh) is a Compatibility Characteristic related
to user groups in the semantic description

ACTAS - Service Model (S-Model)

 82

between services and user groups, i.e. a Request Characteristic restricts the semantic context of

Service Requests and of their Char Properties to specific user groups. General Characteristics

allow a standardized access of annotating properties and the introduction of new Char Properties,

in order to hold values resulting of Exchange Constraints.

In Definition 4, General and Compatibility Characteristics are introduced. The obvious

distinction between both kinds of Semantic Characteristics is their declaration of a property (also

called Char Property): a property of a Compatibility Characteristic () has got an

additional association of a Merge Property Class (). The Merge Property

Class is used for the Merge Constraints (cf. section 10.4) checking the matching of two services

on the level of their Char Properties.

The environment of a characteristic () is built from the Value Constraints and

Exchange Constraints, in order to fix the constraints, which are relevant in its semantic context.

The Value Constraints define restrictions for the Char Properties, which are generally valid in the

semantic context of the characteristic. The Exchange Constraints define constraints involving

several Char Properties, when certain premises are fulfilled. The constraints in a Semantic

Characteristic cannot be changed by the Service Description. They are the constraints , which are

checked in the algorithms of the C-Model with the highest priority. Further information about

constraints is in section 10.4 - Constraints in the Service Description.

The semantic of the Semantic Characteristics is defined through a logic expression over

concepts and a „is-a“-relationship inside the ontological schema of the characteristic as concepts

(cf. Definition 5). The instances of this characteristic ontology, i.e. the elements of the ABox in a

 { | (

)}

Definition 5. Semantic Description (SemDescr) of Char

 (-)

 The semantic description of a characteristic Char has an “Is-a”
set of inherited characteristics (multi-inheritance). The result is an
ontological schema of Semantic Characteristics.

 The set of entities classified by Char is a subset of each set of entities

classified by a characteristic being element of the “Is-a” set (corresponds to

the “ ” relation in DL (cf. section 4.2).

 The set of entities classified by Char is additionally restricted through the

interpretation of the logical expression . In the

case of DL, the expression is built und semantically interpreted with the
constructors in Table 5.

 The domain set of the characteristic ontology, i.e. the set of all objects in
the ABox in DL, is the set of all services/Service Offers. The semantic

interpretation I of a Char with semantic description

 ({ }) is:

 Properties and environments (cf. Definition 4) of Semantic Characteristics
are not inherited

ACTAS

83

DL based ontology, are services. This is due to the fact that Semantic Characteristics are first of

all a commonly agreed classification of concepts over services. In DL, the “is-a”-relationship is

shown with the operator/constructor “ ” (cf. section 4.2). This relation besides others is

illustrated in Fig. 28. The top concept of “Semantic Characteristic” is directly distinguished into

the concepts of General Characteristics (GCh) and Compatibility Characteristics (CCh).

The logic expression for the definition of the semantic of characteristics contains terms with

negation, disjunction, and intersection (conjunction) of concepts, when these concepts also

classify services. The constructors of DL for these logical expressions are given in Table 5. When

the instances of concepts are not directly services then the relational constructors are used. The

user ontology mentioned in Fig. 28, which classifies user groups/roles as instances, is an example

in this direction. Request Characteristics are defined through relations to certain user groups.

Further additional ontologies can be introduced, which offer concept schemas for the various

aspects of services (section 2.3).

The “Is-a” relation means an inheritance of semantic descriptions. In order not to restrict the

declaration of Char Properties, ACTAS defines the “Is-a” inheritance (cf. Definition 5) only on

the semantic description, i.e. the logical expression of a semantic descriptions is conjugated with

the inherited Semantic Description (cf. Definition 5). The Char Properties can be freely defined,

but should certainly cover the semantic. In the evaluation (chapter 14), simple semantic

descriptions of characteristics are discussed. Afterwards, the extended usability of characteristics

is considered.

Fig. 28 - Principal ontological categorization of Semantic Characteristics

 ({ } [()

()

()])

(9-1)

ACTAS - Service Model (S-Model)

 84

In equation (9-1), an example of a semantic description of a Compatibility Characteristic is

shown that combines criteria concepts for services with SWS Service Description through

WSMO originated in an imagined Geodata domain with a concept for trading (4 th aspect –

phase 2). A concept in an ontology can also have properties, as the WSML ontologies listed in

the chapter B of the appendix show. The latter concept in the semantic description is assumed to

mention a Service Discovery environment A in the Geodata domain in one of its properties. It is

likely that this environment includes traders of its own. In the subsequent example, an idea is

developed, which takes advantage of Semantic Characteristics, which are semantically connected

with a trading criteria that even contains a link to an external trading environment.

 Addressing of Trading Phase through Semantic Characteristic Example 5

A Compatibility Characteristic can be connected in its Semantic Description with the
Trading Phase in such a way, that certain Trader Agents (TrA) of the ACTAS System
Environment will react on a Service/Trading Request containing this Compatibility
Characteristic. The Trader Agent might directly access a Trading Environment of an
existing Service Discovery Environment, in order to find a compatible service.

However, the concrete environment is normally unknown to the Service Designer. The main

idea is the active involvement of the Trader Agent (TrA) as described in Example 5. The pro-

active and re-active behaviour of the Trader Agents allows the creation of Trader Agents, which

react on Compatibility Characteristics holding this specific trading concept/criterion. In this way,

ACTAS supports an adaptive trading behaviour controlled through Semantic Characteristics,

which can involve existing trading environments. The Service Designer can control the trading by

using Semantic Characteristic associated with such a criterion in his Service Description/Service

Request.

 A Semantic Characteristic for the Deployment Phase Example 6

Due to the fast development of Web Service standards, it turned out that it was important
for the deployment that the Service Requester and the Service Provider agreed on a
certain set of Web Service standards and their versions. In the state of the art (section
3.7), it was mentioned for example that the high number of Web Service standards and

their incompatibility of versions was addressed through WS-Interoperability (WS-I)

[OAS2011]. A Compatibility Characteristic could verify the use of methods in this
direction.

Since Semantic Characteristics are concepts over service instances, the Service Designer can

extend his/her control of early Service Selection to criteria coming up in later phases of the life

cycle (4th aspect of services). Through the use of semantically fitting characteristics, it can be

ensured that the (component) services can be deployed and executed in such a way that they can

work together. In Example 6, a Semantic Characteristic, i.e. a Compatibility Characteristic, is

discussed, which could ensure that compatible packets of Web Service Standards are used. Other

potential Compatibility Characteristics allow an early agreement on certain methods of

choreography and orchestration, which are criteria of the phase 5 of the life cycle of services (cf.

section 2.3.4). Extended, more abstract settlements in this phase of the life cycle, as for instance

ACTAS

85

the negotiation about the company policy of the enclosement of orchestration details, led to

criteria belonging to the 3rd aspect of services, the inherent complexity of a service (cf. section

2.3.3). In the next section, the Property Classes are discussed, which are necessary for the

declaration of the properties of Semantic Characteristics. They allow the taking over of

established algorithms of Service Discovery and Service Matching as well as the construction of

constraints.

9.2 S-Model: Property Classes

Fitting with their semantic context, Semantic Characteristics wrap Char Properties as well as an

environment (), which describes Value Constraints () and

Exchange Constraints () relevant in this semantic context (cf. Definition 4).

The Char Properties declared in the semantic context of Compatibility Characteristics are also

used for the compatibility description (cf. section 10.4.2). In all this cases, so-called Property

Classes (PC, Definition 6) are involved. ACTAS introduces three different kinds of Property

Classes (cf. Definition 7, Fig. 29). They create a framework like adaptivity of ACTAS: (1) The

Char Properties are declared with Char Property Classes. (2) Value Constraints use methods of

the Char Property Classes, in order to set (restrictions for) the values of the Char Properties. (3)

The Char Properties in Compatibility Characteristics are additionally associated with Merge

Property Classes for the import of matching and mediation algorithms, which are used for the so-

called Merge Constraints. (4) Finally, Exchange Property Classes are used for the import of

algorithms for the definition of Exchange Constraints, in order to correlate several Char

Properties.

The S-Model proposes an ontological repository of Property Classes, in order to achieve a

“standardisation” of Service Properties and their methods as well as to support the use of

characteristics as “building blocks” of Service Description. The concepts of the ontology of this

ontological repository could classify with the help of the different application domains and

functional aspects. The information in the Definition 6 of a Property Class (PC) can

Definition 6. Property Class (PC)

 ()

PC is an object oriented class definition:

 is a unique identification for the Property Class,

 categorizes the Property Class in an ontology of property
concepts (cf. 4.2) (A-Box in DL)

 enumeration of the methods implemented by the class

 is information about the access of the algorithm, i.e. the
way how the access has to be wrapped by the environment of ACTAS as
well as the way how to realise the algorithm for instance as a (statefull)
Web Service having a WSDL

ACTAS - Service Model (S-Model)

 86

be seen as a categorization of the PC instance with a set of classifying concepts in ontological

repositories.

A Property Class includes a behavioural semantic, i.e. it provides methods for value setting and

managing of constraints as well as testing. Each of these methods reflects the success of its

operation back to the declarative environment of ACTAS through a Boolean functional result.

This behavioural semantic allows the integration and probing of existing, established algorithms

of Service Discovery and Service Matching including mediation.

 Principal Char Property Class Example 7

Let the dealing with Capability Descriptions of OWL-S be implemented in a Char

Property Class with the - - . Then this Property Class can be used
for the declaration of a Char Property in the Compatibility Characteristic
“ - ” introduced in equation (22-18) of Table 34 - Request Characteristics

(RCh) in the appendix. A method will initialize the Char Property with a capability
description of an OWL-S description. This method will have a parameter which allows
the access of an existing OWL-S description through a URL. It is likely that the Property
Class will include a plausibility check of the IOPE-parameters as Attribute Constraints.

ACTAS introduces three different kinds of Property Classes used for the declaration of Char

Properties, Merge Properties, and Exchange Properties (cf. Definition 7). A set of methods

() is listed in the general Property Class (PC) defined in Definition 6. This , an

enumeration of method specifications, can be understood as an application interface (API), being

of interest for the ACTAS and Service Administrator/Designer (cf. chapter 8 - System

Environment). The methods of a PC enable the setting of values like e.g. the initialisation of the

Char Property mentioned in Example 7. The Service Designer will use this method interfaces for

the description of the Value Constraints and Exchange Constraints in the Service Description.

The constraints in the environment of a Semantic Characteristic (in Definition 4) are

written with the method specifications by an ACTAS Administrator.

A Char Property Class should offer methods for the setting of Value Constraint, the testing of

values, and a method “printValues” for the producing of information about its current values. An

Exchange Property class must have methods for the checking of the values of several properties,

simultaneously. The of the Merge Constraints is determined through the needs of the

Composition Process in the C-Model, since the Merge Constraints are an essential part of testing

the compatibility (cf. section 10.4.2). Therefore the methods of Merge Constraints are discussed

Fig. 29 - Property Classes

ACTAS

87

in the context of the C-Model. The C-Model will translate the methods of the Property Classes

into declarative operation, i.e. predicates.

However, since ACTAS acts as a framework, it cannot control that every use of the methods

leads to unambiguous attribute values in the objects. This ambiguity might be even wished.

Therefore, ACTAS has to speak generally of constraints leaving the details up to the encapsulated

environments of the Property Classes. However, ACTAS demands a monotony of the

constraints. The successful application of a constraint must be reflected in a Boolean return

value. In the C-Model, it is motivated and discussed, how the Composition Process could query

for alternative applications of a constraint. In the S-Model, the constraints are discussed more in

detail in section 10.4.

In the declarative environment of ACTAS, the access of the properties is comparable to

objects5 (in fact, the object extension of SICStus Prolog was used; cf. Evaluation, chapter 14).

However, the declarative environment of ACTAS only wraps the access of the implementation of

the properties. The implementation of the methods of a Property Class can be externally. The

description of grounding () contains more information. For

instance similar to the WSML description of a mediator in WSMO (cf. [StGrAb2007 section(s)

287–311]), which addresses a Web Service implementing the mediation; it could contain the

URL of a Web Service, i.e. of a WSDL description. Every new “object”, created for such a

5 In the thesis the terms “Property Class” and “Property Object” are used.

Definition 7. Kinds of Property Classes

Three different kinds of Property Classes are distinguished:

 A Char Property is declared through a Char Property Class in the

semantic context of a Semantic Characteristic (and

 in Definition 4). Its methods have only parameters and.

 A Merge Property Class is linked with a Char Property of a

Compatibility Characteristic in the (cf. Definition 4). Its

“merge” method processes two Char Properties declared with the same
Char Property Class, in order to test their matching (potentially including
mediation if their values are based on different domain/application
ontologies). This so-called Merge Constraint can lead to a Merge Property
that can be tested for further criteria.

 Exchange Property Classes are used in an Exchange Constraint, i.e. a
constraint correlating several Char Properties possibly declared with
different Char Property Classes. Their methods can process Char
Properties of different Char Property Classes, in order to see if their values
can be adapted for the fulfilment of constraints. This can be interpreted as
a translation/mediation of the values of some Char Properties into the
values of some other Char Properties.

ACTAS uses objects in the declarative environment for the wrapping of the access
of the implementations of the classes.

ACTAS - Service Model (S-Model)

 88

Property Class in the declarative environment, should access the Web Service in its own context.

It definitely helps, when the Web Service is statefull for each of these contexts, in order to keep

hold of the (internal) constraints. Otherwise, ACTAS must manage the settings and will have to

send complete lists of settings each time, when it accesses the Web Service, in order to test their

fulfilment. This keeping track of the already applied constraints creates a monotony of the

constraints and it is necessary for the integration in the declarative environment.

The challenges of the integration of objects in the declarative environment of ACTAS are

discussed in the C-Model (chapter 13). The next chapter introduces the Service Design of

ACTAS. In this context, specific methods, which should be offered by the Property Classes, are

discussed. The Service Design description ends with a closer look at the constraints. Since

constraints are based on method calls as sketched in this chapter, the control of the method calls

will be further considered in section 10.4.

10 Service Description

The Service Model (S-Model) distinguishes between Service Templates (ST) and Service Offer

Export Records (SOER) for the Service Description. The Facility Agents, which are under

control of the Service Providers, are responsible for the publication and management of the

Service Templates and their associated SOERs. A SOER is used by the agents for the building of

a Service Offer (SO) based on a ST. A SO exists only in the execution/declarative environment

of an agent like the Composition Agent (CoA), the Trader Agent (TrA), and the Facility Agent

(FA) itself (cf. System Environment in chapter 8). The declarative environment and its data

structures like for instance the SO are elements of the Composition Model (C-Model) described

in chapter 12.

The distinction between ST and SO allows the FA the implementation of availability control,

resource management, and reservation of Service Offers. At first, a ST enables a FA to publish

Service Descriptions without considering the current state of the resources. This might be of

interest for Trader Agents, which pro-actively compose potential services. Nevertheless, the

Service Description and Service Publication have to be adapted to the current availability of the

resources in a second step. A SOER associated with a ST is used for this adaptation fitting to the

actual situation of availability. Later after the Composition Process described in the C-Model

took place, when a SO became a Candidate Service for a Service Request, the reservation of

resources for the Candidate Service might become necessary, in order to ensure a deployment.

The data structure of ACTAS supports a reservation on the basis of the SOER of this SO. The

idea behind the use of a Service Template is partly originated in the use of Service Types in the

ODP trading model (cf. [ITU1997]).

As a person can act in different roles, a service can have different Service Modes. For instance,

a gateway can connect different kinds and numbers of devices. Another example is the service of

a travel agency, which offers in one mode travelling by plane and in another one travelling by

ACTAS

89

train. A Service Template enumerates several Service Modes, which are distinguished through

discriminable sets of Semantic Characteristics.

On the side of Service Providers, it is assumed that Service Administrators exist, who are

responsible for the management and description of a certain family of services, since only they

can describe properly the properties and compatibilities of a service (cf. Fig. 18 - Agents

Environment of ACTAS in chapter 8). A so-called “God-view” of compatibilities can hardly

cope with the diverse possibilities of an actual service family and its current Service Offers. In

order to describe these possibilities of a service in one Service Description, the ST wraps several

Service Modes for a service with Service Ports holding as interfaces one specific set of

Compatibility Characteristics each.

 Service Administrator and Service Description Example 8

The Service Administrators can offer the services with appropriate, possibly several
Service Descriptions. However, since they do not know the current and future Service
Discovery environments many points stay ambiguous: the locations of publications, the
handling with different Service Descriptions, other aspects of the service besides the
Service Design, and the completeness of information together with its constraints. It can
happen that although a Service Description matches a Service Request, the service itself
cannot be deployed since the Service Requester and the Service Provider disagree on the
set of currently used Web Service standards. In Example 6, a Compatibility Characteristic
was discussed for the verification of the treatment of Web Service standards in the
deployment phase. Such a Compatibility Characteristic could have properties with
appropriate algorithms for the negotiation of the supported standards.

The Service Description in ACTAS is like e.g. a WSML Service Description of WSMO first of

all informational; only the Service Offer inside of the agents will deal with concrete data and

algorithms. This is conform to the ideas of Berners Lee in the context of (Semantic) Web

Services [Ber2003], who demanded that the data for automation of the Service Description has to

be independent from the service behaviour and realisation. The framework character of ACTAS

extends his views in the direction of linking established Service Discovery algorithms with its

data, in order to achieve a more reliable automation without restricting the transparent

improvement of these algorithms.

10.1 Service Templates (ST) and SOER

The structure of a Service Template is shown in Definition 8. A ST (or SO) has a Common Part

and one specific part for each Service Mode (SM). Each Service Mode consists of at least one

Service Port (SP). A Service Port (SP), as an interface description of the service, keeps sets of

references of Compatibility Characteristics () . SM and the Common Part of ST hold

references of General Characteristics () . The reference, likely a URL, is done to the

ontological repositories of characteristics (cf. section 9.1), in order to ensure the use of a

commonly agreed Semantic Characteristic. A Char Property is named a Service Property, when

its Semantic Characteristic is used for the design of a Service Description.

ACTAS - Service Model (S-Model)

 90

The Service Ports with their Compatibility Characteristics form the interface of the service (in

its specific Service Mode) in ACTAS. A Service Mode “coordinates” several Service Ports, i.e. the

interface of a service in ACTAS can deal with several other services of ACTAS. Every Service

Port can offer or request a business like service, i.e. services with client and server relationship. In

this case, the ACTAS Service Mode is a real coordinator between offering and requesting of

several services. However, in Technical Services with non-directed relationships like a gateway,

which translate data following standard A at one Service Port to data following standard B at

another Service Port, the Service Mode in ACTAS represents exactly this technical service.

The use of Semantic Characteristics as “building blocks” and concepts for the classification of

services are discussed in section 9.1. A General Characteristic assigned to a service helps to

classify the services. Such a General Characteristic could describe annotating Service Properties

like location, provider, security, or other annotating non-functional parameters of the service (cf.

section 2.3.2). A General Characteristic used in a Service Mode is only valid for this specific

mode of the service. It also overwrites a General Characteristic with the same reference given in

the common description part of the Service Description.

An environment description (ST-Env), distributed over the elements of the Service

Description, keeps Value Constraints, Exchange Constraints, and Option-Slots. Option-Slots rule

the interpretation of a Service Description and the Composition Process (cf. C-Model). The

setting of Value Constraints enables the Service Administrator/Designer to adapt the values of

the Service Properties further to the semantic context of the service. As Char Properties, the

Service Properties received already their first Value Constraints for the adaptation to the semantic

context of their Semantic Characteristic (cf. Definition 4.) Value Constraints use the methods of

Definition 8. Service Template (ST)

 (() -)

 (() -)

 (() -)

Service Template (ST) consists of:

 Name of Service Template ()

 Reference of the exporting FA ()
 Set of Service Modes ()

 Set of Service Ports ()

 Set of References of General Characteristics (())

 Set of References of Compatibility Characteristics (())

 - (- - - -)
Environment of Service Template (ST-Env) consists of:

 Set of Value Constraints (-)

 Set of Exchange Constraints(-)

 Set of Option-Slots of ST (- -)

ACTAS

91

the Char Property Classes. A SOER can declare with an Option-Slot, that it “overwrites” the

Value Constraints of its Service Template. In this case, the Value Constraints of the affected

Service Properties, as they were listed in the environment of the ST, are discarded. An extended

discussion of constraints is in section 10.4.

In the instance of a Service Template shown in Example 9, the Option-Slots are illustrated

with a grey shade in Fig. 30. Compatibility Characteristics have an orange shade, whereas the

General Characteristics are shown with a yellow background. They Option-Slots appear for the

Common Part (beginning on the right sight), each SM, and each SP. For a simplification of the

illustration, the Option-Slots contain the Ids of the elements in Fig. 30. The Option-Slot

“Request” marks so-called Request Port. These are Service Ports, which can only contain

Request Characteristics. With the Option-Slot “IN”, the Request Ports become an interface, i.e.

the server side, for Service Requests. Request Characteristics are a special kind of Compatibility

Characteristics (cf. section 9.1) for the use in Service Requests. They allow an adaptation of

Service Requests towards certain user groups. The Option-Slots allow declaring a direction for

the Service Ports, in order to support the client-server relationship for the matching. The ST

instance in Example 9 has also “non-directed” Service Ports. These are used for the description

of compatibility for Component Services of e.g. Technical Service, since no client or server can

be recognized, when two technical services are composed on the base of a certain

communication standard like H.323. The section 10.2 discusses the Option-Slots more in detail.

Definition 9. Service Offer Export Record (SOER)

 (- - -)

 - (- -)

 - (-)

Service Offer Export Record (SOER) consists of:

 Name, Identification of SOER ()

 Reference of Service Template ()

 Reference of Facility Agent ()

 - contains a Start-Time and possibly End-Time of validity

 A set of valid Service Mode descriptions (-) (at least one)

 A set of valid Service Port descriptions (-) (at least one)

 Reference of valid Service Mode ()

 Reference of valid Service Port ()

 - (- - -)

Environment of SOER (-) consists of:

 Set of Value Constraints (-)

 Set of Exchange Constraints (-)

 Set of Option-Slots (-)

ACTAS - Service Model (S-Model)

 92

The publication of a service is done through a Service Template (ST) and Service Offer Export

Record (SOER). The SOER (cf. Definition 9) adapts the Service Description of the ST according

to the currently available Service Modes. Therefore, a SOER enumerates the valid Service Modes

() as well as their valid Service Ports (). The values and constraints of

the Service Properties are also adapted accordingly through SOER environments. The associated

ST and its FA is mentioned in the SOER. It is up to the FA to manage its ST and SOER

descriptions. Only the FA can decide which SOER are valid and which SOER it accepts for the

reservation of services and their needed resources for the deployment. Each reservation of

resources might certainly generate the publishing of new SOERs. A SOER can anyway contain

besides its identification also a Time-Stamp, in order to keep hold of its validation.

In a future version of ACTAS, a FA can directly react on Service Requests through the

publication of new Service Modes dynamically extending the Service Description of a ST, when it

recognizes that the semantic descriptions (cf. Definition 5) can be provided by the service.

However, a selection of a Service Mode must always be based on a valid SOER, in order to allow

a reservation and availability control. A SOER contains a time stamp and only the responsible FA

declares, which SOER and reservations are valid.

General remark to the figures and examples in the thesis: In the introduction of the models of

ACTAS, mostly simple Technical Services are schematically shown. On the one hand, it

demonstrates that ACTAS is not restricted to business like services as they are mostly tackled by

(Semantic) Web Services. Examples in this direction are added in the evaluation chapter. On the

Fig. 30 - Service Template data structure

ACTAS

93

other hand, Technical Services contain often non-directed compositions. Thus, this supported

kind of composition can be also shown. In the figures, the Compatibility Characteristics are

orange, General Characteristics appear with yellow rectangles, and Service Properties have a

green background, generally. Composition links have endings of a circular and arrow type. The

latter, if they are directed compositions. The distinction between B2B-like and B2C-like service

composition is normally illustrated with an “R” for “Request” at the drawn connection, since

ACTAS supports the B2C-like service composition with Request Ports, these are Service Ports

holding only Request Characteristic, a special kind of Compatibility Characteristics. The

references of the Semantic Characteristics, which are listed in the definitions of the data

structures, in order to state that they must be distinct and related to the ontological repository of

the Semantic Characteristics, are in the examples simply meaningful names.

 Service Template for Technical Service Example 9

In Fig. 30, an example of a Service Template is shown. The ST consists of two Service
Modes (named SM-7.1 and SM-7.2). SM-7.2 offers through one Service Port as a server
(IN-SP, IN direction as Option-Slot) a service fulfilling three Compatibility
Characteristics (“AV-Com”, “AV-Reliability”, “Loc-Auth”). All three Compatibility
Characteristics were declared as Request Characteristics (RCh). The RCh “AV-Com”
could be interpreted as an offered Audio-Video-Communication Service, which complies
with a non-functional “AV-Reliability” characteristic. Obviously, it is an audio-video-
conference facility behind this service. Therefore, it makes sense that the discovery
framework checks the spatial availability and if the server client has access rights. This
characteristic of the service is indicated through the third RCh: “Loc-Auth”. Only a
service or request with an OUT-SP (Service Port with OUT direction as Option-Slot)
demanding the same three Request Characteristics is principally compatible with this
Service Port (SP). The second SP of SM-7.2 is a non-directed (no “direction” Option-
Slot) Service Port asking with a Compatibility Characteristic for a H.323 device, which
fulfils also a H.323-reliability characteristic. The Service Mode contains two General
Characteristics (GCh). One GCh translates AV Service Properties into H.323 Service
Properties. Another one links the reliability Service Properties of the Service Ports. In the
Common Part of the ST is one GCh holding information about the Service Provider. A
GCh called “Reliability” might calculate a more general value for the reliability of the
service. The other Service Mode SM-7.1 offers for the same facility only an Audio-
Communication service (RCh: “Audio-Com”). SM-7.1 needs like SM-7.2 a H.323 device
for the realization. The meaning of the service characteristics is fixed through the
ontological repository of their publication.

10.2 The Environment Declaration

The environment declaration of the Service Description in ACTAS contains Value Constraints,

Exchange Constraints, and Option-Slots. The Value Constraints describe restrictions for the

Service Properties. Several Service Properties are interrelated through Exchange Constraints. The

section 10.4 will take a closer look at the constraints. Each part of the Service Description (the

Common Part, a Service Mode (SM), and a Service Port (SP); cf. Definition 8 and Definition 9)

has its own environment description. Generally, an environment of an SM will not contain

constraints for Service Properties of another SM, since the compatibility description of ACTAS

ACTAS - Service Model (S-Model)

 94

will select only one Service Mode. The information of the environments will be combined in the

Composition Process of the C-Model. The information of the environments of SOER can

overlay the information of the environments of ST. This is controlled with an Option-Slot. In

this section, possible Option-Slots are discussed.

An Option-Slot (Definition 10) controls the interpretation of the environments and can

influence the Composition Process in the C-Model. It creates an adaptability of ACTAS for

alternative composition algorithms. It depends on the individual specification of an Option-Slot,

in order to say if an Option-Slot, given in a Service Port or Service Mode, overwrites another

Option-Slot of the same kind, given in the Service Modes or in the Common Part, respectively.

The Option-Slots in the SOER environments (SOER-Env, cf. Definition 9) can overlay the

Option-Slots of the ST environment (ST-Env, cf. Definition 8). Table 13 and Table 14

summarize some Option-Slot specifications for Service Ports and Service Modes, respectively.

Important for environments is the “overwrite” Option-Slot, which can appear in a SOER

environment telling that the specifications in the environment of the corresponding ST part

should be discarded. The Option-Slot can specify more in detail, which part of the ST

environment should be discarded: the whole environment, all Option-Slots, all constraints or

specific constraints.

The “request” Option-Slot declares a Service Port as a so-called Request Port. A Request

Port must only contain Request Characteristics as Compatibility Characteristics and is used in the

context of Service Requests (C-Model). With the set of Request Characteristics, a Request Port is

semantically associated with a specific user group (the effective user group is defined through the

intersection of the user groups specified in the semantic descriptions of the Request

Characteristics (cf. section 9.2) being elements of the set.).

The Service Ports can be declared as directed or non-directed, which is done through the

“direction” Option-Slot described in Definition 10 only for the Service Ports (including Request

Ports). Technical Services have often a non-directed relationship between Component Services.

In a Client-Server relationship of compatible services, a declaration of the direction in the

compatibility description is necessary, in order to support Service Compositions for workflows.

Thus, a Service Port of a service, which requests another service, has in the “direction” Option-

Slot the attribute OUT. Alternatively, a Service Port, offering a serv ice (i.e. being a server) has the

attribute IN. The matching algorithm of a Merge Constraint takes later advantage from this

direction declaration. Due to the fact that OWL-S Service Description do not distinguish

between goal and service like WSMO Service Descriptions, this Option-Slot is necessary for the

Definition 10. Option-Slots

An Option-Slot contains information controlling the interpretation of Service and
Request Descriptions as well as the processing in the C-Model. They can be defined
for Service/Request Ports, Service/Request Modes, and Common Parts of the
descriptions.

ACTAS

95

distinction between client and server side and the fitting interpretation of the information. In the

case of a WSMO Service Description, Service Port holding the OUT-direction (OUT Port) will

keep the WSMO goal, whereas the IN Port will contain the WSMO service specification.

The Option-Slots can control the Composition Process. For instance, the algorithm of a CoA

can implement that the OUT Ports of a selected Service Mode will be only considered, when all

IN Ports are matched with (principally) compatible Service Ports. In this way, loops in the

Composite Structure can be avoided and some resulting constraints of the IN Ports could be

exchanged with the OUT Ports, in order to make the Composition Process more selective in an

earlier state.

Several Option-Slots influence the interpretation of Exchange Constraints (cf. section 10.4.3

and Definition 18). Two of them are mentioned in Table 14: “translation” and

“exchangeProperties”. The “translation” Option-Slot is interpreted in the Composition Process

of the C-Model. The time point of the application of the Exchange Constraints depends on the

realised composition algorithm in the CoA. Normally (at least in the introduced Composition

Process in the C-Model description), the Exchange Constraints are resolved, when a candidate

for the whole Composite Service is found based on principal compatibility and the application of

the Merge Constraints, because then a relative maximum of information for the application of

Option-Slots Semantic and Attributes

Direction

Declaration of a Server-Client relationship of Service Ports:

 () – Client Port, “OUT Port”

 () – Server Port, “IN Port”

multi-port

The Service Mode can have several Service Ports of this kind.
Depending on the Composition Process the Service Port will be cloned:

 multi-port(max) – Attribute max defines the maximum number

of cloning allowed.

overwrite
overwrite(VALUE)
overwrite(EX)
overwrite(OPTION)
overwrite(VALUE,

list-of-properties)

“Overwrite” is an Option-Slot appearing only in a SOER specification.
All specifications in the environment (Env) given in the correspondent
ST Service Port are discarded. A list of property references could
specify more closely that only the Value Constraints of certain
properties or other kinds of specification should be discarded.

Request
A Service Port can be declared as a Request Port, i.e. all Compatibility

Characteristics in the Service Port must be in fact Request
Characteristics

facility-agents(
list-of-FAs)

trader-agents(
list-of-TrAs)

Enumeration of agents, which should be preferentially asked for
compatible Service Offers in the composition or Trading Process. In a
closer specification, it could be expressed if these agents are compulsive.

Table 13 - Option-Slots of Service Ports

ACTAS - Service Model (S-Model)

 96

the Exchange Constraints is available. With the “translation” Option-Slot set, the Exchange

Constraints will be applied earlier in the Composition Process, likely when possible (Component)

Services are just found and composed. In this way, values of the Service Properties in the just

composed Service Ports (probably IN ports) can be translated through data mediation into values

of Service Properties in the Open Ports. In this way, the values in the Open Ports are already

quite defined for an extended Service Discovery, which involves the solving of Merge

Constraints at the side of the Trader or Facility Agent. The “translation” is used, in order to

mediate between different interfaces of a service. The evaluation has a closer look at the use of

Translation Offers.

Other Option-Slots can select Facility Agents for the composition (e.g. “facility-agents” in

Table 13 - Option-Slots of Service Ports). Such a Selection might come handy; when potential

Facility Agents offering the request service are known or learnt through positive feedbacks (cf.

System Environment, phase 6, section 8.6 and future research).

10.3 Description of compatibility

The S-Model has to describe two kinds of compatibilities of a service. On the one hand, a service

can be compatible to another service. On the other hand and more important, some services

have to be compatible to Service Requests (R-Model, chapter 11). Service Request and the

Service Description of the S-Model are transformed into data structures of the declarative

environment of the C-Model (chapter 12). These data structures are used for the determination

Option-Slots Semantic and Attributes

translation

translation ((-)

)

Early interpretation of Exchange Constraints
The meant Exchange Constraints can be listed.

exchangeProperties

(-
ExchangeProperties)

Adaptation of the Service Properties used by Exchange
Constraints. This Option-Slot overwrites the term
“ExchangeProperties” of the referenced Exchange Constraint

(-).
(The reference is similar the reference of a property

(cf. Definition 15) with the exception of having an -

(cf. Definition 18).)
This is useful, when Exchange Constraints are imported e.g.
through General Characteristics as “building blocks”
(cf. Example 15)

overwrite
overwrite(VALUE)
overwrite(EX)
overwrite(OPTION)
overwrite(VALUE,

list-of-properties)

Like in Definition 10 only valid for the greater scope of a
Service Mode or Common Part, respectively
VALUE – Value Constraints
EX – Exchange Constraints
OPTION – The Option-Slots

Table 14 - Option-Slots of Service Modes and Common Part of Service Descriptions

ACTAS

97

of principally compatibility between Service Offers as well as between Service Offer and Service

Request. Subsequently, the compatibility of the compositions is further tested through the rules

of phase 4, testing whether they fulfil the Merge Constraints.

In the S-Model and R-Model, the principal compatibility description is done through a set of

Compatibility Characteristics at the Service Ports. (Service Ports describing the compatibility

between Service Requests and Service Offers are called Request Ports (RP), since they have as

Compatibility Characteristics only Request Characteristics.)

 The Compatibility Characteristics hold the Merge Property Classes, which are used for the

building of Merge Constraints. The Merge Constraints as well as the principal compatibility can

be controlled through Option-Slots. Only Service Ports with compatible Option-Slots can be

composed in the Composition Process.

 Especially the “direction” Option-Slot (cf. Table 13) must be observed, since it describes a

Service Port as being on the server/Service Provider side (“IN Port”) or at the client side (“OUT

Port”). Definition 13 declares that only Service Ports with no “direction” Option-Slots or with

“direction” Option-Slot holding alternating attributes are compatible. The set of Compatibility

Definition 11. Principal Compatibility for services and Service Ports

A serviceA is principally compatible with a serviceB iff
they have principally compatible Service Ports SPA and SPB.

Two Service Ports SPA and SPB are principally compatible iff

they hold the same set of references of Compatibility Characteristics (()
in Definition 8) as interface and compatible sets of Option-Slots (cf.
Definition 13).

The principal compatibility of the Service Ports (SPA and SPB) leads to the
selection of their Service Modes SMA and SMB on service level and the association
of comparable Service Properties on the level of Service Properties (cf.
Definition 12).

Definition 12. Comparable Service Properties

Two Service Properties of principally compatible Service Ports are called
“comparable” iff

 They have the same names.

 They are declared in the context of Compatibility Characteristics with the
same references

Definition 13. Compatible sets of Option-Slots

Let be - -

 and - -

 sets of Option-Slots

appearing in the environments of two Service Ports SPA and SPB. Empty sets of
Option-Slots of Service Ports are always compatible for composition. Further
compatible sets of Option-Slots are shown in Table 15

ACTAS - Service Model (S-Model)

 98

Characteristics of an IN Port describe criteria of the offered service. Analogically, the set of

Compatibility Characteristics of an OUT Port describe the criteria of a requested service. In

Example 9, the service is offered for Service Requests in two ways (two Service Modes). Since it

is an interface between Service Request and the described service, it is done through a Request

Port declared as IN Port.

 Principal Compatibility with Comparable Properties Example 10

The Fig. 31 shows a principal compatibility with and without a direction. In the directed
compatibility relation, two Request Ports (RP) are associated, which combine two Request
Characteristics, in order to look for a travel and insurance service. The Technical Service
delivered with two phones does not have any directions, since the phone services do not
distinct between server and client. The described interface of the Technical Service is
transparent for the Service Clients (cf. Example 2). This is reflected in ACTAS, since the
Service Ports with the Compatibility Characteristics are not declared as Request Ports.
Since principally compatible services hold the same set of Compatibility Characteristics,
the Service Properties become “comparable” (cf. Definition 12). This Example is

Option-Slots Compatibility Rule

The sets of Option-
Slots are empty.

The sets of Option-Slots are compatible.

Request
Either both set have the “request” Option-Slots (Request Ports) or
none of them.

Direction

The ports hold compatible “direction” Option-Slots iff

(() - -

 () - -

)

(() - -

 () - -

)

Table 15 - Compatible sets of Option-Slots (cf. Table 13)

Fig. 31 - Principal Compatibility for directed and non-directed composition

ACTAS

99

extended through Example 13 for the discussion of Merge Constraints.

Technical services can describe compatibility for Service Ports without a direction (i.e. no

“direction” Option-Slot). For instance, a connection, built on the base of a certain standard

between to technical devices, has no directions. Therefore, there is no “direction” Option-Slot at

the Service Ports describing a necessary H.323 connection in Example 9. In Example 10, the

principal compatibility description is shown again for a directed and non-directed relation.

ACTAS ensures with the “Request” Option-Slot that only Request Ports, i.e. Service Ports

containing entirely Request Characteristics, can be composed (cf. Table 15). The “facility agents”

Option-Slot (cf. Table 13) might only accept SOERs (and therefore STs) published by the

mentioned Facility Agents. It becomes more complicated to fulfil the “trader agents” Option-

Slot. This can only be done through the CoA.

10.4 Constraints in the Service Description

Several kinds of implicit or at least unchangeable constraints are integrated in the S-Model. First

of all, ontological schemas define constraints. They are applied in the ontological repositories of

the Property Classes and Semantic Characteristics. Additionally, the algorithmic interpretation of

the Service Properties realised through the Property Classes allows the integration of application

and domain ontologies. Secondly, implicit constraints are incorporated in the pro-active

behaviour of the agents, since the traders, application environments and Service Providers have

their own policies. Thirdly, the integration of external algorithms through the Property Classes

leads to transparent Attribute Constraints. The Service Designer has no control over these

Attribute Constraints as discussed in section 9.2. Fourthly, he accepts the constraints of a

Semantic Characteristic, i.e. its environment and Char Properties (cf. Definition 4) as well as its

semantic description (cf. Definition 5), as soon as he uses it as a building block of a Service

Description. Very important are here the Merge Constraints defined through the association of

Merge Property Classes with the properties of Compatibility Characteristics. The Merge

Constraints cover matching and potential mediation.

However, the Service Designer can start to formulate specific constraints in the environments

of the Service Templates and the Service Offer Export Records. These are Value Constraints and

Exchange Constraints. In a dual way, the Service Requester can give constraints in the

environments of a Service Request (cf. R-Model). Later on, the composition and Trading Process

of the C-Model uses the constraints for the selection of Service Candidates. Additionally, the

Service Designer can (partly) decide, which Service Property (objects) are involved in the

Exchange Constraints gained with General Characteristics as a building block of the Service

Description. Service Designer as well as Service Requester use references to Service Properties

and the methods listed in the interfaces of the Property Classes (, cf. Definition 6).

 In a later phase of the life cycle, the negotiation between the Facility Agents can help to

overcome coordination constraints of Component Services. However, the solving of these

ACTAS - Service Model (S-Model)

 100

constraints is out of scope of ACTAS as long as they are not partly tackled in the context of a

used Semantic Characteristic. This is possible, since a Semantic Characteristic can be semantically

connected with the later phases of the life cycle, in order to clarify for instance the methods of

coordination. The feedback can lead to some learnt constraints in later versions of ACTAS.

ACTAS distinguishes three different kinds of constraints: Value Constraints, Merge

Constraints, and Exchange Constraints. In the following sub-sections these kinds of constraints

are described more in detail. In section 9.2, three different kinds of Property Classes were defined

(Definition 7), which allowed the access of possibly external algorithms.

In the declarative environment of ACTAS, built in the C-Model, the properties are comparable

to classes in object-oriented languages. They contain methods for editing and comparing of

values. The methods of Property Classes are used for the setting of (internal) Value Constraints

or the creation of new output objects from the input object (cf. rule (ExOp)).

10.4.1 Value Constraints

The Value Constraints (Va-Co (Definition 14) restrict the possible values of a Service

Property through the application of methods offered by its Char Property Class (cf. Definition 6).

This Char Property Class was used for the declaration of the Service Property as a Char Property

in the context of its Semantic Characteristic (cf. Definition 4). In an ideal case, the method just

set a distinct value for the Service Property.

In a Va-Co, the affected Service Property is clearly referenced (in Definition 15).

Definition 15 describes this reference more closely. It contains the identification of the

description part of the Service Property (e.g. a Service Mode of a Service Template (in

Definition 14. Value Constraint (Va-Co)

 - ()

 []
 ([])

 ()

Meaning:
 ,

 is a reference to the Service Property (cf. Definition 15)

 The ValueClause contains an conjunction of methods calls (i.e. semantically

())declared in of the Property

Class() of the Service Property
(each methodx will be translated in an individual op/1 predicate later)

 as a reference to the Property Class (PC) origins from the

declaration of the Service Property in the context of its Semantic Characteristic

(cf. Definition 5), which is referenced through in .

ACTAS

101

Definition 8) or a Request Port of a Service Request (in Definition 19)), the addressing of

the Semantic Characteristic, and the name of the Service Property.

 Value Constraints Example 11

In Example 7, Principal Char Property Class, the existence of a Property Class dealing
with OWL-S-capability descriptions was assumed. The initialisation of a Service Property
could be done through a Value Constraint with a parameter containing a URL pointing to
an OWL-S Service Description. That means, that in one environment description (Env)
of the Semantic Characteristic or of the Service Description (e.g. in the ST-Env of a
Service Mode) a Value Constraint exists for this Service Property exist. A Service Property
for temperatures in the semantic context of room location describing characteristic could
get the Value Constraints in the Char-Env that the temperature range should be between
15 and 23 degree Celsius.

Value Constraints are part of the environment descriptions (Env) in the Semantic

Characteristics and the Service Descriptions, i.e. each element of the S-Model (and R-Model) can

define Value Constraints. In the C-Model, the Value Constraints of one Service Property are

collected in one ordered set interpreted as a big conjunction of all clauses. The Value Constraints,

given in the environment of a characteristic (Char-Env in Definition 4) have the highest priority.

The discussion about Option-Slots (cf. section 10.2) showed that Value Constraints in a SOER

environment can overwrite the ones in the ST environment, i.e. the Value Constraints of the ST

are simply discarded in the collection process of the C-Model in this case.

10.4.2 Merge Constraints

For the “merge” of Service Properties, an extended test of Service Compatibility on the level of

the comparable Service Properties (cf. Definition 12), takes place. Comparable Service Properties

are declared as Char Properties in the semantic context of the same Compatibility Characteristic,

this means they have associated a common Merge Property Class. This Merge Property Class

contains the “merge” constructor which takes as input the comparable Service Properties and the

“direction” Option-Slot. The “direction” Option-Slot (cf. Definition 10, Table 13 - Option-Slots

of Service Ports) is part of the Service Port environment (ST-Env in Definition 8). The

construction of Merge Property Object in the C-Model with the “merge” constructor is called an

application of a Merge Constraint.

Definition 15. Reference of a Service Property

 - ()

Meaning:

 is a reference to the description part, e.g. for the Common Part

of a Service Template or for a specific Service Port (cf. Definition 8)

 is a reference to the Semantic Characteristic (cf. Definition 4)

 of the property as given in its declaration

ACTAS - Service Model (S-Model)

 102

 Idea of Merge Constraint Example 12

A process model gives a detailed description of the choreography of a service's messages
(cf. Fig. 9). A Service Administrator could introduce a Compatibility Characteristic with a
Semantic Description that links this CCh with commonly agreed methods of
choreography (4th aspect, grounding phase) in a certain application domain. This CCh
could have a Char Property that held possible processes of a service. When the principal
compatibility of two services holding the introduced CCh is recognized, then the two
comparable Service Properties will contain possible processes from the client view and
from the server view, respectively. The merge constructor of the associated Merge
Property class could realize an algorithm, which checks the processes of the comparable
Service Properties. The resulting Merge Constraint will only accept services as matching,
when these comparable Service Properties contain a complementary process fulfilling the
given process model of the application domain associated with the Compatibility
Characteristic.. This means that a process in the Service Property on the client side fits to
a process in the comparable Service Property on the server side. The “direction” Option-
Slot helps to distinguish the server and client side.

Merge Constraints (Definition 16) check if the values of two comparable Service Properties

can be matched. The merging might also include mediation, when the values are based on

different ontologies. Through the declaration in the context of Compatibility Characteristics, the

Merge Property Classes are linked with a Service Property (cf. Definition 4). The Example 12

illustrates further the idea of a Merge Constraint. In Example 13, the Example 10 is extended.

The resulting Merge Property Objects in the C-Model are shown.

 Merge Constraints (Me-Co) Example 13

This example extends the Example 10. Two Service Properties describe the “Travel”
service: “Journey” and “Cost”. The “Insurance” service is just described through its
“Policy”. Since the compatibility in ACTAS demands the same set of Compatibility
Characteristics (in this case Request Characteristics), the Service Properties get
“comparable” (cf. Definition 12). Comparable Service Properties hold the same Merge
Property Class, i.e. they have associated algorithms for the matching and potential
mediation, which fit to the context of the Compatibility Characteristic. The Service
Properties, which became “comparable” through the principal compatibility in Fig. 31 get
tested for matching through the algorithms in the Merge Property Class constructing a
Property Merge Object (cf. Fig. 32). The direction of the compatibility relation has to be
observed, since the Service Property “Journey” on the Service Requester side will contain
the wishes, which have to be conciliated with the resources/values offered by the Server
Provider side. A matching algorithm in the case of the Technical Service provided by the
Phone Facilities has to find a line speed and Quality-of-Service (QoS) supported by both
communication facilities. Probably, the Service Property “Provider” will not need a
matching algorithm at all. Thus, it is possible to have no Merge Property Class associated
with a Service Property.

Definition 16. Merge Constraint (Me-Co) in S-Model

A Me-Co in the S-Model is implicit, i.e. it is given through the association of a Service

Property with a Merge Property Class (in Definition 4) in its
declaration as a Char Property of a Compatibility Characteristic (cf. Definition 4). It
becomes explicit in the C-Model.

ACTAS

103

The access of the implementation instance of the Property Class through an object is part of

the C-Model (cf. chapter 13). A Merge Property Object realises the access of information of an

implementation instance, which were constructed on the base of the Merge Property Class of a

Merge Constraint between two comparable Service Properties (cf. Definition 12 and

Definition 16). It is a result of the extended testing of compatibility through the Merge

Constraint. A Merge Property Object can be accessed in three different ways depending on the

view on its data: an access of the values from (1) the client side, (2) the server side, or (3) from a

merged point of view. A client will ask for a greater range of values than the server can provide.

It is the Merge Constraint algorithm, connected with the Service Property in the context of its

Compatibility Characteristic, which determines if there can be a compromise between the interest

of the client and the server, i.e. a matching. However, it might be still of interest to look at this

matching again from this different perspective. For instance the “Cost” Service Property of the

“Travel” Compatibility Characteristic in Fig. 33 could still deliver the requested costs for the

travel (client view), the offered costs (server view), and the matched costs (merged view). The

different views also make sense for a non-directed merge. The “Quality” Service/Char

Property of the “Phone” Compatibility Characteristic determines the quality of the connection

between the two phone facilities. The Merge Constraint determined a level of quality, which can

be supported by both of them. Looked from their Service Ports at the Merge Property Object,

the Merge Property Object could still provide the supported levels of quality of each of them.

The view on the Merge Property Object can be seen as an additional criterion for the property

reference defined in Definition 15. It is used in Exchange Constraints, in order to get an access to

a Char Property Object with the right view, i.e. the Merge Property Object must “export” an

appropriate object. After the application of an Exchange Constraint, the possibly changed and

according the constraints adapted Char Property Object still represents its specific view on the

Merge Property Object. This means that it has to be “imported” again, in order to see, if the

Fig. 32 - Me-Constraints for directed and non-directed composition

ACTAS - Service Model (S-Model)

 104

Merge Constraints are still satisfied. The handling of objects is further described in the C-Model

(cf. chapter 13). In the next section, a closer look on the definition of Exchange Constraints is

done. The Example 15 includes the view references.

 View on Merge Property Object Example 14

In this example, a “Transport”
Compatibility Characteristic is
assumed. It has a Char
Property holding the
information about the
numbers of items, which
should be transported as well
as the kind and the number of
loads necessary for their
transport. The Service
Property defined by this Char
Property could wish for the
transport of n items on the
client side. The kind and
number of loads might be not
specified on the client side. A
Comparable Property on the
server side could only offer
truck loads with less capacity
m (m < n). Obviously, the

Merge Constraint can easily find a compromise. It defines as many truck loads as
necessary, in order to transport the n items. Now there are three ways to look at the
Merge Property:

(1) The client’s point of view: n items should be transported, (2) the server’s
perspective: have truck loads for (m < n) items each, (3) merged perspective: k
truck loads with m items plus one load with (l < m) items results in the transport
of n items altogether

Definition 17. View on Merge Property Object

The information stored in the implementation instance handled through a Merge
Property Object can be accessed with three different views.

 The views depend on the kind of composition tested by the Merge

Constraint. Possible views for directed and non-directed compositions are
shown in Fig. 33.

 The views on the Merge Property Object can be considered as an addition
to the reference of a Service Property described in Definition 15.

 Proposed are the atoms “client”, “server”, and “merged” for a directed
composition.

 A Merge Property Object of a non-directed composition could add the

identification of the accessing Service Port, in order to clarify the view.
Generally, the atom “spView” is proposed.

 For Service Properties, which are not part of a Merge Property, the view
term is ignored.

Fig. 33 - The different views on a Merge Property Object

ACTAS

105

10.4.3 Exchange Constraints

Exchange Constraints are constraints involving several Service Properties. They allow the

description of relationships between Service Properties of different Semantic Characteristics and

parts of the Service Description. For this purpose, they use methods of the Exchange Property

Classes (referenced through ExchangeClasses) and possibly methods of Char Property Classes.

The latter in order to test conditions of just one Service Property. A Char Property Class can be

accessed through the reference of its Service Property (in ExchangeProperties, cf.

Definition 18 and Definition 15), since every Service Property was declared as a Char Property in

the context of a Semantic Characteristic. Often, such tests are also implemented in the Exchange

Property Classes. However, the application of every method also means the solving of

constraints. The solving of constraints should be monotone, i.e. the resulting restrictions of the

values should be kept. ACTAS distinguishes between tests and the application of methods. The

former are not monotone, they are just valid for the time point of the test. Methods and tests are

used for the realisation of the clauses of the constraints.

Definition 18. Exchange Constraint (Ex-Co) in S-Model

 - (-)

 ()

 ([(

) ((
)])

 ([

])

 (
[- -]

[- -]
)

 ([] [])

Meaning:

 - identification of the Exchange Constraint

 is a reference to a Service Property (cf. Definition 15)

 View is relevant for the access of a Merge Property Object (client, server,
merged).

 is a reference to an Exchange Property Class

 references the involved Service Properties of the Ex-Co

and associates them with a name used in the Ex-Co (ExName)

 If lh-side (- -) of ex-clause is , then

 rh-side (- -) must be valid unconditionally

 otherwise: lh-side states a condition for the validation of rh-side

ACTAS - Service Model (S-Model)

 106

ACTAS supports the formulation of premise conditions (conjunction of clauses on the left -

hand side, list of lh-clauses in Definition 18) for the testing of the clauses on the right hand side

(rh-clauses in Definition 18). For the calculation of new values, it is normally demanded that a

Service Property has a distinct integer or real value. An example in this direction is the is/2-

predicate used for calculation in Prolog, which will only function, when its expression is ground,

i.e. all the variables in the expression are instantiated with numeric values. In Example 15, the

pre-condition checks if a Service Property has a value, before a method correlates the values of

the three Service Properties.

An Exchange Constraint in the S-Model/R-Model (cf. Definition 18) consists of two parts: the

naming of the involved elements (ExchangeElements) and the clause(s) of the constraint itself

(ExchangeClause). The addressed elements are the Service Properties (ExchangeProperties) and

the Exchange Property Classes (ExchangeClasses) used in the Exchange Constraint. Inside of the

constraint, the Exchange Constraint uses specific symbols or names, the so-called ExNames.

Through the “ExchangeProperties” term, the ExNames are associated with Service Properties.

The Service Properties are accessed through references (, cf. Definition 15) and the

view on the Merge Property Object (cf. Fig. 33).

In the term “ExchangeClasses” the Exchange Property Classes are referenced through URIs to

the ontological repositories of the Property Classes are given (cf. section 9.2 - S-Model: Property

Classes). The Property Classes themselves have the Grounding Description (cf. Definition 6),

which are used in the C-Model to define Exchange Property Objects for the access of the

methods and tests of the Exchange Property Classes used in the Exchange Constraint.

In Example 15, an assumed Exchange Property Class called “audioQuality-ex” was simply

addressed through its name (cf. equation (10-2)). This example shows nicely the use of a General

Characteristic as a “building block” of a Service Definition (cf. section 9.1). The need for the

translation of the values of Service Properties held at one Service Port and the ones held at

another one does often arise. Therefore, so-called Translation Offers are discussed in the

evaluation. In the example, the Service Property “Audio-Quality”, which is defined in the

Compatibility Characteristic “Audio-Com”, has to be translated into the Service Properties

“Speed” and “Quality” of the Compatibility Characteristic “Phone” and vice versa. The equation

(10-2) shows an Exchange Constraint, which could be used for the translation at least in one

direction, since the term “ExchangeClause”, which describes the rule of the Exchange Clause,

demands a value for the Service Property “Audio-Quality” in its premise. The Service Properties

are correlated in the conclusion. The method call has the parameter “max”, which could mean,

that the maximal possible speed and quality should be demanded. This idea is supported by the

view references to the Merge Property Objects: “Audio-Quality” is viewed from the server side,

i.e. what can be offered and not what is whished.

ACTAS

107

 Translation Exchange Constraint Example 15

In Fig. 34, a Service Mode with two Service Ports is schematically shown which could be
used for offering an audio communication service realized through a phone facility. One
Service Port holds the Request Characteristic “Audio-Com”, the other one the CCh
“Phone”. The Service Mode itself has the General Characteristic “Audio-Phone”. It can
be assumed that the ontological repository of the Semantic Characteristic contains
“works-with” relationships between the General Characteristic and the two Compatibility
Characteristics, since the General Characteristic shall hold an Exchange Constraint, which
translates between the values of the Char Properties in the Compatibility Characteristics.
Then this General Characteristic can be used as a building block between the two Service
Ports holding the Compatibility Characteristics. Assuming further the existence of an
Exchange Property Class called “audioQuality-ex” with a method “translation”, which
translates between the Char Properties and is applied in the Exchange Constraint of the
General Characteristic, then the Service Designer would just have to adapt the
“ExchangeProperties” (cf. Definition 18) in order to achieve an Exchange Constraint
similar to the one shown in equation (10-2). The Exchange Constraint does specify the
pre-condition that the Service Property “Audio-Quality” should have a value. This pre-
condition shall prevent an early application of the Exchange Constraint.

Since the Service Description lists only references to the Semantic Characteristics (cf.
Definition 8, Service Template (ST)), the “exchangeProperties” Option-Slot (cf. Table 14)
takes over the task of adaptation. It overwrites the “ExchangeProperties” term of the
referenced Exchange Constraint. From this point of view, the equation (10-2) can be seen
as a result of an Exchange Constraint imported through the General Characteristic and an
adaptation through an “exchangeProperties” Option-Slot in equation (10-1).

“exchangeProperties”

Option-Slot

 ((-)

 ([(- (-))

(- ())

(- ())])

(10-1)

Resulting Exchange

Constraint in

CompSt

 - (

(([(- (- -))

(- ())

(- ())]) ([]))

([([] [])]

[([] [])]))

(10-2)

Fig. 34 - Exchange Constraint with General Characteristic

ACTAS - Service Model (S-Model)

 108

It is worthwhile to mention that in the assumed scenario of Example 15 the Service Designer

does not have to formulate the Exchange Constraint from the sketch. He can take advantage of a

General Characteristic called “Audio-Phone” (cf. equation (22-3) in Table 32 - General

Characteristics (GCh)) as a “building block”, since it already contains the Exchange Constraint.

However, he has to add an “exchangeProperties” Option-Slot (cf. equation (10-1)) for the

adaptation of the term “ExchangeProperties” in the imported Exchange Constraint, in order to

have the right associations for the Exchange Name (ExNames) of the constraint.

ACTAS

109

ACTAS - REQUEST MODEL (R-MODEL)

11 Request Model (R-Model)

In the previous chapters, the Service Model (S-Model) was introduced. Based on Semantic

Characteristics and Property Classes, it enables a Service Designer to describe the services offered

by a Service Provider. The perspective is changed to the Service Requester or Service Clients with

the Request Model (R-Model). Apart from this change of the describing perspective, the R-Model

can be seen as an extension of the S-Model, since it is based on the same “building blocks”:

Semantic Characteristics and Property Classes. Therefore, the introduction can be kept short.

Fig. 35 - Sequence Diagram

ACTAS - Request Model (R-Model)

 110

The R-Model consists of two entities: the Service Request (SRe) and the Trading Request

(TRe). The Composition Process, which builds a main part of the C-Model, starts with a Service

Request (SRe, Definition 19). ACTAS assumes that the origin of the Service Request is in the

application environment (cf. System Environment, chapter 8 and Fig. 35 - Sequence Diagram).

The Request Agent (ReA), as a part of the application environment, creates with the SRe a

Composition Agent (CoA) responsible for the Composition Process. During the Composition

Process, a Trading Request (TRe) is used for the communication with the Trader Agents and/or

Facility Agents, in order to find matching Service Offers, which are built with the entities of the

S-Model.

In ACTAS, a Service Requester can request a service on behalf of several Service Clients. This

becomes necessary among others for some Technical Services. For instance a communication

service can only be performed with several Service Clients (cf. COR, Example 1). Therefore, a

Service Request can contain several Client (Service) Requests (Client-Request in Definition 19).

However, the fact that a Service Request can be done on behalf of several Service Clients has

consequences in comparison to a Service Description. A Service Description stands for one

service. Its Service Modes describe alternatives of the Service Description of the same service. In

a Service Request, each Client Request of a distinct Service Client holds information, which has

to be dealt with in the Composition Process. Therefore, Client Requests are not alternatively,

even when they are listed similar like the Service Modes of a Service Description. With its

Common Part, the Service Request allows even the definition constraints and information, which

are valid for the whole Composite Service. This is further discussed in the section 13.3, which

covers the initialisation of the Composite Service Structure (CompSt) with the Client Requests

and the Common Part of the Service Request. ´The case study in chapter 16 shows the

application of General Characteristics in the Common Part of a Service Request, in order to

check constraints of the composition of telecommunication features appearing in separate Client

Requests.

The Client Requests use a special kind of Compatibility Characteristics; the so-called Request

Characteristics (RCh) (cf. Definition 4). In the ontology of characteristics, the concept of an

RCh has a specific relationship to concepts of a user ontology (in Fig. 28 - Principal ontological

categorization of Semantic Characteristics: „Can_be_used_with“-relation), i.e. the semantic

description (in Definition 4 and Definition 5) of a Request Characteristic restricts the

semantic context of Client Requests to specific user groups. For instance, the semantic

description of the RCh “Reliability” in equation (22-20) of Table 34 - Request Characteristics

(RCh) relates the Request Characteristic with a user group called “Administrator”. A set of

Request Characteristics of a Client Request build an interface of the Service Request held in a

Request Port (a Request Port is a Service Port, which holds only Request Characteristics).

ACTAS interprets a combination of Request Characteristics in a Request Port as an additional

restriction of the addressed user group of the Service Request, since the addressed user group

becomes the intersection of all user groups related with the individual Request Characteristic.

ACTAS

111

As discussed in section 10.3, an advertised Service Offer must also have a Request Port, in

order to be “visible” for a Service Request. (A certain Option-Slot declares a Service Port,

holding only references to Request Characteristics, as a Request Port (cf. section 10.2, Fig. 30,

and Table 13 - Option-Slots of Service Ports).) In this way, ACTAS creates a clear distinction

between an interface to Service Requests and an interface among only Service Offers. It is a

support of B2C and B2B like interfaces inside of a Composite Service (cf. section 3.4). Since a

B2C interface is always a server-client interface and addressing a certain costumer group. The

Request Ports have direction Option-Slots (cf. Definition 10 and Table 13 - Option-Slots of

Service Ports): the Request Port of a Service Request is designed as an OUT Port and the

Request Port of a Service Offer as an IN Port.

The Trading Request (TRe) is a describing element, comparable to the “goal” in WSMO. In

the idea of ACTAS, it is used as a multicast message, i.e. it is sent simultaneously to several

Trader and Facility Agents, in order to find (principally) compatible Service Offers. For this

purpose, the data structure given in this thesis has to be transformed into e.g. a XML formatted

message. This leads to a general remark about all informal data structures of the S-Model and R-

Model: they are done in a hierarchical format so that they easily can be translated into XML

Schemas, in order to be transferred between the different agents. (In Fig. 35, the first Trading

Request (TRe1) is forwarded by the Facility Agents, in order to achieve a kind of multicast). The

agents will at least check the principal compatibility, i.e. they will test if they know a Service Offer

with a Service Mode having an interface (Service Port) with the same set of Compatibility

Characteristics as requested. This testing of principal compatibility (including the compatibility of

the Option-Slots) was described in section 10.3 - Description of compatibility. Additionally, the

agents could check the Merge Constraints (cf. Definition 16). A special Option-Slot in the

Trading Request could demand such an additional test (cf. section 11.3).

In case of a successful compatibility testing, the agent will return the SOER and a reference to

the found Service Mode (SM) (cf. Fig. 35). Thus, the CoA receives with the SOER the current

state of the service. In order to build the Service Offer, the CoA might additionally ask the

publishing FA for the Service Template (ST) (cf. Fig. 35). The SOER and the Service Mode could

be used for a reservation of the Service Mode through the responsible FA on the base of the

SOER (the Composite Service data structure (CompSt) in Definition 24 offers the field “Res-

Info”, which could be used in this direction). A reservation is useful for an improved resource

management by the FA and a more reliable deployment of the service. The FA will publish an

adapted SOER as a reaction on the reservation.

A Trader Agent can also react on a Trading Request. In Fig. 35, two Trader Agents are

shown. The right one (TrA2) takes advantage of an external trading environment. In Example 5,

such a scenario was already discussed in the context of the extended use of Semantic

Characteristic. A Compatibility Characteristic could be introduced, which will be recognised by

the Trader Agent, when its reference appears in the set of references of Compatibility

Characteristics in the Trading Request. The Trader Agents can compose a new Composite

ACTAS - Request Model (R-Model)

 112

Service or act as a gateway to an external Trading Environment. In both case, they become a FA

of this new and have to find an adequate Service Description with an appropriate set of

references of Compatibility Characteristics.

Messages of the deployment are also in the principal Sequence Diagram of Fig. 35. After a

positive result of the CoA, the ReA can have an information exchange with the CoA, in order to

inform its application environment or to initiate the negotiation and grounding phase of the

selected Facility Agents (cf. section 8.5 - Phase 5 – Grounding and Schedule of the Services).

11.1 Service Request (SRe)

Each Service Request (SRe) (cf. Definition 19) has a distinct identification and a reference

to its Request Agent (ReA). The Common Part and each Client Request offer space for sets of

references of General Characteristics. The Client Requests have identifications introducing

the labelling Request Mode (RM). A Request Mode holds a set of Request Ports (RP). A RP was

earlier introduced as a Service Port holding only references to Request Characteristics as

Compatibility Characteristics.

On a first glance, the data structures of a Service Request appear dual to the Common Part and

the Service Mode of a Service Template (ST) (cf. Definition 8). This impression is supported by

the fact that the Client Request as so-called Request Mode (RM) has at least one Request Port

(RP), which holds the sets of references of Request Characteristics. However, this impression is

misleading. In a Service Description the Service Modes are alternative descriptions of the same

service and the Common Part adds common information for the Service Modes. In a Service

Request, each Client Request is an own standing piece of information, which will be used in the

Composition Process. It has its individual reference to an agent, the assumedly existing Personal

Agent (PA), whereas the whole ST belongs to only one Facility Agent.

Element Description

Service Request (SRe)

 Client Request

 SRe-Common

Service Request (SRe) is the start of the Composition Process.
It can contain several requests on behalf a Service Clients (Client
Request).
In a Common Part can be General Characteristics, which are valid
for all Client Requests (SRe-Common).

Trading Request (TRe) The Trading Request is comparable with the “goal” entity of
WSMO, i.e. it holds the information about a requested service and
is matched with the existing Service Offers by the agents.

Table 16 - Elements of the R-Model

ACTAS

113

The Common Part of a Service Request is not keeping information, which is an extension of

the information of each Client Request, as one could assume in comparison to a Service

Description. The General Characteristics referenced in the Common Part of a Service Request

become information for the Common Part of the Composite Service. This is further described in

section 13.3.

 Alternative Client Requests Example 16

In ACTAS, a Service Request can be done for several (potential) Service Clients. For
every Service Client, several services can be requested like for instance when a customer
wants to book a flight, reserve a hotel, and hire a car. However, how shall these services
be delivered? Must it be one travel agency as Service Provider or are several Service
Providers allowed or even wished? Is the Service Client also happy with only a subset of
these services?

Additionally, the Client Request contains a reference to an Actor Service Template (AST). It is

a data structure, which becomes relevant in a future version of ACTAS, when feedback based

learning of users’ preferences will be added. Currently, in the C-Model, each Client Request

becomes an Actor Service Offer (ASO), which is a dual data structure to a SO and the

initialisation of the composite data structure of the Composition Process. The AST could

become the base of the ASO. The Client Request would adapt the RM of the ASO.

Definition 19. Service Request (SRe)

 (- -)

 - (() -)

 - (() -)

 (() -)

Service Request (SRe) consists of

 Name of Service Request ()

 Reference of the responsible Request Agent ()

 A Common Part of the Service Request (-)

 A set of Client-Requests (at least one element) (-)

A Client-Request (a Request Mode (RM)) contains the following information:

 Name of Request Mode ()

 Reference of possibly existing Personal Agent ()
 Information of Service Client (())

 Set of Request Ports (at least one element) ()

 Set of References of General Characteristics (()

)

 Set of References of Request Characteristics (()

)

 - (- - - -)

 Set of Value Constraints (-

)

 Set of Exchange Constraints(-)

 Set of Option-Slots for SRe (- -)

ACTAS - Request Model (R-Model)

 114

In Example 16, Alternative Client Requests are discussed. In other Service Discovery

approaches, several requests have to be posed or a booking service must be applied. In ACTAS,

the Service Request could have directly Alternative Client Requests: These are Client Requests

done for the same (potential) Service Client, i.e. they contain a reference to the same Personal

Agent (PA). In this way, the duality to the ST becomes bigger, because the alternative Client

Requests equally belong only to one agent.

11.2 Trading Request (TRe)

In comparison to the SRe, the Trading Request (TRe) is a simpler informal data structure.

Besides a distinct identification (), which will be quoted in the response of the Facility

Agent or the Trader Agent respectively (cf. Fig. 35), it contains a reference to the posing agent (in

Definition 20 the will be mostly a reference to the Composition Agent, CoA). Important

are the references of the Composition Characteristics () (this includes references to

Request Characteristics as a special kind of Composition Characteristics), since they allow the

Trader Agents and the Facility Agents to determine the principal compatibility. The environment

specifications (-) allow also the application of Value Constraints and Merge Constraints.

Even Exchange Constraints concerning the Char Properties of the reference Compatibility

Characteristics could be performed for extended tests by the agents.

11.3 The environment description of the R-Model

Since the R-Model is an extension of the informal S-Model the constraints can be posed in the

same way as discussed in the section 10.4 - Constraints in the Service Description. Some possible

Option-Slots for the Request Ports of the Client Request and the Trading Request (TRe) are

listed in Table 17. The “overwrite” Option-Slot makes only sense for SOERs. The “test” Option-

Definition 20. Trading Request (TRe)

 (() -)

Service Request (TRe) consists of

 Name of Service Request ()

 Reference to the sending Agent ()

 Set of references to the Compatibility Characteristics, ()

 Environment description (-)

 - (- - - -)

 Set of Value Constraints (-

)

 Set of Exchange Constraints(-)

 Set of Option-Slots for TRe (- -)

ACTAS

115

Slot allows the control of the extent of the compatibility test. The addressed Facility Agents

and/or Trading Agents can be selected.

In the evaluation, the use of General Characteristics in the Common Part of the Service

Request (-) as “building blocks” is covered in Case Study 1: Technical Services with

translation. The case study uses an adaptation of the “ExchangeProperties” term of an Exchange

Constraint given in the environment description of the Semantic Characteristic (Char-Env in

Definition 4) through an “exchangeProperties” Option-Slot (cf. Table 14) in the environment

description of - (- in Definition 19). The necessary references of the

addressed Service Properties were already considered with Definition 15.

Option-Slots Semantic and Attributes

Direction

The Request Ports and TRe are normally OUT Ports, since they look
as clients for a service. However, the TRe is also use for non-directed
composition

 () – Client Port, “OUT Port”

 () – Server Port, “IN Port”

test (PRINCIPAL)
test(MERGE)
test(FULL)

Normally the principal compatibility is tested (“test” Option-Slot is not
set or “test(PRINCIPAL)”)

 test(MERGE) – Value Constraints and Merge Constraints are
checked

 test(FULL) – Additionally eventually existing Exchange
Constraints are tested

Request

This Option-Slot is standard for the Request Ports of the Client
Requests i.e. all Compatibility Characteristics are Request
Characteristics
The TRe reflects the Option-Slot of the Open Port, that means of the
Service Port, for which the Composition Process tries to find a
compatible one

facility-agents(
list-of-FAs)

trader-agents(
list-of-TrAs)

Enumeration of agents, which should be preferentially asked for
compatible Service Offers in the composition or Trading Process. In a
closer specification, it could be expressed if these agents are
compulsive.

Table 17 - Option-Slots of Request Ports/TRe

ACTAS

117

ACTAS - COMPOSITION MODEL (C-MODEL)

12 Introduction to Composition Model (C-Model)

The Service Model (S-Model) (chapter 9) describes the services from the perspective of a Service

Provider and distinguishes between Service Templates (ST) (cf. Definition 8) and Service Offer

Export Records (SOER) (cf. Definition 9) for the Service Description. These data structures are

used for the advertising of Service Offers by the Facility Agents. The data structures of Service

Offers exist only in the declarative environment of the agents. ST and SOER entities are applied

for their building. They are also used by the Trader Agents and the Composition Agents during

the trading and Composition Process.

The Request Model (R-Model) (chapter 11) changes the describing perspective to the Service

Requester and the Service Clients. It offers the Service Request (SRe) data structure for the

Request Agent (ReA) of the application environment, in order to pose a request for a service and

to start the Composition Process. The Composition Process is performed by a specifically

created Composition Agent (CoA), whose policies and algorithms can be adapted to the needs of

the application environment, since the creation is done through the ReA.

The SRe is the base for the building of Actor Service Offers (ASO) in the declarative

environment. The CoA involves the Facility Agents and the Trader Agents for the discovery and

matching of Component Services. For this purpose, the Trading Request (TRe, Definition 20),

the second entity of the R-Model, is applied. The TRe is also used by the Trader Agent for its

trading. The Trading Process is comparable with the Composition Process, but in opposite to the

Composition Process, the Trading Process of the Trader Agents could be only based on the

Service Templates, in order to compose services, which are principally possible. The Trader

Agents can collect service candidates fitting their policies or compose new Composite Services.

In the latter case, they will also act as a Facility Agent of this new Composite Service. Another

case, when a Trader Agent would act as a Facility Agent, is given, when the Trader Agent acts as

a gateway to an external trading environment (cf. Fig. 35 - Sequence Diagram). However, the

description of the C-Model will concentrate on the Composition Process.

The main difference between ASO and SO is the point of view of their descriptions, due to their

origin: a SO takes the describing perspective of a Service Provider (it contains a references to the

ST, SOER, and the FA), whereas the ASO is a description from the perspective of a Service

Requester/Client (it contains reference to the SRe, Client Request, and the PA). Nevertheless, a

duality between Service Description and Service Request can be seen in the roles of the Facility

Agent and the Personal Agent. The eventually existing Personal Agent (PA) of a Service Client

can be perceived as the “Facility Agent” of the Client Request.

ACTAS - Composition Model (C-Model)

 118

In the future research, this duality becomes more evident, when learnt information based on

feedback and users’ preferences will be stored in an Actor Service Template (AST) by the PA.

The AST could be useful for the default information of the ASO, especially Option-Slots, like the

one referencing preferred FAs, could control the upcoming Composition Process. (The

definition of the Service Request contained already a reference to a user specific AST in every

Client Request, cf. Definition 19.)

The C-Model is based on a declarative environment like it can be implemented with SICStus

Prolog (cf. Evaluation, chapter 14). Such an environment eases the testing and backtracking, in

order to achieve a wished Autonomic Service Discovery. However, the methods of the Property

Classes have to be integrated, which establish the framework character of ACTAS, realise the

constraints and allow an adaptation of the Service Description (cf. S-Model). It is a challenge to

integrate possibly imperative programmed, external entities into a declarative environment,

especially when there is no direct control over their values and behaviour. Therefore, ACTAS

uses the concept of objects inside of the declarative environment. These objects also allow the

encapsulation of the access of the external methods. In the declarative environment only two

predicates are used: op/5 and test/4. The former applies the constraints resulting of the ca ll of

the methods to clones of the currently valid objects. This cloning is necessary for the support of

the backtracking and the monotony of the constraints. The test/4 predicate does not make a new

object available, i.e. it realises a testing on the current objects, but the constraints are not

internally saved. Therefore there will be not guarantee of monotony of constraints, when test/4 is

applied. The description of the Composition Process in the next chapter will have a closer look at

this matter. It also describes the steps of the Composition Process in a general way. In the end, it

depends on the policies of the Composition Agent (CoA) and the interpretation of the Option-

Slots in the Service Description and the Service Request, in order to determine how the steps of

the Composition Process are performed as well as how the discovery and composition is done.

Therefore, alternative approaches are discussed in an extra chapter and the Evaluation chapter.

Element Description

Composite Structure

(CompSt)

 CompSt-plus

 Open Port

The goal of the Composition Process is a Composite Structure

(CompSt) without any Open Port that satisfies the Service

Request, i.e. all Service Ports of the CompSt are composed with a
compatible Service Port including all Request Ports of the Service
Request.
Normally, this also means that Service Properties of the compatible
Service Ports are “merged” (Merge Constraints were applied
successfully) and the Exchange Constraints are fulfilled.
The CompSt-plus data-structure is used during the Composition
Process. It offers additional space for the constraints and Open
Ports.

ACTAS

119

Element Description

(Declarative) Objects

 Char Property

Object

 Merge Property

Object

 Exchange Property

Object

Objects are introduced in the declarative environment as handles
for the access of the implementation of Property Classes (cf.
Definition 6 in section 9.2). Since there are three different kinds of
Property Classes, three different kinds of Property Objects are
handled. The methods of the Property Classes, used in constraints,
are translated into op/5, or test/4 predicates, respectively.
A Char Property Object keeps the values and methods of a Service
Property (due to the fact that every Service Property was once
declared as a Char Property in the context of a Semantic
Characteristic (cf. S-Model Definition 4)). The methods of a Char
Property Class are used for Value Constraints (cf. Definition 14),
(Exchange Constraints (cf. Definition 18)), and getting information
about the values of a Service Properties (e.g. “printValues”, cf.
section 9.2).
A Merge Property Object is created with the application of the
Merge Constraint, which “merges” two Service Properties with the
same Char Property Class. In a directed composition, such a
“merge” can be seen from three perspectives: (1) the client side
(what is requested?), (2) the server side (what is offered?), and (3)
the merged side (what is a compromise?). Therefore, the “merge”
constructor used for the Merge Constraint can lead to new values
in Merge Property Object. The Merge Property Class must offer
Import and Export methods, in order to deal with the right view in
the Exchange Constraints.
An Exchange Property Object just enables the use of methods,
which correlates several Service Properties. These methods are
used in Exchange Constraints.

Service Offer (SO) The agents use the descriptions of the Service Template and the
Service Offer Export Record (SOER), in order to build a Service
Offer (SO).
The data structure of SO is comparable to the one of ST, but it
includes the (declarative) objects and references of the Service
Properties to their current objects.

Actor Service Offer

(ASO)

 Actor

 Actor Service

Template (AST)

Currently, only the Service Client is called an “actor”. The origin
idea of an “actor” in ACTAS is an agent, who can potentially
supply feedback for learning.
An Actor Service Offer (ASO) is constructed from each Client
Request of a Service Request (SRe) (cf. Definition 19). An ASO is
a dual data-structure to the SO.
The resulting ASO(s) are the initialisation of the Composite
Structure (CompSt-plus) used for the Composition Process.
In a future version of ACTAS, the feedbacks of the Service Clients
will be used for the learning of the preferences save in an Actor
Service Template (AST). The AST will help to construct the ASO
or can be used for the management of service offered privately by
the Personal Agent. Thus, the Service Client could keep
information about his payment (service) preferences or the
currently accessible communication facilities.

Table 18 - Elements of the C-Model

ACTAS - Composition Model (C-Model)

 120

13 C-Model: The Composition Process

The Composition Model (C-Model) covers three phases of Service Discovery in Fig. 2 - Phases

of the extended life cycle of e-service: Trading (phase 2), Matching (phase 3), and Checking of

constraints (phase 4). The goal of the C-Model is to find a Composite Structure (CompSt in

Definition 24), which fulfils the Service Request (SRe in Definition 19) and its resulting

constraints. In general, the C-Model of ACTAS works in six steps:

The specifications of (Semantic) Web Services are based on informal data structures

independent from the deployed services as proposed by Berners-Lee [Ber2003]. Solutions of

(Autonomic) Service-Oriented Computing put on these data-structures. Nevertheless, the need

for the inclusion of the reference of active elements was recognized. For instance, the reference

of a WSML description of a mediator in WSMO (cf. [StGrAb2007 section(s) 287–311]). The

Property Classes (cf. section 9.2) take on this idea with the grounding descriptions

(GroundingDescr in Definition 6). In the declarative environment of the C-Model, the access of

the algorithms of the Property Classes is realised and wrapped through objects. In this sense, the

Service Properties gained an “active” behavioural semantic. Thus, the declarative data structures

of the C-Model (e.g. SO and ASO) are not simply informal like the ones introduced in the S-

Model and the R-Model. They need the execution environment of the agents.

The entities of the S-Model are used for the creation of Service Offers (SO, cf.

Definition 22). In a dual way, each Client Request of a Service Request (SRe) becomes a so-called

Actor Service Offer (ASO, cf. Definition 23) (Step 1 in Table 19 - Steps of the Composition

Process). The created ASOs become the initialisation of the data-structure of the Composite

Service. It is the goal of the Composition Process to deliver complete Composite Services

following the specific policies of its CoA. This can also mean that the CoA collect s a set of

Candidate Services instead of a single service. The Composition Process forms the main part of

the Composition Model (C-Model).

In a successful case, the Request Agent can ask for information of the Composition Agent (cf.

Fig. 35 - Sequence Diagram). For the return of a whole Composite Structure the values of the

1. Getting the information of the S-Model and R-Model

2. Initialization of the extended Composite Structure (CompSt-plus, Definition 25)

3. Discovering and composing of principally compatible services.

4. Checking of Merge Constraints

5. Checking the Exchange Constraints (Ex-Co)

6. Post-Processing: Checking of other constraints like the availability of resources.

Table 19 - Steps of the Composition Process

ACTAS

121

Service Properties should be documented. For this purpose, the method “printValues” was

suggested for the Char Property Classes in section 9.2 - S-Model: Property Classes (cf. also

Code 1 - Object in SICStus Prolog with idea of handle).

The explanations of this chapter are often done through rules in order to describe the

declarative environment. A rule comprises a premise and an entailment consisting of expressions

about objects or a statement about concrete actions like for instance the call of another rule.

13.1 The Property Objects/Classes in the C-Model

The Property Objects of the declarative environment of ACTAS only wrap the access of the

implementation instances of the properties. Several instances of the implementation of the

methods of a Property Class can be external. The description of grounding of Property Classes

() contains more information. In Code 1, the idea of a handle,

held by an object, is schematically shown. It shows a point object, realised with the SICStus

Prolog library extension “objects”. It has three attributes (in Prolog called “slots”): the Cartesian

coordinates of the point and a handle, which assumedly gives access to an implementation

instance of a Property Class. The constructor of the object takes the Grounding Description of

the Property Class and calls the predicate getHandle/2, in order to receive such a handle. A

method call needs this handle. The Grounding Description must give a hint, which adaptations in

the Prolog object are necessary, in order to achieve a wished transparency of the access of a

method. The object list (OList) in this call has to be adapted, in order to be processable by the

implementation instance (in Code 3 - op/5 and test/4, showing a realisation of the predicates

op/5 and test/4, the adaptation is assumedly done by the predicate adaptObjects/5 in one

direction and readaptObjects/5 in the opposite direction). The methods themselves must return

a BOOLEAN (in the code example called “OK”), in order to integrate them into the declarative

environment.

1. :- use_module(library(objects)).

2. :- class point =

3. [

4. public x:float = 1.0,

5. public y:float = 2.0

6. private handle

7.].

8. Self <- create(X, Y, GDescr) :-

9. Self << x(X),

10. Self << y(Y),
11. getHandle(GDescr, Handle),
12. Self << handle(Handle).
13.
14. Self <- callMethod(Method, PList,

OList, OK) :-

15. Self >> handle(Handle),
16. callWithHandle(Handle, Method, PList,

OList, OK).

17. Self <- printValues(Stream) :-
18. Self >> x(X),
19. Self >> y(Y),
20. format(Stream, '(~w, ~w)', [X,Y]).

21. Self <- clone(PointObj_clone) :-
22. create(point, PointObj_clone),
23. Self >> x(X),
24. PointObj_clone << x(X),
25. Self >> y(Y),
26. PointObj_clone << y(Y),
27. Self >> handle(Handle),
28. getNewHandle(Handle, NewHandle),
29. PointObj_clone << handle(NewHandle).

30. :- end_class point.

Code 1 - Object in SICStus Prolog with idea of handle

ACTAS - Composition Model (C-Model)

 122

The handle for the access of the implementation instance of a Property Class could be similar

to the one realised through the WSML description of a mediator in WSMO (cf. [StGrAb2007

section(s) 287–311]), which addresses a Web Service implementing the mediation; i.e. the

Grounding Description could contain the URL of a WSDL description of a Web Service.

An alternative approach to Web Services would be the supply of a Prolog module for the

implementation of the methods of the Property Class. This module could be saved in the

ontological repository of the Property Classes. Such a Prolog module can directly be integrated

into the object concept of Prolog, in order to have separated data for each object instance.

Extending this idea, even the objects giving access to Web Services or other external

implementation instances could be wrapped as modules and stored in the ontological repository

of the Property Classes. In this way, the access and implementation of the Property Classes could

become transparent for ACTAS, secure and highly adaptive. This is future research, the creation

and management of this handle goes beyond the scope of this dissertation. In the following

thesis, it will be spoken about the implementation of Property Classes and its instances accessed

through Property Objects.

Every new Property Object created in the declarative environment should access the

implementation through its own instance and context. This means for example for a Web Service

that it must be statefull for each of these contexts, in order to keep hold of the (internal)

constraints and attributes. This will be important, when the Property Object holds information,

in order to achieve monotony of the constraints. Otherwise, a Property Object, which handles

the access of a stateless Web Service, must be programmed in such a way that it manages the

settings. Such kind of Property Object will have to send in a message to the Web Service the

complete list of settings each time, when it accesses the Web Service, in order to test their

fulfilment. This is not really feasible. Although a Web Service is not statefully in its original idea,

it can be extended in this direction. Code 2 - Statefull Web Service Methods in Visual Basic –

shows such an extension: so-called sessions can be used, in order to keep hold of a context (here

the information of a class “test”).

Service Properties, which are defined as Char Properties with Char Property Classes, and

possibly Merge Properties, which are the results of Merge Constraints described with Merge

Property Classes, are used for the keeping of information in ACTAS, i.e. they encapsulate

attributes and implement transparent constraints on these attributes, and in ACTAS these

 <WebMethod(EnableSession:=True)> Public Sub SetName(ByVal CurrentName As String)

 Dim t As New Test

 t.setName(CurrentName)

 Session.Add("Name", t)

 End Function

 <WebMethod(EnableSession:=True)> Public Function GetName() As String

 Dim t As Test

 t = CType(Session("Name"), Test)

 Return (t.getName)

 End Function

Code 2 - Statefull Web Service Methods in Visual Basic

ACTAS

123

constraints are called Attribute Constraints. Additionally, these properties keep internally

further constraints, resulting from the applications of methods. Therefore, at least Web Services

implementing Char Property Objects have to be statefull.

Exchange Property Objects are used for the access of the methods of the Exchange Property

Classes, in order to correlate several Service/Char Properties possibly declared with different

Char Property Classes. In a method of an Exchange Property Object, it often does not make

sense to create a common entity for the storing of information. However, Exchange Constraints

use the information of the Property Objects given in the call of the method, in order to

determine the fulfilment of their common constraints. Thus, they take at least advantage of the

statefullness of the other Property Object. Since an Exchange Constraint is built of several

method calls (cf. Definition 18), it is nearly unimaginable to think about Exchange Property

Object as stateless.

In order to unify the view on a Property Object in the declarative environment of the C-

Model, a Property Object is defined as having a behavioural semantic through its methods, a

knowledge base, and its application ontologies (cf. Definition 21). A Property Object

encapsulates constraints for the values of its attributes, the so-called Attribute Constraints.

Attribute Constraints are given with the definition of the Property Classes and their semantic.

They are transparent and valid for every property declared with the Property Class (cf. S-Model

Definition 4). For instance, the implicit plausibility check of the OWL-S capability sketched in

Example 7 is an implementation of Attribute Constraints. The behaviour and the attributes of the

Property Objects are out of control of ACTAS. However, the methods and their access are

transferred into predicates for the objects, in order to tackle their integration into the declarative

environment of the C-Model of ACTAS.

Definition 21. Property Object and its Predicates in C-Model

A Property Object wraps the access of a Property Class in the C-Model. It has the
following general features:

 A behavioural semantic with its methods

 A Knowledge Base (KB in rule (ExOp))

 Application Ontologies (in rule (ExOp))

 Internal, unchangeable Attribute Constraints
(in rule (ExOp))

 Internal Value Constraints (resulting of the method applications)

(in rule (intOp))
The methods of the Property Class are implemented by instances handled by
Property Objects. The Property Objects are accessed through two predicates

 Predicate op/5 for a monotone collection of constraints:

 ()

 Predicate test/4 for testing of constraints at a time point:

 ()

ACTAS - Composition Model (C-Model)

 124

These predicates are op/5 and test/4 (cf. Definition 21). In the declarative environment, these

predicates are used for the evaluation of the constraints. As discussed earlier, the implementation

of Property Objects should be firstly realized statefully, i.e. the state after the last application of

op/5 should be kept and should still be accessible. Secondly, the information before an

application should be kept, in order to allow a backtracking. For this purpose, the Property

Object is cloned before the application. The cloning means for the implementation instance the

creation of a new handle and the taking over of the state. This is schematically shown in Code 1 -

Object in SICStus Prolog with idea of handle.

 The internal constraints of Property Objects create a wished monotony. The integration of

objects into a declarative environment is a challenge, since they encapsulate information and are

rather imperative. Therefore, their integration and the dealing with internal constraints are

discussed in general in the rest of this section with the two rules (ExOp) and (intOp).

Schematically, the rule (ExOp) looks at the call of a method through the predicate op/5 as a

declarative call with sets of input objects, output objects, and parameters. The checking of

constraints can be seen as the processing of a list of operation calls (). Each operation call

adds new internal Value Constraints to the attributes of the involved objects (the rule (intOp)

takes this internal point of view for one involved object). Thus the list of constraints () can

be interpreted as a conjunction of constraint setting operations.

The declarative environment handles the backtracking and keeps the current set of all Property

Objects in . A subset of is used as a set of input objects () of op/5. In a

successful case, i.e. the method call could be applied to cloned objects of the input objects (cf.

rule ()); the operation op/5 will produce a set of new output objects ().

Finally, ACTAS will build a new set of current Property Objects (

) through the integration

of the output objects.

The rule () as an alternative rule to rule () does not produce a new set of

Property Objects. The stays unchanged. The input objects are only cloned

to

, in order to use them for the application of the method. Thus, the constraints are

only tested, but not preserved. In the rules, the MethodSet of the Property Class (PC) (cf.

Definition 6) is mentioned. The object realises a handle to an implementation instance

()
 ()

 ()

 ()

 ()

ACTAS

125

of this PC. The possibly adaptations of the objects used in the method call, also mentioned in the

conditions of the rules with the function ad/1, was discussed above in context of Code 1.

The creation of new objects and the incorporation of constraints is necessary, in order to

reassemble a stack of information for the backtracking process. Property Objects cannot be

directly included in the declarative environment due to their encapsulation of data and likely

imperative character. If no new solution for the current output objects of the op/5 operation can

be found, the backtracking will go back to the earlier called op/5 and its stacked objects. In

Code 3 - op/5 and test/4, a possible approach for the implementation of the predicates op/5 and

test/4 is shown; the latter predicate does not make the output list with the new objects available,

but has also to test the constraints with cloned objects, in order not to destroy the original

information. In this way, the validity of the constraints is only tested for the time point. (Remark:

In the code, the parameters show with the symbols “+” and “-”, which are necessary input ones

and which ones must be a variable for output. (cf. [Car2009])).

The set of parameters (), another input of the introduced operation op/5, can be used

for the initialization or setting of the attribute values through Value Constraints. They can be also

used for the control of the behaviour of the methods of an Exchange Constraint (cf.

Example 15). In Example 7, it was sketched how a Char Property holding OWL-S Service

Descriptions could be initialized through a method with a parameter giving an URL pointing to a

concrete OWL-S description. Similar, a Char Property Object dealing with WSML descriptions

of WSMO could have a method with some parameters allowing the initialisation of the object

alternatively with a WSML service, goal, capability, interface, or mediator description data

preferably accessed through a URL.

()
 ()

 ()

 ()

1. op(+PropertyAccess,+Method,+ParameterList,+ObjectInList, -ObjectOutList) :-

2. cloneObjects(ObjectInList, ClonedObjectList),

3. adaptObjects(PropertyAccess, Method, ParameterList, ClonedObjectList,

4. MethodObjectList),

5. callMethod(PropertyAccess, Method, ParameterList, MethodObjectList),

6. readaptObjects(PropertyAccess, Method, ParameterList, MethodObjectList,

7. ObjectOutList).

8. test(+PropertyAccess, +Method, +ParameterList, +ObjectList) :-

9. cloneObjects(ObjectInList, ClonedObjectList),

10. adaptObjects(PropertyAccess, Method, ParameterList, ClonedObjectList,

11. MethodObjectList),

12. callMethod(PropertyAccess, Method, ParameterList, MethodObjectList).

Code 3 - op/5 and test/4

ACTAS - Composition Model (C-Model)

 126

The rule () illustrated an external view on the method call. Since the Property Object

only wraps the method access, it has to be clarified how the successful application of op/5 is

implemented internally. Therefore, the internal view of one of the involved objects is added

through rule (). The rule describes only schematically the effects of a method application

in a declarative way. In the end, the internal behaviour of a method is out of control of ACTAS,

but one can generally demand that the new input is tested against the existing knowledge and the

given semantic context in a monotone way. The demand of monotony and the creation of new

objects satisfying the new internal constraints are important for a reliable backtracking. In rule

(), a knowledge base KB represents the knowledge generally given with the attributes and

the behavioural semantic of the object. A set of ontologies symbolizes a specific knowledge of

the current semantic context. The Property Class might have methods for the setting of

ontologies. SWS Service Descriptions like WSMO support ontologies and their mediation

directly. For example a WSML description can contain references to ontologies. A mapping of

these references to concrete ontologies allows an extension of the ontology set . The earlier

discussed Attribute Constraints are represented through internal logical constraints

named . Finally, the internal logical Value Constraints should have

been collected through earlier applications of methods of the Property Object. The collection of

logical Value Constraints is important for achieving the intended monotone character of the

method applications.

The application of a method in rule () leads to a change of the known

ontologies () and/or an extension of the set of logical Value Constraints (set).

The concrete extension is an internal result of the method application.

However, these changes are only accepted, when the new logical constraints (

) can be entailed from the knowledge base and the currently

valid ontologies (). The entailment contains the application of a

substitution (()), since the constraints can contain logical variables

(()).

The application of op/5 in rule () is only called successful, when the entailment leads to

a possible substitution, a logical model. A set of likely several models is the result: model

set { ()}. The consideration of logical variables and the likely

existence of several logical models are due to the ambiguity of the values of the attributes, and

()

 { ()}

ACTAS

127

should be incorporated in the backtracking process. This is done in the second approach of an

implementation of the predicate op/5 and test/4 in Code 4 - Getting Variants with op/5 and

test/4. The predicate get_variant/7 is added, which produces a parameter for the method call

(line 16) of the Property Object. In this approach, it is assumed that the methods of the Property

Classes are able to return another variant, when explicitly demanded. The number of possibly

asked variants is restricted with MaxVariant (line 2). Again the predicate test/4 does not return

the new object list (lines 5-9). The predicate go_ahead_with_variant/6 accepts the new object list

at first. However, when the testing with this variant of the output objects comes to a retry, it calls

get_variant/7 again for the production of a new variant.

13.2 Step 1: Getting Information

In the first step of the Composition Process, the information of the S-Model has to be taken into

the C-Model. Information of the Service Request (SRe), which started the Composition Process,

is used for the creation of Actor Service Offers (ASO). The second basic data structure of the C-

Model, the Service Offer (SO), is built with the information of the Service Template (ST) and a

current Service Offer Export Record (SOER).

The building of these data structures includes the construction of Property Objects and their

association with the Service Properties, as discussed in the previous section. The Char Property

Class () (cf. Definition 4) given in the declaration of the Service Property as

1. op(PropertyAccess,Method,ParameterList,ObjectInList, ObjectOutList) :-

2. Variant is 1, MaxVariant is 5,

3. get_variant(Variant, MaxVariant, PropertyAccess, Method, ParameterList,

4. ObjectInList, ObjectOutList).

5. test(PropertyAccess, Method, ParameterList, ObjectList) :-

6. Variant is 1, MaxVariant is 5,

7. get_variant(Variant, MaxVariant, PropertyAccess, Method, ParameterList,

8. ObjectInList, ObjectOutList),

9. destroy_objects(ObjectOutList).

10. get_variant(Variant, MaxVariant, PropertyAccess, Method, ParameterList, ObjectInList,

11. ObjectOutList) :-

12. Variant =< MaxVariant,

13. cloneObjects(ObjectInList, ClonedObjectList),

14. adaptObjects(PropertyAccess, Method, ParameterList, ClonedObjectList,

15. MethodObjectList),

16. callMethod(Variant, PropertyAccess, Method, ParameterList, MethodObjectList),

17. readaptObjects(PropertyAccess, Method, ParameterList, MethodObjectList,

18. ObjectCandList), !,

19. go_ahead_with_variant(Variant, MaxVariant, PropertyAccess, Method, ParameterList,

20. ObjectInList, ObjectCandList, ObjectOutList).

21. go_ahead_with_variant(Variant, MaxVariant, PropertyAccess, Method, ParameterList,

22. ObjectInList, ObjectCandList, ObjectOutList) :-

23. ObjectOutList = ObjectCandList.

24. go_ahead_with_variant(Variant, MaxVariant, PropertyAccess, Method, ParameterList,

25. ObjectInList, ObjectCandList, ObjectOutList) :-

26. destroy_objects(ObjectCandList),

27. Variant_New is Variant + 1,

28. get_variant(Variant_New, MaxVariant, PropertyAccess, Method, ParameterList,

29. ObjectInList, ObjectOutList).

Code 4 - Getting Variants with op/5 and test/4

ACTAS - Composition Model (C-Model)

 128

Char Property in the semantic context of a Semantic Characteristic is used for the construction of

the Property Object. The rule (Prop) shows that for all Char Properties (Char_Property) declared

in the referenced Semantic Characteristics a describing entry () and a

Property Object is created. This new Property Object is saved in a dictionary. The entry of this

dictionary of Property Objects is referenced through so-called object reference of the Service

Property (). The resulting set of describing entries is called a set of Property

Descriptions or the information about Service Properties in the C-Model.

A few general remarks to the keeping of Property Objects inside of the data structures of the

C-Model are worth to be made. The lists of Service Properties hold only references to the entries

of a dictionary of Property Objects. In the definitions of the data structure, these references to

the object dictionary are signed with “ObjectRef” or “ORef”. This allows a method handling as

introduced in the last section. The main purpose of this method handling was the achieving of

backtracking support despite the use of objects. The main idea was the creation of Property

Objects in order to get a handle to a new implementation instance of a Property Class, which

would incorporate the new (internal) constraints. With the introduction of references to an object

dictionary the replacement of the Property Objects can be done without losing the associations

with their Service Properties. In future research, these references could be used, in order to

introduce a kind of unification on the level of Service Properties.

The object dictionary is indexed with the Property References as introduced by Definition 15.

It is kept inside of the data structures (called), in order to avoid the use of assert/1 and

retract/1 predicates in the declarative environment (cf. Prolog manual [Car2009]), since these

predicates are not really declarative. In this way, the Property Objects and their implementation

instances can be cleaned up orderly after the life time of the data structure. In the following sub-

sections the building of the Service Offer and the Actor Service Offer are described more closely.

The section concludes with the description of Value Constraints in the C-Model.

()
 ()

()

 ()

ACTAS

129

13.2.1 Service Offer

The Service Offer has the same structure like the Service Template: a Common Part, several

Service Modes, and several Service Ports per Service Mode (cf. Definition 22 and Definition 8). It

is built from the Service Template and a current SOER, which can be always received as a fitting

pair from the responsible as well as publishing FA. The reference to the FA is in both data

structures (cf. Definition 8 and Definition 9). A FA can declare with a new SOER that all data

based on an older one is invalid. Therefore, the Common Part of a SO contains a reference to

the SOER, in order to retrace the validity of its data.

Only the Service Modes and Service Ports of the ST, which were declared as valid Service

Mode and Service Port, respectively (- and Valid- in Definition 9), are part of the SO

data structure. The building of the environments depends on Option-Slots introduced in the

tables Table 13 and Table 14 for the different parts of the data structure. For example, depending

Definition 22. Service Offer (SO)

 (() -)

 (() -)

 (() -)

 ()

 ()

 ()

 -Env (Va-Co
Set
, Ex-Co

Set
, -Option-Slot

Set
)

Service Offer (SO) consists of:

 Name of Service Offer ()

 Reference to the ST () in referenced

 Reference of the exporting FA () in referenced

 Set of Service Modes ()

 Set of Service Ports ()

 Set of References of General Characteristics (())

 Set of References of Compatibility Characteristics (())
 Environments (SO-Env) with sets of Value Constraints (Va-Co), Exchange

Constraint (Ex-Co), and Option-Slots (SO-Option-Slot)

 Set of objects () for access of instances of the Property Classes

 Sets of Service Properties distinguished by the part of the data structure
(common, mode, and port) The Service Properties are defined through their
Semantic Characteristic, name of property as defined in the characteristic, and
the reference of the object holding the handle to the current instance of the
Property Class

The reference of the object (ObjectRef) is related to the set of objects, which is currently
indexed through the information introduced as the Property Reference in Definition 15.

ACTAS - Composition Model (C-Model)

 130

on the “overwrite” Option-Slot, not the complete information in the environment description of

the ST is taken over into the fitting environment descriptions of the SO.

The constraints of the S-Model (cf. section 10.4) have to be transferred into the C-Model, in

order to deal with Property Objects. Since in the general algorithms of the Composition Process,

the constraints are applied in the context of certain steps, these transfers and the application of

the constraints are described in the context of their steps. Variants of the Composition Process

are discussed in the evaluation chapter.

In closer comparison to the data structure of a ST, the data structure of the SO contains

additionally the (closer) description of the Service Properties. Every part has its own set of

description entries about its Service Properties created through rule ():

SCommonPropertySet, SModePropertySet, and SPortPropertySet.

The information about the Service Property consists of (1) a reference to the Semantic

Characteristic, in which context the Service Property was declared as Char Property, (2) the name

of the Service Property, and (3) a reference to its Property Object. The Common Part contains

the referenced list/dictionary of the Property Objects used in the SO (). The Semantic

Characteristics appearing in the sets of property information are additionally listed in a way as

used in the ST description. As usual the Service Ports of the SO contains the references to the

Compatibility Characteristics, which are used for the compatibility description of the Service

Offer to another Service Offer or a Service Request (cf. section 10.3). The references point to the

ontological repository of the Semantic Characteristic as introduced in section 9.1.

13.2.2 Actor Service Offer (ASO)

The Composition Model transfers a Service Request into one or more so-called Actor Service

Offers (ASO). The duality of an ASO to a SO was discussed in the introduction to the C-Model

(chapter 12). Like the SO has the ASO a dictionary for the Property Objects and sets of Request

Properties holding each a reference to its current Property Object. The parts of the ASO have

also separate sets of descriptions of Request Properties (RCommonProperty, RModeProperty,

and RPortProperty) created through rule (). The Property sets of the Request Ports like the

sets of Service Properties in the Service Ports of an SO are useful for the building of sets of

Comparable Properties during the step of discovery of principally compatible Service Offers (cf.

Definition 12 and Definition 25). These sets of Comparable Properties are later used for the

building of Merge Constraints.

Each Client Request leads to the creation of a data structure, which is similar to the data

structure of a Service Mode of a Service Offer. As a Service Client is seen as an actor, the

generated data structure is called a Request Mode (RM) of an Actor Service Offer (ASO)

(cf. Definition 23). Through the references to the Service Request (SReRef) and the Client Request

(Client-RequestRef), the Request Agent (ReA) and the Personal Agent (PA) can be accessed. The

ACTAS

131

Request Ports of the Client Request become Request Ports of its RM in the ASO. The transfer of

the data is strait forward, due to the dual names of the elements.

The Common Part of the Service Request, which is used for General Characteristics and

constraints referring to several Client Requests or other parts of the resulting Composite Service,

becomes a self-contained part of the Composite Service Structure (CompSt) (cf. Definition 24) in

the following initialisation step of the Composition Process. The Request Properties and their

General Characteristics in the common part of the ASO (())

have currently no direct initialisation. In the future, they will take over data of the Actor Service

Template (AST), which is already referenced in the Client Requests of the Service Request (SRe,

cf. Definition 19). The AST will be used for the learning of user feedback for a specific actor,

which can be represented through a Personal Agent (PA) in the application environment. The

learnt information could be stored in the Request Properties of General Characteristics, which

are visible to every Request Mode by keeping them in the Common Part of the ASO.

Definition 23. Actor Service Offer (ASO)

 (() -)

 (- () -)

 (() -)

 ()
 ()

 ()

 -Env (Va-Co
Set
, Ex-Co

Set
, -Option-Slot

Set
)

Actor Service Offer (ASO) consists of:

 Name of Actor Service Offer ()

 Reference to the Service Request ()

 Reference of the requesting Agent () in referenced

 Reference of Personal Agent () of Service Client in referenced

 -
 Set of Request Modes ()

 Set of Request Ports ()

 Set of References of General Characteristics (())

 Set of References of Request Characteristics (())
 Environments (SO-Env) with sets of Value Constraints (Va-Co), Exchange

Constraint (Ex-Co), and Option-Slots (ASO-Option-Slot)

 Set of objects () for access of instances of the Property Classes

 Sets of Request Properties distinguished by the part of the data structure
(common, mode, and port) The Request Properties are like Service Properties
defined through their Semantic Characteristic, name of property as defined in the
characteristic, and the reference of the object holding the handle to the current
instance of the Property Class

The reference of the object (ObjectRef) is related to the set of objects, which is currently
indexed through the information introduced as the Property Reference in Definition 15.

ACTAS - Composition Model (C-Model)

 132

The Compatibility Characteristics of a Service Request are all Request Characteristics (cf.

section 9.1). Thus, each Client Request and its Request Mode of the ASO become associated

with a certain user group. Eventually, an intersection of the user groups associated with a set of

Request Characteristics has to be built. (A tool with plausibility checks for the designing of

Service Descriptions/Service Requests with Semantic Characteristic and the constraints arising

from their semantic descriptions is future research (cf. chapter 22).)

In Example 16, Alternative Client Requests were discussed. It can be debated, how to

represent the several request of the Service Client in the Service Request or the resulting ASOs.

Normally, the resulting data-structure of a Client Request is one ASO with one Request Mode

having possibly several Request Ports, each one standing for one Service Request of the potential

Service Client. Therefore, the three whished bookings in the example could be described as three

separately requested services through three Request Ports.

However, ACTAS offers the option to create several Request Modes of an ASO, when

Alternative Client Requests exist. This might be the case, when the client is not sure about the

breakdown of the services. In section 11.1 - Service Request (SRe), a way of posing Alternative

Client Requests was proposed. Through an ASO with several Service Modes, the alternatives

could be tested. Here is again an obvious duality to a SO: as the principal compatibility selects

one compatible Service Modes from the alternative Service Modes, the Composition Process has

to select one Request Mode of the ASO, in order to initialise its data structures and to begin.

 Coming back to the given example and looking at the other extreme: one Client Request could

demand that the three bookings are delivered as one service like a packet (possibly through a

booking service). In this case, the Client Request is transferred into a Request Mode with only

one Request Port holding all three Request Characteristics. It is future research to allow several

Request Modes and a dynamic adapting of Request/Service Modes of (Actor) Service Offers, in

order to achieve a higher re-active behaviour of ACTAS.

13.3 Step2: Initialisation of the Composite Structure

The primary goal of the algorithm of the Composition Agent (CoA), i.e. of the Composition

Process at all, is the detection of a Composite Service. In other words: The building of a

Composite (Service) Structure (CompSt) (cf. Definition 24), which does not contain any Open

Ports or unsolved constraints (Value, Merge, and Exchange Constraints). During the

Composition Process, the CompSt is extended to CompSt-plus (cf. Definition 25), in order to

keep temporary information necessary for the Composition Process. An Open Port is a Request

Port or Service Port of the CompSt-plus, which is not yet composed with another one. The

composition algorithm of the CoA can deal with the Open Ports in different ways according to

the policies of the application environment of its ReA. The advantages and disadvantages of

these alternatives of composition algorithms are discussed in the evaluation. The Composite

Structure and its extension are introduced in the first sub-section.

ACTAS

133

The CompSt-plus and its embedded CompSt have to be initialised, in order to start the

Composition Process. This initialisation is done with the ASOs built from the Client Requests of

the SRe in the last step. The Common Part of the Service Request is also used for the

initialisation. The Request Ports of the ASOs become the first Open Ports.

In the end of the preceding section, Alternative Client Requests and their resulting in possibly

several Request Modes of an ASO were discussed. Even when the current version of ACTAS

does not propagate the support of several Request Modes of an ASO, this leads to a common

challenge of the Composition Process – the selection of a Service Mode/Request Mode. For

ASOs with several Request Modes, the CoA would have to select one Request Mode of each

built ASO, in order to test just the fulfilment of these specific Client Requests. The principal

compatibility, outlined as step 3 of the Composition Process in the next section, leads to a

selection of a Service Mode. Therefore, one sub-section of the current section is concerned with

the taking over of information of an ASO or SO with a selected Request Mode or Service Mode

into the Composite Structure. This includes the consideration of Value Constraints, since it does

not make any sense to go ahead with the Composition Process, when the Value Constraints of a

selected mode cannot be satisfied.

13.3.1 The Composite (Service) Structure (CompSt)

The Composite (Service) Structure gets a more complicated than the earlier data structures, since

it has to hold the resulting data of a Composite Service, i.e. it does not contain Service/Request

Ports as interfaces any longer, but so-called merged Service Ports (Merged Ports for short,

Merged-SP in Definition 24 - Composite Service Structure (CompSt)). Merged Ports are

Service/Request Ports, which were composed with the rules of principal compatibility (cf.

Definition 11), and which hold Comparable Service Properties (cf. Definition 12) tested with

their Merge Constraints (cf. Definition 16). A Merged Port holds references to the “merged”

Service/Request Ports and a set of the “merged” Comparable Service Properties (MePropertySet

in Definition 24). Each MeProperty entry contains descriptions of the two Comparable

Properties (cf. Definition 12), i.e. their Compatibility Characteristic and name as well as

references to their Property Objects. The entry also contains an association of the Comparable

Properties with their Merge Property Object created through the Merge Constraint (cf. section

13.5 - Step 4: Checking of Merge Constraints). The Merge Property Classes of these Merge

Property Objects were linked with the Char Properties in the Compatibility Characteristics at the

time point of declaration (cf. Definition 4).

The references to the Service/Request Ports (- -) in - distinguish

between client and server side for directed compositions (BOOLEAN “Directed” is set for a

directed composition.). The same order can be found for the references of the Property Objects

(- -) in the above introduced entries for the description of the Merge

Properties (MeProperty) of the merged Service Ports (Merged-SP). For non-directed

ACTAS - Composition Model (C-Model)

 134

compositions, the distinction between server and client side is irrelevant, but the fixed order

helps again, in order to deal with the view information of the extended reference of a Service

Property (cf. Definition 17) in a non-ambiguous way. The extended access of a Service Property

with the view information becomes necessary for the solving of Exchange Constraints, which can

describe in their “ExchangeProperties” data (cf. Definition 18) this elaborated retrieving of

property data. In the C-Model, the Exchange Constraints use the methods “export” and

“import”, in order to get hold of the right Service Properties and to have discrete Property

Objects for the handling of the elements of the Exchange Constraints called by their “ExNames”

(cf. Definition 18, rules () and (), and section 13.6 - Step 5: Checking of

Exchange Constraints).

Like the data structures of SO and ASO, the CompSt holds a dictionary of Property Objects

(ObjectSet). Service Properties in the semantic context of General Characteristics (GCh) can be

found in the Common Part of CompSt (ComPropertySet) and in the selected Service Modes

(Selected-SM) (ModePropertySet). They are based on Char Property Classes and the rule ()

was applied, in order to create their Property Objects and the entries of their Property

Description sets. The Merge Service Properties (MePropertySet) of the merged Service Ports

(Merged-SP) also reference Merge Property Objects created during the application of the Merge

Constraints (cf. section 13.5 - Step 4: Checking of Merge Constraints). In the application of the

Exchange Constraints, methods of Exchange Property Objects are used.

Definition 24. Composite Service Structure (CompSt)

 (- -)

 - (- - - -)

 - (- - -)

 - - (- - (-))

 - - (- (-))

 ()

 ()

 (- - -)

Composite Structure (CompSt) consists of:

 Common Information about the requested Composite Service ()

 Set of selected Service Modes (SM) (at least one element) (-)

o selected Service Mode of SO (- -)

o selected Service Mode of ASO (- -)

 Set of merged Service Ports as results of Merge-Constraints (-)

 Set of Objects ()
 MeProperty contains descriptions of Comparable Properties (cf. Definition 12))

and of the Merge Property of the Merge Constraint applied on the two
Comparable Properties

ACTAS

135

The selected Service Mode can either come from a Service Offer (SO) or an Actor Service

Offer (ASO). Therefore, the data structure of CompSt allows two alternatives (Sel -SO-SM, Sel-

ASO-RM). The selected Service Mode of a SO contains references to its SOER and to the SM of

the SO. Through this information, the Facility Agent (FA) can be retrieved. ACTAS supports a

validity checking of the selected Service Mode, i.e. the FA could be asked whether the SOER is

still valid. Additionally, the mentioned data can support the resource management and the

reservation of the Component Service. This is part of the Post-Processing and is discussed in

section 13.7. The selected Request Mode of an ASO (referenced through ASO-RMRef) holds

information about the Service Request (SRe). Thus the Client-Request and the involved agents

(ReA and PA) are accessible from CompSt. These links can be used in the Post -Processing

negotiations.

13.3.2 Working with the Extended Composite (Service) Structure (CompSt-plus)

After the building of Actor Service Offers (ASO) from the Service Request, the Composition

Process can commence. For the processing of the composition the Composition Structure

CompSt has to be extended. The extended data structure is called CompSt-plus (cf.

Definition 25), which contains the CompSt and additional environment information as well as

elements necessary for keeping of process information. In the following, these fields are

described more closely, in order to reach an understanding of the working with the CompSt-plus

data structure.

First of all, it has to be clarified, what information the Composite (Service) Structure (CompSt)

data structure, introduced in Definition 24 and the previous sub-section, can keep and how the

information of the Service Request is stored. The Fig. 36 - Visibility of Properties in CompSt –

shows an arrangement of the Semantic Characteristics appearing in the different parts of a

Composite Service. A Compatibility Characteristic in the merged Service Ports can define

constraints only for its own Service Properties and the “merged” Service Properties. The General

Definition 25. Composite Service Structure (CompSt-plus)

 - (- - - -)

 - (- - ()

)

 ()

Extended Composite Structure (CompSt-plus) consists of:

 Composite Structure () (cf. Definition 24)

 Set of Value-Constraints (-)

 Set of Merge-Constraints (-)

 Set of Exchange-Constraints (-)

 Set of open Service-Ports with Option-Slot for principal compatibility

 Directed (a BOOLEAN value) says if a client-server relationship is given.

 Set of Service Properties in the Compatibility Characteristics of the Open Port

ACTAS - Composition Model (C-Model)

 136

Characteristics in the Service Modes can introduce as “building blocks” Exchange Constraints

(cf. Example 15), which can also concern the Service Properties of their Service Ports. Finally,

the General Characteristics of the Common Part of the Composite Structure, which have their

origin in the Common Part of the Service Request, can introduce Exchange Constraints for

Service Properties of the whole Composite Structure. This extension of the scope of Service

Properties, which can be addressed in the Exchange Properties term of Exchange Constraints (cf.

Definition 18), is called the “visibility” of Service Properties.

The data of the Service Properties is wrapped in their implementation instances and accessible

through their Property Objects. Accordingly to the figure, the information of CompSt can be

structured as follows:

 Service Properties with information about the whole Composite Service

() initialised through the Common Part of the Service Request

 The selected Service Modes of (Actor) Service Offers (-).

 Service Properties with information about the Service Modes (),

satisfying Value and Exchange Constraints

 The Component Services with their merged Service Ports (Merged-SPSet)

 Service Properties with information about the Component Services, fulfilling Value,

Merge, and Exchange constraints (Merge Constraints), i.e. the information of the Service

Properties results from the matching of request and offering of the Component Services.

The CompSt-plus data structure holds beside the CompSt itself a set of Open Ports

(- in Definition 25). These are Service/Request Ports, which are not yet composed with

(principally) compatible/matching ones. The organisation and the use of the set of Open Ports is

a main criterion of the algorithm of the Composition Process done by the CoA (cf. section 13.4 -

Step 3: Service Discovery and Principal Compatibility and evaluation chapter). An Open Port

takes over the set of references to Compatibility Characteristics and the Option-Slots held in the

Service/Request Port (cf. SO (Definition 22) and ASO (Definition 23)). This information is

relevant for the Service Discovery of principally compatible Service Offers (cf. Definition 11) and

used for the building of the Trading Request (TRe).

The environment description (Env) in the CompSt-plus data structure is not any longer

distributed over the different parts (Common Part, Mode, and Ports) as in previous data

structures, but concentrated in the Common Part. This means that the constraints have to be

collected for the selected Service Modes, and translated into the declarative environment of the

C-Model (i.e. they have to use the Property Objects). The constraints are applied during the

Composition Process. The general Composition Process, introduced in this chapter, applies the

Value Constraints directly on the Service Properties of the selected Service Modes, in order to

avoid inconsistent Service Descriptions as early as possible in the Composition Process. The

ACTAS

137

process of selecting a Service Mode and the application of the Value Constraints is covered in the

next sub-sections.

During the Composition Process, the merged Service Port element (Merged-SP) is keeping the

Service/Request Ports recognized as principally compatible. The set of merged Service Properties

() collects the descriptions of Comparable Properties as discussed in the previous

sub-section. This information and the BOOLEAN field “Directed” are used for the building of

Merge Constraints (cf. section 13.5 - Step 4: Checking of Merge Constraints). For a directed

composition, the merged Service Port element has specific fields for the Service Port of the client

Side (also called Client Port or OUT Port) as well as for the Service Port of the server side

(also called Server Port or IN Port). This distinction between client and server side is

continued for the property description entries called .

13.3.3 Initialisation of CompSt-plus and Selection of a Service Mode

The following steps of initialisation of the extended Composite (Service) Structure (CompSt,

Definition 24, CompSt-plus Definition 25) have to be performed and are discussed in this sub-

section:

 The set of Property Descriptions in the Common Part of CompSt ()

have to be taken from the General Characteristics in the Common Part of the Service

Request (- in Definition 19).

 One Request Mode of each ASO built from the Client Requests of the Service Request

has to be selected, in order to become the first selected Service Mode (Selected-SM, Sel-

ASO-RM) of CompSt.

Following the “building blocks” concept discussed in the S-Model, the administrator of the

application environment, responsible for the design of Service Requests, can use the General

Characteristics and environment descriptions in the Common Part of the Service Request

(- in Definition 19) for the definition of constraints and general information valid for

several Client Requests or greater parts of the resulting Composite Structure. In the figures of

Service Compositions (e.g. Fig. 50 and Fig. 38), this Common Part of the Composite Structure

and its General Characteristic(s) is shown through a discrete yellow rectangle.

Fig. 36 - Visibility of Properties in CompSt - shows in the top row the General Characteristics

of the Common Part of CompSt, which had their origin in the Common Part of the Service

Request (- in Definition 19). In fact, CompSt contains the Service Property

Descriptions of these General Characteristics in its Common Part (in Definition 24).

They are built as a first initialisation step of the CompSt-plus data structure through the rule

(). The rule takes the set of General Characteristics in SRe-Common for the building of the

Service Property Description and creates the Property Objects referenced in the

entries of the Service Property Description.

ACTAS - Composition Model (C-Model)

 138

The Exchange Names (ExNames) of the Exchange Constraints (cf. Definition 18), appearing

in the Common Part, can be associated with Service Properties of any part of CompSt, i.e. the

Service Properties could belong to the Common Part, in the selected Service Modes, or the

Service Ports due to the visibility of the Service Properties illustrated in Fig. 36. The associations

between ExNames and Property-References are done through the Exchange Properties term (cf.

Definition 18). However, the provision of dynamic reference formalism, which allows the use of

the visibility of Service Properties inside CompSt properly, is still topic of research, since selected

Service Modes of the Composite Service are unknown at the time point of the Service Request.

The reference of properties described through Definition 15 allows a direct reference of the

Request Properties given in the Service Request, i.e. references to the Service Properties of the

ASOs built with the SRe are possible. This is sketched in Case Study 2: Distribute Feature

Composition (DFC): the GCh “Feature” is used for the checking of Distributed Feature

Composition through links with the Service Properties of Compatibility Characteristics (also

called “Feature”) holding the feature descriptions wished by the two involved Service Clients.

In Fig. 38 - Technical Service shown with principal compatibility, the selected Service Modes

of the gateway service and of the IP-Telephony service hold a General Characteristic called

“Reliability”. In one of their Service Ports, a Compatibility Characteristic called “H.323

Reliability” is “visible”. This Compatibility Characteristic might have ensured the existence of

reliability checking on the base of the standard H.323. The General Characteristic “Reliability” in

the selected Service Mode could realise an extended testing of service reliability through the

definition of Exchange Constraints accessing Service Properties of the visible Compatibility

Characteristic. Thus, there should be a “works with” relationship between the mentioned GCh

and CCh in the ontological repository of the Semantic Characteristics (cf. sect ion 9.1).

Fig. 36 - Visibility of Properties in CompSt

ACTAS

139

The described scenario can be extended through a General Characteristic “Reliability” in the

Common Part of the CompSt, given through the Common Part of the Service Request at the

time point of the Service Request. This General Characteristic could test reliability through

Exchange Constraints for the whole Composite Service. For this purpose, its Exchange

Properties term could interlink Service Properties of all “Reliability” General Characteristics kept

in the selected Service Modes of CompSt. A proposed dynamic reference of the Service

Properties could just contain a general reference to the General Characteristic “Reliability”, which

would be interpreted at the time point of application of the Exchange Constraint. At this time

point, the Composite Structure should be complete and all selected Service Modes are visible.

Thus, all Service Properties of General Characteristics “Reliability” appearing in the selected

Service Modes could be accessed. This means that the number of involved ExName elements of

the Exchange Constraints would dynamically grow with the number of General Characteristics of

this kind appearing in the selected Service Modes of CompSt.

In section 13.2 - Step 1: Getting Information, it was described, in which way each Client-

Request was transformed into one ASO. The second action of the initialisation of the CompSt-

plus data structure is the transfer of the data of the ASO as described through rule

(). In the current version of ACTAS, the number of Request Modes of an ASO

was limited to one. In a future version, the CoA will select a Request Mode through a

backtracking algorithm, since every Request Mode will stand for an Alternative Client Request

(cf. Example 16). The data-structure of an ASO already contains a set of Service Property

Descriptions with their references to Property Objects. The Property Objects and the sets of

Property Descriptions can directly be taken over (rule (- -)). The information of the

Request Ports of the selected Request Mode is saved in the set of Open Ports (-); these

initialisation actions are described with rule (- -).

()

 ()

 ()

()

()

(() ())

 (
)

(
)

() ()

() ()

 ()

ACTAS - Composition Model (C-Model)

 140

Rule (- -) shows that the Service Property Description of a selected Service Mode

() is directly the unification of the sets of Service Property Descriptions of the

(chosen) Request Mode and the Common Part of the ASO. However, only entries of the Service

Property Description of the Request Mode part () will be included in the union

set when entries in the Service Property Description of the Common Part ()

exist that reference the same General Characteristic, since () are used like a key. The

dictionary of Property Objects
 , coming from the Common Part and the Request

Mode of the ASO, contains only the Property Objects, which have object references in the newly

built set of Property Description of the selected Service Mode (). The Value

Constraints and the Exchange Constraints in CompSt-plus are extended with the constraints

appearing in the environment descriptions of the Common Part and of the Request Mode. In this

process, the CoA might interpret Option-Slots found in the environments of the ASO.

An Open Port (-) is a Service/Request Port of a selected Service Mode of the

Composite Structure (CompSt), which is not yet composed with another Service Port of a Service

Offer (SO) or Actor Service Offer (ASO). An Open Port of an ASO gets the initialising value

zero in its field “ ” because it starts the Composite Structure. In general , the depth value of

an Open Port of a selected Service Mode equals the minimal path length of composition of the

selected Service Mode as defined in Definition 27. The rule (- -) adds the information

of a Service/Request Port as a new Open Port. The Service Property Description of the Service

Port () becomes directly the Service Property Description of the Open Port

(). The referenced Property Objects (
) are added to the ones already known

in CompSt (
). The Value and Exchange Constraints are taken over. The Option-Slots

and the references to the Compatibility Characteristics are used for the determination of the

principal compatibility.

In Example 17 - Telecommunication with Gateway - a possible result of the initialisation of

the Composite Service Structure (CompSt) is shown (Fig. 37). The assumed Client Requests of

the Service Request of the example are listed below. The example was chosen, in order to

()

()

()

(() ())

 (
)

 ()

 ()

(
)

() (())

()

 (())

 ()

 ()

 ()

ACTAS

141

demonstrate directed and non-directed Service Composition. More complex examples of

Business Services and (Sematic) Web Services are covered in the evaluation. It is assumed that

the Service Request of Example 17 was done on behalf of two Service Clients, who wanted to

have Audio Communication. However, it turned out in the Composition Process that their

Communication Facilities are connected to different networks. Thus, the use of a gateway

becomes necessary (cf. the continuation of the example in Example 18). In the next sub-section,

the application of Value Constraints is described.

 Telecommunication with Gateway Example 17

This example demonstrates a simple composition of services with directed and non-
directed compositions. In order to establish a telephone connection between two users
having telecommunication facilities, which are connected to different networks, the
Communication Service has to include an IP-Gateway. The two Client Requests have the
following sets of Request Characteristics: [Audio-Com, Loc-Auth] and [Audio-Com],
respectively, as shown above. The Request Characteristic “Audio-Com” may just look for
services offering audio communication like phones. The “Loc-Auth” is assumedly a
Request Characteristic, which check the location and authorisation. The likely idea of the
combination of these Request Characteristics was to ensure the reachability and
accessibility of the communication facility, i.e. a person should for instance use his own
mobile when available. In this way, the Personal Agent could also become the Facility
Agent. The sketched Service Request will result in two Actor Service Offers shown in
Fig. 37. The two ASOs are used for the initialisation of the extended Composition
Structure (CompSt-plus). The resulting data is presented with the sets of selected Service

Modes and Open Ports (- and -).

Fig. 37 - Initialised Composite Structure

 - [(

 [])

(

 [])]

 [() [- -]]

 [() [-]]

ACTAS - Composition Model (C-Model)

 142

 -
[(() ()) (() ())]

Open-SP
Set

[
(OP (ASO RM RP

) [()] [Audio-Com oc-Auth])

(OP (ASO RM RP
) [()] [Audio-Com])

]

13.3.4 Value Constraints

Value Constraints restrict the possible values of Service Properties. The Service Designer and

the Service Requester used them for the description of the values of the Service Properties of the

Service Offer or the Service Request, respectively. They apply the methods of the Char Property

Class given with the declaration of the Service Property in the context of a Semantic

Characteristic. This Semantic Characteristic is likely for containing Value Constraints for the

Service/Char Property, as well, in order to adapt its values to the constraints of its semantic

context.

Value Constraints are part of the environment descriptions (Env) in a Semantic Characteristic,

a Service Description, and a Service Request. The discussion about Option-Slots (cf. section 10.2)

showed that Value Constraints in a SOER environment can overwrite the ones in the ST

environment, i.e. the Value Constraints of the ST will be simply discarded in the collection

process for the building of a Service Offer (SO), when the Option-Slots are set in this way (cf.

section 13.2.1).

 ()

Definition 26. Value Constraint (Va-Co) in C-Model

 []

 (
 []

[] []
)

Meaning:

 ,

 PropertyRef is a reference to the Service Property (cf. Definition 15) declared

with the Char Property Class of the Char Property Objects ,

 , respectively.

 is the version k of the Service/Char Property Object, which gives

access to an implementation instance that granted all constraints originated from

the method calls of to (cf. rule ())

 The ValueClause contains a list of methods calls with op/5 (i.e. semantically a
conjunction of the resulting constraints is realised. (clause

 clause)).

 In a successful case, a is generated.

ACTAS

143

The CompSt-plus data structure collects the Value Constraints and the other constraints in one

set in the Common Part (cf. Definition 25). For the application of Value Constraints, they have

to be translated from the informal form of the S-Model (Definition 14) to the form of the C-

Model (Definition 26) using Property Objects instead of Property References. That also implies,

as Definition 26 shows, the use of the predicate op/5 for the clauses of the Value Constraint.

The predicate op/5 was introduced in section 13.1. It calls a method of the Char Property Object

associated with the Service Property, in order to create a new Char Property Object, which

incorporated successfully the internal constraints coming from the application of the method.

The newly Char Property Object is used in the on-going backtracking algorithm. In section 13.1,

the rules () and () were introduced, in order to show schematically how the methods

of the constructed object are used for the setting of new internal Value Constraints.

For the application of Value Constraints on the Property Object, the Value Clause

(ValueClause) of Definition 26 has to be built. The collecting of Value Constraints from the set

of Value Constraints of CompSt-plus, being relevant for a referenced Service Property

1. applyValueConstraint(va-co(PropertyRef,ValueClause)) :-

2. translateValueClause(ValueClause, OpSet),

3. getCharPropertyObject(PropertyRef,CharPropertyObject),

4. applyValueOpSet(OpSet, CharPropertyObject, CharPropertyObjectOut),

5. addToObjectSet(PropertyRef, CharPropertyObjectOut).

6. translateValueClause([Clause|RestClauses], [OP|RestOPs]) :-

7. Clause =.. [Method, ParameterList],

8. OP = op(A,Method,ParameterList,[A],[CurrentVar]),

9. translateValueClause2(RestClauses, RestOPs, CurrentVar).

10. translateValueClause([],_) :-

11. print('error').

12. translateValueClause2([Clause|RestClauses], [OP|RestOPs], CurrentVar) :-

13. Clause =.. [Method, ParameterList],

14. OP = op(CurrentVar, Method, ParameterList, [CurentVar], [CurrentVarNew]),

15. translateValueClause2(RestClauses, RestOPs, CurrentVarNew).

16. translateValueClause2([], [], _).

17. applyValueOpSet([OP|RestOPs], CharPropertyObject, CharPropertyObjectOut) :-

18. A = CharPropertyObject,

19. OP = op(A, Method, ParameterList, [A], B),

20. call(OP),

21. applyValueOpSet(RestOPs, B, CharPropertyObjectOut).

22. applyValueOpSet([], CharPropertyObjectOut, CharPropertyObjectOut).

Code 5 - Translation and Application of Value Constraints

()

 ()

 ()

 ((()))

 ((
))

ACTAS - Composition Model (C-Model)

 144

(Definition 14), as well as the building of the Value Clause is shown with rule

(- -). First of all, the Value Constraints of the environment description of the

declaring Semantic Characteristic are fetched ((-)) (Char-Env, cf. Definition 4).

The select/2 function selects the Value Constraints relevant for one specific Service Property.

The second set of Value Constraints is directly selected from the set of Value Constraints of the

CompSt-plus data structure. In fact, the Value Clause sets are ordered lists of the clauses, which

can semantically be interpreted as a conjunction of conditions described through the methods of

the Property Class/Object. The translate function creates the use of the Property Objects with

op/5. In Code 5 - Translation and Application of Value Constraints, the translation is

schematically shown in Prolog with predicate translateValueClause/2. The result of this predicate

is a list of op/5 calls; its input is given with the Value Clause as a list of clauses with method calls

as introduced in the S-Model. The translation takes advantage of logical variables. Therefore, only

the first logical variable has to be unified with the current Property Object, in order to achieve

the wished behaviour of Definition 26, the creation of new Property Objects for the backtracking

and monotony of the constraints as long as the resulting internal constraints can be successfully

incorporated i.e. it still exist a model (cf. section 13.1, rule ()).

13.4 Step 3: Service Discovery and Principal Compatibility

The initialisation of the Composition Process, described in the last section, created a CompSt-

plus data structure holding the Request Modes of the ASOs as first selected Service Modes. The

Request Ports of these Request Modes were collected as Open Ports. The Service Properties of

General Characteristics in the Common Part had their origin in the Common Part of the Service

Request. As discussed in the last section, they describe information for the whole CompSt. Every

Service Property has an association with a Property Object as a handle to the implementation

instance of the Service Property. At last, the constraints of the Service Request were collected in

central sets in the Common Part of CompSt-plus. Additionally, the Value Constraints were

applied on the Service Properties of the CompSt-plus data structure, in order to exclude

inconsistent Service/Request Descriptions as early as possible.

The step 3 of the Composition Process describes its main cycle of actions; it performs the

Service Composition and takes advantage of Service Trading for the Service Discovery of new

Service Offers as candidates for the Service Composition. The first rule applied in this step is the

rule (Sel-OpenSP), in order to determine the next currently selected Open Port (COP for short).

The next principal compatible Service Port is searched for this COP. As rule (Sel-OpenSP) states,

the COP is deleted as an element of the set of Open Ports after its selection. The algorithm of

the Composition Process depends on the smart selection of the next COP. Therefore, this matter

is covered in the next two paragraphs and in the evaluation.

The data of the Open Port contains a field called “depth”; its content is defined in

Definition 27. This definition keeps in mind that the Composition Process starts with a Service

ACTAS

145

Request and that an ASO is built from a Client Request of a Service Request. The algorithm of

the Composition Process can use the field “depth”, in order to sort the set of Open Ports in an

ascending order. In this way, Open Ports with a smaller value of “depth” can be selected easier as

COP, in order to extend the graph of composition (cf. Definition 27) ordered by its depth. The

Composition Process could start a backtracking, when the “depth” value exceeds a certain

threshold.

A more elaborated way to deal with the set of Open Ports can be achieved through the

splitting up of the this set in sub sets for IN Ports, OUT Ports, and non-directed Open Ports. In

these sets, only OUT Ports and non-directed Open Ports are Open Ports interesting for a

selection as COP, since IN Ports only offer a service. Such a division of the set of Open Ports

supports the rule that only then the OUT Ports of a selected Service Mode will be considered as

Open Ports (i.e. added to the sub set of OUT Ports), when all IN Ports of this selected Service

Mode have been merged. In this way, loops in the paths of the Service Composition can be

avoided (proof in the evaluation chapter). A Composition Process can be seen as failed, when the

Definition 27. Graph, Path Length, and depth of Service Composition

 ()

 ()

 ()

()
()
()
(i = 1,…,n-1),

 (())

 () { |
 (())

 ()
}

A merged Service Port in the Composite (Service) Structure (CompSt) (cf.
Definition 24) can be interpreted as an edge connecting two selected Service Modes.
In the same interpretation, a selected Service Mode becomes a vertex. In the current

version of ACTAS, the selected Service Modes, i.e. the Request Modes, of Actor
Service Offers (ASO) are seen as the starting vertices of the introduced Service

Composition graph (). The depth of a Service Composition of a selected

Service Mode A () is defined as the least number of merged Service Ports, which

have to be used in CompSt, in order to come from an ASO to the selected Service
Mode A. The depth of Service Composition of every ASO is zero in the current

version of ACTAS.

()

()

ACTAS - Composition Model (C-Model)

 146

set of IN Ports still contains elements, although the set of OUT Ports is empty. In this case, the

Composition Process will start a backtracking. A Composition Process will fail completely, when

the backtracking fails. In this section, it is assumed that the Composition Process is using the

“depth” field for selection. It is implicit that only OUT Ports and non-directed Ports are selected,

without mentioning their distinct sets any longer.

After the selection, of the COP, it should be first clarified, if there is not already an Open Port,

which is principally compatible with the COP. This is tackled with rule (-). If this rule

does not find an Open Port OP, which is principally compatible with the COP, then the rule

(Match-Discovery) for the call of the Service Discovery will be chosen. It builds a Trading

Request (TRe) from the data of the COP, in order to do the search for a principal compatible

Service Offer. The necessary information for the testing of the principal compatibility (cf.

Definition 11) is the set of references to Compatibility Characteristics ()

 (this includes

Reference Characteristics) as well as the Option-Slots of the Open Port. It is to mention that the

TRe contains a complete environment description (TRe-Env) allowing an extended testing of

compatibility and consistency by the agents receiving the TRe. These agents are the Facility

Agents (FA) and the Trader Agents (TrA) (cf. chapter 8).

The Option-Slots for the environment TRe-Env can be found in the entry of the Open Port in

CompSt-plus as well as in the referenced Service Port. This reference is kept in the entry of the

Open Port. It seems the easiest way, to fetch the Exchange Constraints and Value Constraints

also from this referenced Service Port. Nevertheless, it can be of higher interest to get the Value

and Exchange Constraints out of the central sets of the CompSt-plus data-structure, since these

sets might already contain an extended number of constraints concerning the Service Properties

of the TRe. The rule (- -) for the Value Constraints showed principally how to fetch

these constraints from the central environment set of CompSt-plus. However, the translation

should not take place, since the informal data structures of the S-Model are needed, in order to

build the XML message of the Trading Request.

The result of the Trading Request should be a set of Candidate Service Offers. In the return

message to the Trading Request, the agents might only send the current SOER or this SOER in

combination with a reference to the principally compatible Service Mode. Then the CoA will

()
 ()

 ()

 ()

 ()

()

ACTAS

147

build the Service Offer (SO) as explained in section 13.2.1 - Service Offer. The handling of a

Candidate Service Offer (SOCand) is shown in rule (Sel-Cand). Since the handling of the principally

compatible Open Port (OP) in rule (-) is quite similar, the procedure for both

rules is discussed in parallel in the next paragraphs.

Both rules select candidates, which are principally compatible Service Ports with the COP (SPO

and SPC respectively). On the one hand, the rule (-) takes its candidate OP out of the

set of Open Ports and renames it to SPO. On the other hand, rule (Sel-Cand) selects the candidate

from a list of candidates received from a Trading Request. However, the principally compatible

Service Port SPC of the Candidate Service Offer SOCand in rule (Sel-Cand) has still to be

determined on the base of the return message of the Trading Request. In the end, the principally

compatible Service Port will lead to a detection of the principal compatible Service Mode

(), i.e. the Service Mode to which the SPC or SPO belongs respectively.

In case of rule (Sel-Cand), this Service Mode () becomes the next selected Service Mode

through rule (- -). In the subsequent action of rule (Sel-Cand), all open Service Ports of this

selected Service Mode with the exception of the just found principally compatible Service Port

SPC are made to Open Ports with the rule (- -) . The new Open Ports get a “depth”

value, which is the increment of the one of COP. The rule (- -) is quite similar to the rule

(- -) (cf. page 139) due to the duality of the functions and data structures of SO and

ASO (this duality was described in section 13.2). Therefore, only the field “Res-Info” shall be

mentioned. For the support of the negotiation between CoA and FA, CompSt can contain data

about the reservation (Res-Info). It is assumed, that no communication between CoA and FA in

()

 ()

 ()

 ()

 ()

()

()

(() ())

 (
)

(

)

() ()

() ()

 ()

ACTAS - Composition Model (C-Model)

 148

the context of reservation took place until the application of the rule (- -) . Thus, the value

is set to “None”. Further explanations to this field are in section 13.7 - Step 6: Post-Processing.

In the case of rule (-), the selection of the Service Mode and the addition of the

Open Ports are not necessary, since the Service Mode of , i.e. , was already selected.

Nevertheless, the “depth” value of its left Open Ports will be updated to the incremented one of

COP, when the incremented value of COP is less than the one of , i.e. the original “depth”

value of the Open Ports of , because it means that a shorter path of composition (cf.

Definition 27) leads via the edge of COP and to the selected Service Mode . In fact, the

update of the “depth” values of Open Ports is a recursive act, since the selected Service Mode

 is already composed with at least one other Service/Request Mode (the reason, why it was

selected in the first place). These composed Service Modes might have also Open Ports, which

could become reachable through a shorter path of composition via the mentioned edge.

Therefore, recursively the “depth” values of the Open Ports of the composed Service Modes are

tested against the value of COP, whereupon the value of COP is incremented with every

extension of its path. Thus, the recursion will surely stop, when the several times incremented

value of COP is not any longer smaller than the values held in the Open Ports. The evaluation

looks at situations of Service Composition, when this recursive update of the “depth” values of

Open Ports can occur.

Finally, the found principally compatible Service Ports (SPO in rule (-) and SPC in

rule (-)) get “merged” with the COP in a merged Service Port through the rule

(- -). This “merge” is not complete, because the Merge Constraints will be still applied

later (described in section 13.5 - Step 4: Checking of Merge Constraints). However, through the

rule (-), the Comparable Service Properties are associated and the fitting Merge

Constraints built. This is done in such a way that later the Object Reference of the Merge

Property Object will be correct.

The rule (- -) creates a merged Service Port (Merged-SP) in CompSt, i.e. an edge in

the graph of composition as defined by Definition 27. It sets the references to the Client Port

(-) and the Service Port (-) as well as a flag (Directed), if the composition was a

()

 ()

 ()

ACTAS

149

directed one. The premise of the application of the rule is the existence of a principally

compatible Service/Request Port to the currently selected Open Port (COP) according the

Definition 11. This means that both ports must have identical set of references of Compatibility

Characteristics and matching Option-Slots. The set of Option-Slot of both entities are cited in

the premise. The Service Port SP could be for instance the SPO or SPC of the rules discussed

above.

ACTAS distinguishes between a composition with Request Ports and the one with Service

Ports. Request Ports are a special kind of Service Ports demanding that all of its Compatibility

Characteristics must be Request Characteristics. In this way, ACTAS supports a B2C and B2B-

like composition (cf. S-Model and R-Model). The R-Model of ACTAS requires that Service

Requests work only with Request Ports. Therefore, the services must define also Request Ports,

in order to be visible for a Service Request (cf. section 10.3 - Description of compatibility). A

Request Port is marked with the “request” Option-Slot. The rule (- -) checks the

fulfilment of the requirements implied with “request” Option-Slot.

The “direction” Option-Slot defines a Service Port as Out Port (also called Client Port) or as

In Port (also called Server Port). Table 15 defines the matching of Option-Slots held by Service

Ports. The matching constraints for the “direction” Option-Slot are also tested by the rule

(- -). This Option-Slot makes a composition to a directed one. Therefore, the flag

“Directed” will be set, when the “direction” Option-Slot exists. The references to the Client Port

and the Server Port are set accordingly. If the “direction” Option-Slot does not exist in both sets,

the composition will be called a “non-directed” one. The distinction between Client and Service

Port is not any longer possible. However, the rule establishes a certain order between the Service

Ports with setting their references into the fields of the merged Service Port.

The rule (-) builds the set of entries in a merged Service Port

(Merged-SP, MeProperty in CompSt, Definition 24) for all Service Properties declared in the

referenced Compatibility Characteristics. The rule uses the reference of a Compat ibility

Characteristic and the name of a Service/Char Property (CChRef , Name) as key. Both “merged”

Service Ports referenced in the merged Service Port (Cl-SP
Ref

, Se-SPRef) have an identical set of

referenced Compatibility Characteristics, because they were tested as principally compatible. For

the setting of the descriptions of the Comparable Properties (cf. Definition 12), the rule

(Add-MeProperty) takes over the order of the “merged” Service Ports established by the rule

(Add-Merged-SP), i.e. each pair of Comparable Properties will have a description with a Client

Object Reference (Cl-Prop
ORef

) and a Server Object Reference (Se-Prop
ORef

).

The setting of the object references implies the extension of the dictionary of Property Objects

(
) in the CompSt data structure (cf. Definition 24). The sets of Property Objects and

the associated descriptions of their properties are taken from the referenced Service Ports in the

merged Service Port: (1)

 from the Service Port referenced with - , and

(2)

 from the Service Port referenced with - .

ACTAS - Composition Model (C-Model)

 150

Option-Slots were interpreted by the rules and they do not become part of the environment

information in the Common Part of the CompSt-plus data structure. However, the Value

Constraints and the Exchange Constraints are taken over from both referenced Service Ports as

described above in the context of other rules. A very important action of the rule

(Add-MeProperty) is the creation of the Merge Constraints and their object references. In the

following section 13.5 - Step 4: Checking of Merge Constraints, these Merger Constraints are

applied, in order to get the “merged” Service Properties completely checked.

The Merge Constraint consists (cf. Definition 28) of the key (), the flag “Directed”

from the merged Service Port (Merged-SP in CompSt) as well as object references to the

Property Objects of the Client Property, Server Property, and the Merge Property (the order of

the properties for a non-directed composition was also established through rule

(- -)). The Merge Constraint will check if the information in the Client Property can

be matched with the information in the Server Property observing a directed relationship, when

the flag “Directed” is set. In the case of a non-directed Service Composition, the values of the

Service Properties of the merged Service Ports have to be adjusted. Further details will be in the

next section.

One cycle of step 3 – Service Discovery and Principal Compatibility – concludes with the

application of the Value Constraints on the Service Properties as explained in section 13.3.4.

Value Constraints, which were already applied on Service Properties during the initialisation (step

2 of the Composition Process) or earlier cycles of step 3, are not anew applied. There will be

further cycles of step 3 as long as Open Ports can be selected with rule (Sel-OpenSP). In general,

the third step of the Composition Process will end successfully, when all Open Ports could be

()

()

(() () ())

 (
)

() (() ())

()

 (() ())

()

(
)

 ()

 ()

 ()

 ()

ACTAS

151

composed with other Service Ports. This section concludes with the continuation of the

Example 17.

Example 17 showed the initialisation of the CompSt-plus data structure for a simple example

of the telecommunication, in which two Service Clients liked to have a telecommunication.

Example 18 extends this example with a possible progression of the Composition Process

showed in Table 18 as a flow trace starting with the initialisation described in Example 17. In

Fig. 38, the resulting composition graph (cf. Definition 27) including the Semantic Characteristics

and some Option-Slots is illustrated.

The middle column of Table 18 shows the newly transferred information; sets of CompSt are

portrayed with their keys in the third column. The elements, once mentioned in the middle

column are not repeated. The example is based on the principal compatibility, i.e. the Service

Properties are left out. For simplification, the identifications of the entities get symbolic names

with consecutive indices like for instance SO1 as an identification of the first discovered Service

Offer of the example.

The rule (InitialiseStep2) leads to the selection of the two Request Modes of the two ASOs as

the first selected Service Modes of CompSt with the keys: {() ()}.

The Request Ports of the ASOs become the first Open Ports { }. The list of Open Ports

is sorted with the “depth” value. This value was initialised with zero for the first selected Service

Modes, the Request Modes of the ASOs.

 Telecommunication with Gateway (continuation1) Example 18

Action/
Result

Transferred Information
Contents of sets

Service Request leads to an initialisation as shown in

Fig. 37 - Initialised Composite Structure …

Fig. 38 - Technical Service shown with principal compatibility

ACTAS - Composition Model (C-Model)

 152

Action/
Result

Transferred Information
Contents of sets

Initialisation of

 -

with and

 - (() ())

 - (() ())

 - (

 ()
[()]

 [- -]

)

 - (

 ()
[()]

 [-]

)

 -

{
()
()

}

 -
{ }

 - { }

Selection of

OP1 as COP,
Building of
TRe1

 - (

 -

[- -]

 -

)

 - ([()])

 -

{
()
()

}

 -

{ }

 -

{ }

Discovery of

 and
principal
compatibility
with
Service/Reque
st Port
(SO1,SM1, SP1)
Selection of
(SO1, SM1)

 - (
() [- -]

([()])
)

 - (
() ()

)

 - (

 - ()

()

 (- -)

)

 -

{

()

()
()

}

 -

{ }

 -

{ - }

Building of
new Open SP

 - (() [] []) -

{

()

()
()

}

 -

{ }

 -

{ - }

ACTAS

153

Action/
Result

Transferred Information
Contents of sets

Selection of

OP as COP,

Building of
TRe2

Discovery of

SO and
Selection
Building of
new Open SP

 - (- [-] -)

 - (
() [-]

([()])
)

 - (
() ()

)

 - (

 - ()
()

 (-)

)

 - (
 () []

[-]
)

 -

{

()
()
()
()}

 -

{ }

 -

{ - - }

Selection of

OP as COP,
Building of
TRe

Discovery of

SO and

Selection
Building of
new Open SP

 - (- [] ([]))

 - (() [] ([]))

 - (
() ()

)

 - (
 - ()

()
 []

)

 - (
 () []

[-]
)

 -

{

()
()
()
()

()}

 -

{ }

 -

{
 - -

 -
}

Selection of

OP as COP,

Discovery of
principal
compatibility

with

 - (

()

[-]
([])

)

 - (

 - ()

()

 [-]

)

 -

{

()
()
()
()
()}

 - { }

 -

{
 - -

 - -
}

Table 20 - Flow Trace of Service Composition with CompSt

ACTAS - Composition Model (C-Model)

 154

The Open Port was selected as first COP (rule (Sel-OpenSP)). Since the rule

(Match-OpenSP) was not applicable, a Trading Request is built and sent to “all agents” with rule

(Match-Discovery) by the CoA. The environment of the Trading Request contains the “request”

and the “direction” Option-Slots, which marks the COP as a Client Port of a B2C-like Service

Composition. The two Request Characteristics request an audio communication through a

communication facility, which is reachable and accessible. The Request Characte ristic “Loc-

Auth” ensures that the Service Offer understands the same under reachability and accessibility of

facilities as the Service Request. The Merge Constraints applied on the Service Properties held by

this Semantic Characteristic would clarify the matching further on. The application of Merge

Constraints is covered in the next section.

The principal compatibility leads to the selection of Service Mode SM1 of Service Offer SO1.

The General Characteristics belonging to the Common Part of the Service Offer will only

become part of the selected Service Mode, when they do not also appear in the SM part of the

Service Description (cf. Definition 8 and Definition 22). In the current version of ACTAS, a

certain General Characteristic can only appear once in a selected Service Mode. The rule

(Sel-Cand) selects the next selected Service Mode and creates the “merged” Service Port

(Merged-SP) for the principal compatible Service Ports (COP and the Service Port SPC of the

selected Service Mode (SO1, SM1) (cf. rule (Sel-Cand)). The non-composed Service Port of the

selected Service Mode becomes the new Open Port OP3. The “depth” value of this new Open

Port is incremented and its Option-Slots declare it to a Service Port for a non-directed, B2B-like

Service Composition, since neither a “request” Option-Slot nor a “direction” Option-Slot is set.

The cycle is repeated for the next selected Open Port OP2 as COP, leading to the selection of

the principally compatible Service Mode (SO2, SM1) and a merged Service Port with the COP and

the principally compatible Service Port of (SO2, SM1). At the end of this cycle, a new Open Port

OP4 is created. However, the last selected Service Mode (SO 2, SM1) offers a communication

facility, which does not use the same standards or network as the selected Service Mode (SO 1,

SM1). Thus, the Open Ports OP3 and OP4 are not principally compatible.

Therefore, rule (-) has to be applied again in the next cycle, in order to discover a

principally compatible Service Port for the Open Port OP3, as the next COP. In the example, it

results in the discovery of a gateway service and the selection of the Service Mode (SO 3, SM1).

This cycle concludes with the creation of a merged Service Port composing the COP and the

principally compatible Service Port of the selected Service Mode (SO 3, SM1) as well as building of

the new Open Port OP5. Since OP5 belongs to the selected Service Mode of the gateway service,

its “depth” value was incremented and equals two.

Due to the lower “depth” value, the Open Port OP4 is selected as next COP in the following

cycle. The rule (-) can be applied now, since OP5 turns out as principally compatible

offering a non-directed Service Composition with the same standard “H.323” and a function

“H.323-Reliability” for the testing of the reliability of a connection base on this standard. The

ACTAS

155

selection of the gateway service and the addition of its Open Ports are not necessary, because this

happened already for the gateway service in the last cycle. However, the merged Service Port for

COP and the Service Port referenced in the entry of OP5 has still to be created, in order to

complete the composition graph.

As the set of Open Ports is empty, the Composition Process in the example comes to a

successful ending. The next steps are the checking of the Merge Constraints and of the Exchange

Constraints. The actions for this testing are described more in detail in the next sections. The

algorithm of the Composition Agent (CoA) for the composition of telecommunication could be

improved in comparison to the one introduced in this section about the step 3 of the

Composition Process. It is obviously a goal of the algorithm to achieve a connected graph as

early as possible. The Composition Process starts with as many sub-graphs as ASOs exist.

Therefore, the selection of candidates in rule (-) should prefer Service Offer Candidates,

which connect as many sub-graphs as possible.

13.5 Step 4: Checking of Merge Constraints

The Merge Constraint (cf. Definition 16) completes the “merge” of the principally compatible

Service Ports, which were discovered and saved as merged Service Ports in the field Merged-SP

of the Composite Structure CompSt in the previous step of the Composition Process. The Merge

Constraints perform the matching and mediation of the values of each pair of Comparable

Properties of this Merged-SP (cf. Definition 12 and Fig. 32 - Me-Constraints for directed and

non-directed composition). The simple definition of the principal compatibility, which just

demands the same referenced Compatibility Characteristics, i.e. the same semantic contexts for

the description of compatibility, led to the building of pairs of Service Properties (Comparable

Properties), which are not only semantically comparable, but can be matched and mediated with

proven, semantically fitting, and reliable algorithms, accessible through the Merge Property Class.

Through his choice of a reference to a certain Compatibility Characteristic in the Service

Description (cf. S-Model), the Service Designer selected implicitly the approved algorithms

retrieved by the Merge Property Classes. The Service Requester decides for the same algorithms

through the use of a reference to the same Compatibility Characteristic in his Service Request (cf.

R-Model).

For directed Service Compositions (the flag “Directed” is set), the Merge Constraint will check

if the information in the Client Property can be matched with the information in the Server

Property observing a directed relationship. Examples for directed Service Composition will be

discussed in the evaluation. In the case of a non-directed Service Composition, the values of the

Service Properties of the merged Service Ports have to be adjusted. For instance the “Speed”

Service Properties of the Compatibility Characteristics “Phone” in Fig. 32 could hold different

ranges of acceptable line speeds. The Merge Constraint will select an adjusted common range

according its policies using an appropriate, approved algorithm.

ACTAS - Composition Model (C-Model)

 156

The Merge Constraints for a Service Composition exist only in the C-Model. They are built

through an action of rule (Add-MeProperty) explained in the previous step of the Composition

Process (cf. section 13.4 - Step 3: Service Discovery and Principal Compatibility). The Merge

Property Object, constructed through the application of the Merge Constraint, is saved in the

object dictionary (objectSet) of the Composite Structure (CompSt, cf. Definition 24). The Merge

Constraint (Definition 28) keeps an object reference in Me-Prop
ORef. The Composite Structure

(CompSt, Definition 24) also holds an object reference to the Merge Property Object in a

MeProperty entry of the Merge Property Description of the merged Service Port (Merged-SP).

The Merge Constraint keeps further object references to the Property Objects to the pair of

Comparable Properties. In the Composite Structure (CompSt, cf. Definition 24), Comparable

Properties are held in MeProperty entries of the Merge Property Description of a merged Service

Port (Merged-SP). Comparable Properties have the same name (PropName) in the same

semantic context of a Compatibility Characteristic (referenced through).

ACTAS demands the implementation of at least three methods of the implantation instances

of a Merge Property Class accessible through the handle of a Merge Property Object: (1) the

“merge” method, (2) the “export” method, and (3) the “import” method. These methods are

semantically defined through the rules (Merge), (Export), and (Import) , respectively, and

discussed in this section. The method “merge” implements the application of the Merge

Constraints and the construction of the Merge Property Object. The methods “export” and

“import” are used for the evaluation of Exchange Constraints, in order to realize the access of

the Service Properties linked with the Exchange Name (ExName) through the Exchange

Definition 28. Merge Constraint (Me-Co) in C-Model

 - (
 -

 - - -
)

Meaning:

 Reference of the Merged-SP of the Comparable Properties

 Reference to the common Compatibility Characteristic ()

 Name of the Comparable Property () (cf. Definition 12)

 can be found with the information (). This
Merge Property Class is used, in order to construct the Merge Property Object

referenced through - .

 References to Char Property Objects of comparable Service Properties

(- -)

 BOOLEAN “Directed” distinguishes whether the Merge Constraint is applied for

a directed or non-directed Service Composition. For a directed Service
Composition, the Service Properties of the client and of the server side are hold

in - or - , respectively.

ACTAS

157

Properties term (cf. Definition 18). The subsequent section looks at the application of Exchange

Constraints in the C-Model.

The Merge Constraint is applied with the method “merge” through the op/5 predicate, which

is shown in the rule (Merge). The predicate takes as parameter the “Directed” flag. The Property

Objects of the Client Property and of the Server Property are the input objects (The order of

these fields for non-directed Service Composition is determined in rule (Add-MeProperty)). The

newly created output objects are Property Objects for the client and server side as well as the

Merge Property Object discussed above.

Finally, it must be possible to select the Merge Constraints from the environment set -

of the Composite Structure CompSt (cf. Definition 24), in order to apply the rule (Merge), i.e.

the predicate op/5 for the “merge” method. The rule (- -) allows this selection

through a reference of the Comparable Property, which includes its merged Service Port

(Merged-SP). A Merge Constraint is applied only once and then deleted from the environment

set. The Merge Property Object keeps accessible through the object reference in its MeProperty

entry of the merged Service Port (Merged-SP) in the Composite Structure (CompSt).

A Merge Property Class and its Merge Property Object, constructed through the application of

the Merge Constraint (cf. rule (Merge)), offer at least the three demanded methods (“merge”,

“import”, and “export”). They can offer additional methods for instance for getting information

about the merge results using the view on the Merge Property as defined in Definition 17.

However, latest for the realizing of the so-called “merged view” on the Merge Property Object, it

is a good idea to implement its implementation instance statefully, i.e. for the keeping of

information. ACTAS does not demand the keeping of information inside of the implementation

instance of a Merge Property Object. It is up to the provider of the implementation of the Merge

Property Class, how he keeps the information in the implementation instances of the Property

()
 (

 [] []
[]

)

 ()

 ()

()

 ()

ACTAS - Composition Model (C-Model)

 158

Objects of the client and server side as well as the Merge Property Object. Therefore, the

methods of the Merge Property Class get as input objects always the Property Objects of the

client and server side, too. The “import” and “export” methods are explained in the next section

13.6 - Step 5: Checking of Exchange Constraints.

13.6 Step 5: Checking of Exchange Constraints

In section 10.4.3, Exchange Constraints were introduced in the S-Model as constraints

establishing relationships between Service Properties of different Semantic Characteristics and

parts of the Service Description. The Example 15 and the discussion of Case Study 2: Distribute

Feature Composition (DFC) show applications of Exchange Constraints. The chapter illustrated

the possibility to introduce with the Common Part of the Service Request Exchange Constraints,

which can generally involve any Service Properties of the Composite Structure CompSt. The

Example 15 portrayed the “building block” concept with a General Characteristic, which

interlinked two Compatibility Characteristics through an Exchange Constraint. The Service

Designer could adapt the Exchange Constraints to the Service Properties of his Service

Description with the “exchangeProperties” Option-Slot (cf. Table 14 - Option-Slots of Service

Modes and Common Part of Service Descriptions).

In the fifth step of the general Composition Process described in this chapter, the Exchange

Constraints are selected from the set of Exchange Constrains (-) in the environment

description of the Composite Structure (CompSt), in order to be applied. The rule

(Get-Exchange-Co)selects Exchange Constraints from this set of Exchange Constraints using as

reference (-) the identifications of the Exchange Constraints. The Definition 18

introduced the Exchange Clause consisting of a premise (a conjunction of left hand clauses (lh-

clause)) and an entailment (a conjunction of right hand clauses (rh-clause)). The entailment of an

Exchange Constraint will be only checked, when the premise is fulfilled. The application of an

Exchange Constraint will be only named successful, when the clauses of the right hand side could

be satisfied. Exchange Constraints will only be applied once, i.e. an Exchange Constraint is

marked as fulfilled, when it was applied successfully.

 This section discusses the application of an Exchange Constraint in the C-Model as shown in

Definition 29. The Exchange Constraint uses its own Property Classes (cf. section 9.2 - S-Model:

Property Classes), which are called Exchange Property Classes. The used ones are enumerated in

the term “Exchange Classes”. The methods of these Exchange Property Classes are not

necessary statefull, i.e. ACTAS does not demand the storing of information. Thus the

information for the Exchange Constraints has to be “borrowed” from the information of the

Composite Structure (CompSt). After the application of the Exchange Constraint, this

()

 ()

ACTAS

159

information has to be incorporated into the information of the Composite Structure. Especially

the Merge Constraints shall still be fulfilled for the new information. Therefore the discussion

starts with the “export” and “import” of the Property Objects used in the Exchange Constraint.

Then it has a closer look at the application itself and ends with the continuation of the examples

mentioned above.

13.6.1 The access of information for the Exchange Constraint

The Exchange Clause contains Exchange Names for the descriptions of the input and output

objects of the methods. The use of Exchange Names instead of concrete references of Service

Properties allow a flexible and adaptive way of applying Exchange Constraints, since the

Exchange Names can be linked with Service Properties as needed in a given semantic context.

Due to this indirect way of accessing the Service Properties, General Characteristics can be

introduced as “building blocks” holding Exchange Constraints, which can be adapted in the

Service Description accordingly (cf. Example 15).

The Exchange Clause and the other terms of the Exchange Constraint can be found again in

Definition 29 describing the Exchange Constraint as it is applied in the C-Model. However, the

 (
[]
[]

)

Definition 29. Clause of Exchange Constraint (Ex-Co) in C-Model

 - (-)

 -

 -

 (
 [] []

[

]
)

 (
 []

[]
)

Meaning:

 ,

 PropertyRef is a reference to the Service Property (cf. Definition 15) declared with

the Char Property Class of the Char Property Objects ,

 , respectively.

 is a Property Object, which granted all constraints coming from the

 to (cf. rule ())
 The ValueClause contains a list of methods calls with op/5 (i.e. semantically a

conjunction of the resulting constraints is realised. (clause

 clause)).

 In a successful case, a is generated.

ACTAS - Composition Model (C-Model)

 160

references of Service Properties linked with the Exchange Names have to be translated, in order

to get Property Objects as handles to their implementation instances. Additionally, the method

calls have to be wrapped in the predicates op/5 and test/4. The latter predicate tests the

fulfilment of constraints at the time point of its application. However, it does not create new

output objects, which preserved the resulting internal constraints (cf. section 13.1 - The Property

Objects/Classes in the C-Model). Thus, the test/4 does not support the monotony of the

application of constraints, but can be applied in order to test constraints, which shall not persist.

The Exchange Properties term (“ExchangeProperties”), which is the first part of the term

“ExchangeElements” in the definition of an Exchange Constraint in the S-Model and R-Model,

enumerates the affected Service Properties through references according Definition 15 and links

them with the Exchange Names (ExNames) of the Exchange Constraint. The references of the

Properties of the Exchange Constraint use the views on the Merge Property Object (cf.

Definition 17), in order to link a Service Property with the Exchange Names (ExNames) (cf.

Definition 18 and Example 15). In the C-Model, these links are used for the “borrow” of

Property Objects (cf. rule (Export)) for the Exchange Names appearing in the Exchange

Constraint. This means that the Exchange Constraint are working with their own implementation

instances, in order to fit in the declarative environment as previously explained (cf. section 13.1).

Code 6 - Application and Translation of Exchange Constraints - shows parts of the actions

necessary for the translation of the Exchange Constraints, given in the S-Model and R-Model,

into the declarative environment of the C-Model. After a successful application of the Exchange

Constraint, the Property Objects associated with the Exchange Names have to be returned to the

information in the Composite (Service) Structure CompSt (cf. 13.6.2 - A closer look at the

application of an Exchange Constraint). The access and the return of Property Objects are

discussed in the next paragraphs.

ACTAS creates new Property Objects for the Exchange Names. These new Property Objects

are clones of the ones, which provide the handles to the implementation instances of the

referenced Service Properties and which are kept in the object dictionary (Object Set in CompSt).

The cloning of Property Objects is necessary, in order to support the backtracking algorithm of

the declarative environment as explained in section 13.1 - The Property Objects/Classes in the C-

Model. If the referenced Service Property is part of a General Characteristic, it can directly be

cloned and used in the Exchange Constraint. After the successful application of the Exchange

()
 ()

ACTAS

161

Constraint, the new Property Object of the Exchange Name has simply to replace the original

Property Object of the Service Property in the object dictionary (Object Set in CompSt).

On the one hand, it has to be clarified how to “export” a Property Object from the Merge

Property Object, in order to have a Property Object for the Exchange Name, which just

represents a certain view on the Merge Property Object. On the other hand, such a Property

Object with a certain view on the Merge Property Object has to be “imported” again into the

Merge Property Object after the successful application of the Exchange Constraint, in order to

see if it still fulfils the Merge Constraints. The demanded methods “export” and “import” of a

Merge Property Class/Object, mentioned in the previous section about Merge Constraints,

should just provide these functions. The demanded semantic of these methods is shown by the

rules (Export) and (Import).

The rule (Export) extends the object dictionary (ExOSet), which holds Property Objects of the

Exchange Names, which are later used in the application of the Exchange Constraint. This

dictionary is indexed with the Exchange Names (ExNames), which are stated in the entries of the

term “ExchangeProperties” of the Exchange Constraints. Through these entries, the Exchange

Names are linked with referenced Service Properties. The link will provide a view on the Merge

Property Object (cf. Definition 17), when the referenced Service Property is inside of a merged

Service Port (Merged-SP in CompSt). The rule is applied for every entry of the term

“ExchangeProperties” concerning a Service Property of a Merged-SP. It creates a new Property

Object of the referenced “merged” Service Property with observing the view on its Merge

Service Object. For this purpose, predicate op/5 applies the method “export” of the Merge

Property Object MerO (The Merge Property Object was constructed through the Merge

Constraint as explained in the previous section). The “export” method gets the parameter “View”

(cf. Definition 17). The input objects of op/5 are the Merge Property Object MerO and the Char

Property Objects of the client and server side (ClO and SeO). The output object is a new Char

Property Object, which gives access to an implementation instance that holds information of the

Merge Property Object in the wished view. This new Char Property Object becomes an element

of the object dictionary with an entry, which associates the Exchange Name (ExName)

mentioned in the key with it.

As discussed in the previous section, the implementation instances accessed through the Merge

Property Object should be implemented statefully, in order to hold information at least of the

()
 (

 [] []
[]

)

 ()

 ()

ACTAS - Composition Model (C-Model)

 162

“merged” view. However, ACTAS does not demand this statefullness, since it might not always

be of sense to keep this “merged” view. Therefore, ACTAS provides all three Property Objects

(MeO, ClO, and SeO) for the “export” method as input objects, in order to allow more freedom

for the implementation of the provision of a new Property Object with the right view on the

Merge Property Object.

After the application of the Exchange Constraint a dictionary of new Property Objects

associated with the Exchange Names is formed. The information accessed through these

Property Objects has to be integrated or “imported” into the information of the Composite

Structure (CompSt). More precisely, the information of a Property Object of an Exchange Name,

which is linked with a reference to a Merge Property through an entry in the term

“ExchangeProperties”, has to be “imported” into the information of its referenced Merge

Property. This is done through the method “import” of the Merge Property Object, which is

semantically described through rule (Import) . The rule applies the op/5 predicate, in order to

call the “import” method of the Merge Property Object (MeO). The input objects are the Merge

Property Object as well as the Property Objects of the client and server side (ClO and SeO).

Additionally, the Char Property Object associated with the Exchange Name (ExObject) is an

input object. The ExObject is only imported, when its information representing a certain view on

the Merge Property is not in conflict with the internal Merge Constraints. For instance, when the

information presents a client side view on the Merge Property, the information will only accepted

and imported as the new client view, when it still matches with the held information of the server

side. The resulting output objects are the new Merge Property Object MeO’ as well as the new

Char Property Objects ClO’ and SeO’. These new Property Objects replace the entries in the

object dictionary of CompSt.

13.6.2 A closer look at the application of an Exchange Constraint

The Code 6 - Application and Translation of Exchange Constraints – is discussed in this sub-

section. The main predicate of the code example is applyExchangeConstraint/1, which takes as

parameter just the Exchange Constraint, which should be applied. It differentiates the Exchange

Constraint directly into the terms “ExchangeProperties”, “ExchangeClasses”, and the

“ExchangeClause”, which correspond to the terms of Definition 29.

()
 (

 [] []

[]
)

 ()

 ()

ACTAS

163

The next predicate getExchangePropertiesVarList/2 is a technical predicate. It just extends

every entry of the “ExchangeProperties” list with a logical variable, in order to have an easier

translation of the clauses.

The predicate getObjectsOfMethods/4 traverses the methods of the clauses in the Exchange

Clause (term “ExchangeClause”), in order to find or create the Property Objects giving access to

the implementation instances of the Property Classes of the methods mentioned in the clauses.

The term “ExchangeClasses” delivers the Exchange Property Classes, which are used for the

creation of correlating Exchange Property Objects. As discussed in the context of Exchange

Constraints in the S-Model, some test methods can have their origin in the Char Property Classes

of the referred Service Properties in the term “ExchangeProperties”. Therefore this term is the

third input parameter of the predicate getObjectsOfMethods/4. The result is an object dictionary

“ClassObjectList” with Exchange/Char Property Objects, which will be later used for the call of

the methods.

The unification “ExchangeClause = (LhClauses, RhClauses)” just differentiates the Exchange

Clause in its premise and entailment. The premise and the entailment are translated separately

with two calls of the predicate translateExchangeClause/5. The predicate takes as first input

parameter the object dictionary created in line 4 with predicate getObjectsOfMethods/4. The

second parameter list is the list of “ExchangeProperties” extended with variables of line 3. A list

of clauses as third parameter concludes the input. The idea of the translation is an adaptation of

an object dictionary holding of (Char) Property Objects associated with the Exchange Names

after an application of a clause of the Exchange Clause. The resulting object dictionary is the first

output parameter of translateExchangeClause/5. The second one is the list of op/5 and test/4

calls. Each call is wrapped with object dictionaries holding the Property Objects of the Exchange

Names before and after the call.

At this point, the logical variables, which extended the entries of the “ExchangeProperties”

term, come handy, since they can be unified with the input and output objects respectively of the

op/5 call. Then later in the application, the logical variables of the first object dictionary get

simply unified with the Property Objects associated with the Exchange Names. This happens

with predicate borrowAllObjects/1. This predicate also uses the “export” method of the Merge

Property Object as explained in the previous sub-section. The predicate returnAllObjects/1 uses

the “import” method of the Merge Object, in order to incorporate the resulting Property Objects

into the data structure of CompSt.

At first, the application of the Exchange Constraint tested the premise. When the premise is

true, a cut symbol “!” is given (line 13). The cut symbol cuts of the backtracking, i.e. the

entailment must be fulfilled otherwise the predicate applyExchangeClause/3 and therefore the

predicate applyExchangeConstraint/1 will fail. However, it has to be said that the shown code is

a coarse simplification. It is not illustrated, what happens with Exchange Constraints, of which

the premise is not fulfilled. Therefore, some remarks in this direction are added in the next

paragraph.

ACTAS - Composition Model (C-Model)

 164

An Exchange Constraint “fires”, when the premise is satisfied. In this case, the entailment

must be also fulfilled. A “fired” Exchange Constraint is taken out of the set of Exchange

Constraints in the CompSt-plus data structure. This means that an Exchange Constraint is

applied only once. The application of Exchange Constraints ends, when the set of Exchange

Constraints is empty or no Exchange Constraints are left with a fulfilled premise. Until then the

Exchange Constraints in the set will be tested repeatedly if it contains an Exchange Constraint,

which can be “fired”. After the application of an Exchange Constraint, the premise of another

one might have become satisfiable. This leads to a general remark about the application of Merge

Constraints and Exchange Constraints given in the subsequent section.

13.6.3 General Remark to the Application of Constraints

ACTAS is an open framework environment, i.e. permanently new Semantic Characteristics and

Property Classes can be published and existing entities can be adapted, because the Semantic

Characteristics and the Property Classes of the ontological repositories are only referenced. This

openness of ACTAS allows an improvement of the algorithms used in the constraints. However,

the Semantic Descriptions of the entities and the purpose of the Char Properties should be kept.

In this way, the Semantic Characteristics can be used as commonly agreed “building blocks” in a

reliable way. A Service Designer has not to use all Char Properties in his Service Description

through the application of constraints (Value Constraints, Merge Constraints, and Exchange

Constraints). In this sense, not every Char Property becomes necessarily a Service Property used

for the Service Description by the Service Provider. The Semantic Characteristics could define

Exchange Constraints, which would check, if the constraints between the diverse Char Properties

were fulfilled.

The Merge Constraints and the Exchange Constraints have to deal with Service/Char

Properties, which were not initialised. Therefore, every Char Property Class should offer a

method testing the initialisation state of a Service Property. On the one hand, Merge Constraints

will declare non-initialised Comparable Properties always as fulfilling the Merge Constraints. On

the other hand, Merge Constraints, in which only one Service Property is not initialised, will have

to decide in their context, whether they go ahead with the merge. However, the methods of the

Merge Property Classes should deny any export necessary for the “borrowing” of objects for the

Exchange Names during the application of Exchange Constraints. The Exchange Constraints

themselves can test the state of initialisation in their premise. The premise of an Exchange

Constraint should ensure that the application of the Exchange Constraint is most useful, because

an Exchange Constraint “fires” only once, i.e. the information in the “borrowed” Property

Objects should carry ideally as much information as possible, in order to make the most of the

Exchange Constraint. In the end, ACTAS is not a programming environment. ACTAS does not

claim to exclude all non-matching Service Candidates, but it helps to discover and to compose

Service Candidates involving freely several aspects of services.

ACTAS

165

13.7 Step 6: Post-Processing

The System Environment of ACTAS describes the Facility Agent (FA) as responsible for the

Service and Resource Management. Through the publication of SOERs, fitting to the general

Service Descriptions done through Service Templates (ST), the FA is supposed to adapt its

Service Descriptions to the currently available resources. In principle, each reservation or

consumption of a service will lead to a changed situation of its resources, i.e. it will lead to a

reaction of the FA. The FA might publish a new SOER declaring the previous ones as invalid.

A selected Service Mode in the Composite Service Structure (CompSt) comes from a Service

Offer (SO), which is built on the base of a ST and a SOER. This information is kept in CompSt.

However, in other Service Discovery approaches, it can happen that a selected Service Offer is

not any longer valid, when the Composite Service shall be deployed. ACTAS supports a validity

checking of the selected Service Mode, i.e. the FA can be asked whether the SOER is still valid.

For the support of the negotiation between CoA and FA, CompSt can contain data about the

reservation in the field “Res-Info” (cf. Definition 24). In this way, the CoA can inform the FA

about a selection. Later on, when this selection turned out as a good one, the CoA could ask for a

reservation of the Service Offer based on a certain SOER. In this negotiation, the found

information in the Composition Process, held in the Service Property Objects of the Composite

Structure, can be used for a more specific resource reservation. In future, with an elaborated

System Environment of ACTAS existing, the Resource and Reservation Management of the

Facility Agents will become content of further research.

In the covering of the models, their entities were introduced through examples discussing the

Technical Services, in order to include non-directed Service Composition. Starting with a Service

Template in Example 9, the design of Service Descriptions with Semantic Characteristics as

“building blocks” was sketched in Example 15. The Example 17 started the description of the

Composition Process for an example showing the use of a gateway in telecommunication. The

Composition Process was continued in Example 18. In Example 19, the resulting Composite

Structure is portrayed. The example is covered anew in chapter 15, in the context of Case

Study 1: Technical Services with translation.

ACTAS - Composition Model (C-Model)

 166

1. applyExchangeConstraint(ex-co(_,(properties(ExchangeProperties),

2. classes(ExchangeClasses)), ExchangeClause)) :-

3. getExchangePropertiesVarList(ExchangeProperties, ExchangePropertiesVarIn),

4. getObjectsOfMethods(ExchangeClause, ExchangeProperties, ExchangeClasses,

5. ClassObjectList),

6. ExchangeClause = (LhClauses, RhClauses),

7. translateExchangeClause(ClassObjectList, ExchangePropertiesVarIn, LhClauses,

8. ExchangePropertiesVarTmp, LhOpSet),

9. translateExchangeClause(ClassObjectList, ExchangePropertiesVarTmp, RhClauses,

10. ExchangePropertiesVarListOut, RhOpSet),

11. borrowAllObjects(ExchangePropertiesVarIn), ;Getting the objects for the Ex-Co

12. applyExchangeClause(LhOpSet, ExchangePropertiesVarIn, ;Test of Premise

13. ExchangePropertiesVarTmp),!, ;Cut Symbol if true

14. applyExchangeClause(RhOpSet, ExchangePropertiesVarTmp,ExchangePropertiesVarOut),

15. returnAllObjects(ExchangePropertiesVarOut). ;Giving the objects back to CompSt

16. getExchangePropertiesVarList([(PropertyRef,View, ExName)|RestList],

17. [(PropertyRef, View, ExName, _Variable) |RestNewList]).

18. getExchangePropertiesVarList([],[]).

19. translateExchangeClause(ClassObjectList, ListIn,[Clause|RestClauses], ListOut,

20. [(ListIn,OP,ListNew)|RestOPs]) :-

21. Clause =.. [(Class.Method), ExNameList, ParameterList],

22. getClassObject(ClassObjectList, Class, Object),

23. getExNameVariables(ListIn, ExNameList, ExVarList),

24. methodIsAProperOperation(Class, Method), !, ; method is a proper operation

25. OP = op(Object, Method, ParameterList, ExVarList, ExVarListNew),

26. retainExNameVariable(ExVarListNew, ExNameList, ListNew),

27. translateExchangeClause(ListNew, RestClauses, RestOps).

28. translateExchangeClause(ClassObjectList , ListIn,[Clause|RestClauses], ListOut,

29. [(ListIn,TEST,ListIn)|RestOPs]) :-

30. Clause =.. [(Class.Method), ExNameList, ParameterList],

31. getClassObject(ClassObjectList, Class, Object),

32. getExNameVariables(ListIn, ExNameList, ExVarList),

33. TEST = test(Object, Method, ParameterList, ExVarList),

34. translateExchangeClause(ListIn, RestClauses, RestOps).

35. translateExchangeClause(ListOut,[], ListOut, []).

36. borrowAllObjects([(PropertyRef, View, ExName, Object)|RestList]) :-

37. mergeProperty(PropertyRef),!,

38. getMergePropertyObject(PropertyRef, MergeObject, ClientObject, ServerObject),

39. op(MergeObject,Export,[View], [MergeObject, ClientObject, ServerObject],

40. [Object]),

41. borrowAllObjects(RestList).

42. borrowAllObjects([(PropertyRef, View, ExName, Object)|RestList]) :-

43. getCharPropertyObject(PropertyRef, Object),

44. returnAllObjects(RestList).

45. borrowAllObjects([]).

46. returnAllObjects([(PropertyRef, View, ExName, Object)|RestList]) :-

47. mergeProperty(PropertyRef),!,

48. op(MergeObject,Import,[View], [MergeObject, ClientObject, ServerObject, Object],

49. [MergeObject, ClientObject, ServerObject]),

50. setMergePropertyObject(PropertyRef, MergeObject, ClientObject, ServerObject),

51. returnAllObjects(RestList).

52. returnAllObjects([(PropertyRef, View, ExName, Object)|RestList]) :-

53. setCharPropertyObject(PropertyRef, Object),

54. returnAllObjects(RestList).

55. returnAllObjects([]).

56. applyExchangeConstraint([(ListIn,OP_TEST,ListTmp)|RestLhOpSet], ListIn, ListOut) :-

57. call(OP_TEST),

58. applyExchangeConstraint(RestLhOpSet,ListTmp,ListOut).

59. applyExchangeConstraint([], ListOut, ListOut).

Code 6 - Application and Translation of Exchange Constraints

ACTAS

167

 Telecommunication with Gateway (continuation2) Example 19

Code 7 - CompSt for telecommunication with Gateway, shows the resulting Composite
Service data structure (CompSt, cf. Definition 24) of Example 17, which was developed in
Example 18, cf. Fig. 38. The object dictionary containing 20 entries is listed. For
simplification, it is indexed with the object references given in the Property Descriptions
of a Selected Mode (ModeProperty) and of a merged Service Port (MeProperty). Entries
for Exchange Property Objects, used during the application of Exchange Constraints, are
not listed, because the Exchange Constraints with a fulfilled premise were all successfully
applied (“fired”) at a positive end of a Composition Process. The constraints were anyway
part of the extended Composite Structure (CompSt-plus, cf. Definition 25). Thus, only
two kinds of Property Objects are listed in the object dictionary: Char Property Objects
and Merge Property Objects. The latter are referenced in the Property Descriptions
(MeProperty) of a merged Service Port (Merged-SP). They are originated from the Merge
Constraints and discussed in the section 13.5. Every Property Object is supposed to
handle the final implementation instance of its Service Property after the successful
Composition Process. These implementation instances will hold the information of the
Service Properties, which complies with all constraints applied in the Composition
Process. The information is helpful for the subsequent phases of the life cycle of the
discovered Composite Service. At least, it can be said that this Composite Service is a
Service Candidate fulfilling all criteria examined by ACTAS.

The Definition 27 defined the Composition Graph of a Composite Service in ACTAS.
The adjacency lists of this graph can be found in the entries of the selected Service Modes
(Selected-SM) of the Composite Service. Selected-SM1 and Selected-SM2 come from the
initialising ASOs discussed in Example 17. The three other ones are the selected Service
Modes of the Component Services shown in Fig. 38. The entries of the selected Service
Modes and the merged Service Ports contain mainly references. A selected Request Mode
of an ASO contains a reference to the original Service Request (SReRef) and the Request
Mode of the ASO built from the Client Request of the Service Request (ASO-RMRef). The
selected Service Mode of a Service Offer of a Component Service references the SOER, it
was built on. The merged Service Ports have references to the as compatible recognized
Service Ports of the selected Service Modes of the (A)SOs (cf. section 13.3 - Step2:
Initialisation of the Composite Structure). The field “Res-Info” was discussed in the
possible post processing of the Composition Process (cf. section 13.7). It can be used for
the reservation of the service by the FA.

CompSt
DFC

=(CompSt

ID

 , Selected-SM

 ComProperty

, Merged-SP

Set
 Object

)

Selected-SM
1
=(RM1

ID SRe1
Ref ASO-RM

1

Ref
 ModeProperty

1

Set
, {Mer-SP

})

Selected-SM
2
=(RM2

ID SRe2
Ref ASO-RM

2

Ref
 ModeProperty

2

Set
, {Mer-SP

})

Selected-SM
3
=(SM

ID SOER3
Ref

, SO-SM

Ref
 Res-Info

, ModeProperty

Set
, {Mer-SP

, Mer-SP

})

Selected-SM

=(SM

ID SOER
Ref

, SO-SM

Ref
 Res-Info

, ModeProperty

Set
, {Mer-SP

 Mer-SP

})

Selected-SM

=(SM

ID SOER5
Ref

, SO-SM

Ref
 Res-Info

, ModeProperty

Set
, {Mer-SP

 Mer-SP

})

Merged-SP

=(Mer-SP

ID
 Cl-SP

1

Ref
 Se-SP

Ref
 true, MeProperty

Set)

Merged-SP

=(Mer-SP

ID
 Cl-SP

2

Ref
 Se-SP

Ref
 true, MeProperty

Set)

Merged-SP

=(Mer-SP

ID
 Cl-SP

3

Ref
 Se-SP

Ref
 false, MeProperty

Set)

Merged-SP

=(Mer-SP

ID
 Cl-SP

Ref
 Se-SP

Ref
 false, MeProperty

Set)

ACTAS - Composition Model (C-Model)

 168

Object
1
=(SeqD_Object

, Char_Property_Object

)

Object

=(SeqD_Object

, Char_Property_Object

)

Object

=(Cl_De_Object

, Char_Property_Object

)

Object

=(Se_De_Object

, Char_Property_Object

)

Object

=(Me_De_Object

, Merge_Property_Object

)

Object

=(Cl_AQu_Object

, Char_Property_Object

)

Object

=(Se_AQu_Object

, Char_Property_Object

)

Object

=(Me_AQu_Object

, Merge_Property_Object

)

Object

=(Cl_De_Object

, Char_Property_Object

)

Object

=(Se_De_Object

, Char_Property_Object

)

Object

=(Me_De_Object

, Merge_Property_Object

)

Object

=(Cl_AQu_Object

, Char_Property_Object

)

Object

=(Se_AQu_Object

, Char_Property_Object

)

Object

=(Me_AQu_Object

, Merge_Property_Object

)

Object

=(Cl_Spe_Object

, Char_Property_Object

)

Object

=(Se_Spe_Object

, Char_Property_Object

)

Object

=(Me_Spe_Object

, Merge_Property_Object

)

Object

=(Cl_Qu_Object

, Char_Property_Object

)

Object

=(Se_Qu_Object

, Char_Property_Object

)

Object

=(Me_Qu_Object

, Merge_Property_Object

)

ModeProperty
3,1
=(Feature, SequenceDiagram, SeqD_Object

)

ModeProperty
 ,1
=(Feature, SequenceDiagram, SeqD_Object

)

MeProperty
1,1
=(Loc-Auth, y, Me_De_Object

 Cl_De_Object

 Se_De_Object

)

MeProperty
1,2
=(

Audio-Com, Audio-Quality, Me_AQu_Object

 Cl_AQu_Object

Se_AQu_Object

)

MeProperty
2,1
=(Feature, Dependency, Me_De_Object

 Cl_De_Object

 Se_De_Object

)

MeProperty
2,2
=(

Audio-Com, Audio-Quality, Me_AQu_Object

 Cl_AQu_Object

Se_AQu_Object

)

MeProperty
3,1
=(Phone, Speed, Me_Spe_Object

 Cl_Spe_Object

 Se_Spe_Object

)

MeProperty
3,2
=(Phone, Quality, Me_Qu_Object

 Cl_Qu_Object

 Se_Qu_Object

)

Code 7 - CompSt for telecommunication with Gateway

ACTAS

169

EVALUATION

14 ACTAS

ACTAS is a framework for Service Discovery and Service Composition, which categorizes

services, their ontologies, and their constraint checking algorithms on a meta -level. The

evaluation discusses the hypothesis, especially how ACTAS can ease the composition of services.

The evaluation begins with some common statements in the context of Service Discovery and

Service Composition. A starting question could be: Is ACTAS just another Service

Discovery environment like WSMO, OWL-S for Semantic Web Services or simply like

UDDI for Web Services?

The State-of-the-Art chapter showed that existing Service Discovery environments select

services mainly through their functional description. Only in a second step, non-functional

descriptions, extended concepts, and features are involved. Generally, they make a firm

distinction between the description of elements and executable technologies (of the Service

Discovery environment as well as the services). In ACTAS, the Semantic Characteristics

principally allow Service Requests for any aspect of services, a functional description is not

obligatory. A Service Request can be freely composed of several Semantic Characteristics and a

Semantic Characteristic can involve several aspects of services. Additionally, an agreement on

common matching and mediation algorithm is guaranteed, since the properties of the Semantic

Characteristics are associated with appropriate resources, i.e. ontologies and algorithms. Thus,

ACTAS is a framework, which can connect services on the basis of any commonly agreed aspects

linked with fitting resources. Separate repositories of services like in Meteor-S are not any longer

necessary. Nevertheless, the separation between the Service Description and the execution

environment of the actual services is preserved as demanded by Berners Lee (cf. Definition 3).

This means that ACTAS does not change the functional behaviour of the services.

This leads to the question: What is a service in ACTAS? A service in ACTAS is not

necessarily a representation of exactly one service (electronic, manual, or physical, cf. State-of-

the-Art). In the case of directed Service Composition, a Service Description in ACTAS can have

several IN ports and OUT ports. Every Server Port, i.e. Service Port with the “direction”

Option-Slot having the attribute “IN”, represents principally a service. ACTAS does not know

whether this is an Abstract or a Concrete Service. This information is not relevant for ACTAS. In

the case of non-directed Service Composition, a service in ACTAS can become identical with the

service offering facility. For instance in Case Study 2: Distribute Feature Composition (DFC), the

selected Service Offer Modes of the Composite Structure (cf. Fig. 51) represent a telephone

exchange, closer tested and addressed through the General Characteristic “Feature”.

Evaluation

 170

Summarizing, it can be said that each Service Mode of a Service Description in ACTAS relates

interface descriptions, which can stand for offered and requested services. However, ACTAS

does not describe process-like relationships between the interfaces. The Composition Process

will select a Service Mode, i.e. a certain constellation of interfaces.

How does ACTAS take advantage of existing algorithms? ACTAS works on two levels

of abstractions of a service: (1) the service classified through Semantic Characteristics, and (2) the

Service Properties wrapped in the semantic context of these characteristics as Char Properties.

ACTAS is an open system, i.e. the Semantic Characteristics are distinct through their (URL)

references to ontological repositories. This is important, in order to have a reliable application of

the principal compatibility between services (cf. Definition 11). The declarations of Char

Properties of the Semantic Characteristics can be adapted, without changing the Service

Descriptions of ACTAS. The Service Designer does not have to use every Char Property. It

should be possible to check whether the Char Properties are initialised, i.e. used. Only used

Service Properties are kept in the data structures of the C-Model. Exchange Constraints defined

inside of the Semantic Characteristics could verify if a current setting of the variables is

acceptable in the semantic context of the characteristic.

As shown in Definition 4, the Char Properties get associated with algorithms handling their

information. The kept information of a Char Property depends on the semantic context of its

characteristic. It can be the temperature of a room; the GPS coordinates of a location, or the

functional description of a service through WSML. For all different kinds of information,

algorithms for their management exist. The Semantic Characteristic can declare additional

constraints or ontologies valid in its semantic context through Value Constraints. The algorithms

offer methods for taking on-board these constraints and ontologies for their internal constraints

as discussed in section 13.1. In this way, ACTAS uses given algorithms and information adapted

to a semantic context.

The Char Properties of Compatibility Characteristics (cf. Definition 4) are additionally

associated with the Merge Property Classes. The rule of the principal compatibility ensures that a

Char Property becomes only “merged” with a Comparable Property (cf. Definition 12), i.e. a

Char Property of the same name declared in the same Semantic Characteristic. In the case of a

Capability Description of SWS kept in a Char Property, the algorithms like [KluFri et al.2009;

KluKau2009] for matching of WSMO and OWL-S services could be used. The merge algorithm

of ACTAS can also include mediation. The information for the mediation could be kept in the

Char Property. The applied matching and mediation should become content of the Semantic

Description of the wrapping Compatibility Characteristic. The openness and adaptability of

ACTAS is shown again through the fact that the Service Property information could be extended

and its associated algorithms improved without implying a change of the Service Descriptions of

ACTAS. This fact is valid as long as the once published methods are still supported.

Only the Exchange Constraints enumerate in their term “ExchangeClasses” Exchange

Property Classes directly (cf. Definition 18). Nevertheless, these are only references to the

ACTAS

171

proposed ontological repository of Property Classes (cf. section 9.2). Therefore, even these

methods can be transparently improved. Through the controlled publication, the methods

become commonly agreed and trustful algorithms useful in Service Discovery and Service

Composition. On the level of abstraction of Service Properties, this is a necessary step for the

future realisation of the Autonomic SOC.

How does the B2C and B2B concept in e-business compare to the supported Service

Composition in ACTAS? ACTAS introduced a special kind of Compatibility Characteristics,

the Request Characteristics, in order to describe the compatibility interfaces towards Service

Requests. In the thesis, this was several times stated as a B2C like connection. As the Case

Study 3: Supply Chain, B2B Integration shows, it cannot be spoken about congruence in the use

of these terms in ACTAS and e-business. To put it simple: An e-business service of the B2B

integration could be requested through a Service Request in ACTAS addressed through a distinct

Request Characteristic. Nevertheless, the purpose of the distinction between Request

Characteristic and normal Compatibility Characteristic used in the Service Ports follows similar

ideas. The examples of Technical Services can be seen as a further proof of the feasibility of these

ideas. The user interface described through the Request Characteristics shows only the services

interesting for a certain user group. For instance audio communication, which is covered with the

Request Characteristic “Audio-Com” in the case study, is just addressing potential Service Clients

of a telecommunication service. The Service Properties describing the technical side of for

instance telephone exchanges are wrapped with a Compatibility Characteristic “Phone”

describing the non-directed connection between two exchanges. It is not declared as a Request

Characteristic. Thus, the latter connection for the realisation of the audio communication is

transparent for the Service Clients, because it is realised through B2B like Service Composition in

the Composition Process. The Case Study 1: Technical Services with translation has a closer look

at these services.

How does ACTAS adapt to the policies of the involved parties and supports them?

Firstly, ACTAS is conceptually based on a MAS introduced in the System Environment (chapter

8). The roles of the software agents are congruent with the roles of the involved parties: Service

Provider – Facility Agent, Service Requester – Request Agent, and Service Trader – Trader

Agent. The introduced Service Client is ideally represented through a Personal Agent. The pro-

active behaviour of the agents is determined through the correlation of roles. The Composition

Agent is created by the Request Agent. Therefore, its behaviour can be determined by the user /

application side. Alternative algorithms of the Composition Process are discussed later in this

chapter. The Composition Process itself can be influenced by the Service Designer through the

Option-Slots in the diverse environments (Env) of the Service Descriptions and Service

Requests. The influence of the “Translation” Option-Slot is covered in this chapter. The Facility

Agent can use the distinction between Service Templates and SOERs for its resource

management. It can adapt through the SOERs the Service Templates to the current available

resources, i.e. only valid Service Modes, which can be realized, are enumerated in the SOER. The

Evaluation

 172

SOER can contain additional Value Constraints for the Service Properties. The SOER referenced

in a selected Service Mode in the resulting Composite Structure (cf. Definition 24) can be used

for the SLA between Service Requester and Service Provider. This would mean that the Facility

Agent would confirm the reservation of the service and its resources on the basis of this SOER.

The CompSt contains an additional field “Res-Info” for keeping information in this direction. It

could be used in the later phases of the life cycle (Service Grounding and Deployment), in order

to be sure that the service and resources were reserved so that it can be realised. The clear

correlation between service, Service Provider, and the Facility Agent enables these considerations.

What is with the support of the non-functional property “availability” in ACTAS?

Considerations for the availability control by the Facility Agents were just stated in the previous

paragraph. Availability is a non-functional property, which should be directly supported by a

Topic Point of interest

System Environment
 What is the ideal environment?

 What art the limitations?

Service Design and
Service Description

 Characteristics allow a multi-dimensional semantic
description

 Simple Description of Compatibility with characteristics

 Specific Characteristics for User Requests

 Characteristics can be used as “building blocks”

 Exchange Constraints, define correlations between Service
Properties

 Directed and non-directed Service Compatibility

Descriptions

Service Request
 The combination of several Client Request

 The possibility to define constraints for the whole Service
Request and Composite Structure in its Common Part

Service Discovery

 Service Trading

 Service Matching

 Service Ranking

 Service Mediation

 No domain specific repositories necessary

 Inclusion of other Trading Environments

 Composition Agent performs an application specific
algorithm

 Selection and composition of Service Modes through the
application of the rule of principal compatibility, i.e.
compatible Service Modes have the same set of
characteristics.

 Application of constraints through algorithms linked with the

Service Properties

 Merge Constraints allow the inclusion of matching
algorithms and mediating

 Translation and mediation in ACTAS with Exchange
Constraints

Table 21 - Points of Evaluation

ACTAS

173

framework like ACTAS, in order to ensure that after the performance of the later phases of the

life cycle the service is still available. Nevertheless, the availability is certainly a criterion of the

second aspect of services and should be considered by ACTAS Administrators in the definition

of Semantic Characteristics. In the appendix, several WSML ontologies for the description of

non-functional properties are listed. The nfp-ontology for availability is shown in section B-1 of

the appendix. The ontology defines several properties for the concept “Availability”:

“isAvailableAt”, “isAvailableDuring”, and “isAvailableTo”. This concept is extended to the

concept “RequestAvailability” providing the additional properties: “forRequest”,

“hasNegotiableTime”, and “isContinuouslyAvailable”. The ACTAS Administrator could directly

use these concepts and their properties for the introduction of Semantic Characteristics.

Compatibility/Request Characteristics would ensure the availability of a service. A Service

Request, which had only this Request Characteristic in its Request Port, would just look for all

services, which have this Semantic Characteristic in their Service Port and fulfil the Merge

Constraints. In other words, it would discover all available services according to the given criteria.

The function of the services does not matter in this Service Request. This flexibility of

compatibility in ACTAS was already previously stated in this section. In this chapter, the

implementation of the algorithms associated with the Char Properties through generic

frameworks for reasoning with WSML is discussed.

In Table 21 - Points of Evaluation, further statements about ACTAS, sorted by phases of the

life cycle, are made. These are discussed in the following sections. Afterwards four case studies

are done.

14.1 Environment of ACTAS

The ideal environment of ACTAS was already discussed in the description of the System

Environment (chapter 8). The different parties involved in the Service Oriented Computing are

represented through an autonomic Software Agent. In an optimal case, the Facility Agent

publishes ST and SOER. On the one hand, the FA uses the SOER, in order to adapt the ST to

the currently available resources. The Facility Agent is doing the resource management and the

reservation of resource for the requesting application. On the other hand, the Service Trader can

perform a Service Trading with the best possible Service Modes of a service. The selected Service

Mode is the first information for the following phases of the life cycle of the discovered services

done by the systems, which are offered by the Service Providers of the selected Component

Services. ACTAS delivers further information through the Service Properties, which can have

their external implementation instances. Web Services are likely for the implementation of these

external implementation instances.

In Case Study 2 (cf. chapter 16), an implementation of the support of Domain-Specific

Languages (DSL) based on SOA, published in [ShiAda et al.2010], was discussed, because it

illustrates in which way the algorithm associated with the Service Properties could be realised. In

the declarative environment based on SICStus Prolog, the implementation instances are accessed

Evaluation

 174

through Property Objects. "The SICStus Objects package enables programmers to write object -

oriented programs in SICStus Prolog. The objects in SICStus Objects are modifiable data

structures that provide a clean and efficient alternative to storing data in the Prolog database."

[Car2009 p. 383]

In the C-Model, the access of

implementation instances through

Property Objects was covered. It was

explained that the clowning of the

Property Objects is necessary, in order

to support the backtracking algorithm

of the declarative environment. The

clowning of the Property Object

implied a new implementation instance,

which had also to be “clowned”. In

Fig. 39 - The Object Dictionary, the

treatment of the stacked information is

schematically shown. The object

dictionary (ObjectSet in CompSt, cf.

Definition 24) holds the Property

Objects indexed by the references of its

Service Properties or Merge Properties,

respectively (cf. Definition 15). The

object dictionary also contains the

Exchange Property Objects, for the access of the implementation instances of the methods used

in the Exchange Constraints. In the popular book of Prolog programming, “The Art of Prolog”

by Sterling and Shapiro [SteSha1994], the object dictionary is a typical incomplete data structure,

because the Property Objects are permanently replaced with new ones. Thus, the difference-lists

(described in chapter 15 of [SteSha1994]) are used.

In the thesis, it was decided not to describe in closer detail, how this wrapping and clowning of

the access of the implementation instances can be done. This is future research. The creation and

management of the handles of external implementation instances, realised through the Prolog

objects, goes beyond the scope of this dissertation. An alternative approach to Web Services

would be the supply of a Prolog module for the implementation of the methods of the Property

Class. This module could be saved in the ontological repository of the Property Classes. Such a

Prolog module can directly be integrated into the object concept of Prolog, in order to have

separated data for each object instance. The module system of SICStus Prolog is quite elaborated

and was part of my research for my diploma [BeKlMe2000]. In this way, the access and

implementation of the Property Classes could become transparent for ACTAS, secure and highly

adaptive. However, it can be expected that the solutions using extensively external

implementation instances based on SOA, will not be very performing. The authors of the

Fig. 39 - The Object Dictionary

ACTAS

175

previously mentioned publication about a FDL realising SOA approach [ShiAda et al.2010] spoke

about their experiences in this direction.

In the appendix, nfp-ontologies, written in WSML, are listed. Possible Semantic Characteristics

for non-functional properties based on these ontologies are covered in the subsequent section. In

this section, another realisation of the implementation instances shall be sketched.

The WSML2Reasoner6 framework is a generic, flexible architecture for reasoning with the

different variants of the WSML family. It was used for the realisation of SESA introduced in

[FeKeZa2008]. The fact that WSML is based on (theoretically and practically) well-studied

knowledge representation paradigms, for which various systems have already been implemented

and tested, allows the framework design of WSML2Reasoner itself and the integration of external

reasoning components. Thus, this reasoner could be addressed from the declarative environment

of ACTAS.

Let us assume that an ACTAS Administrator created the Compatibility Characteristic

“Availability” as it appears in the nfp-ontology in section B-1 in the appendix. He could have also

written the declaration of the three mentioned properties (“isAvailableAt”, “isAvailableDuring”,

and “isAvailableTo”) as three separate Char Properties. The ontology uses other ontologies for

the type definition of the properties and can include some additional constraints for the

properties of a concept. The ontology will always be updated, when a change to the declarations

becomes necessary. Therefore, it would be a good idea to use the ontology itself, in order to

implement and check the constraints of Char Properties of Semantic Characteristics, which are

based on a concept of a WSML-ontology. Thus the Char Property Classes could be implemented

through the WSML2Reasoner, in order to deal with the Char Properties and their internal

constraints according the ontology (as shown in rule ()). The current ontology has to be

simply set by a Value Constraint using an initialisation method of the Property Class. In this way,

algorithms could be implemented, which could work as Property Classes for several Char

Properties, which were declared on the base of WSML ontologies. Thus, the number of

implemented algorithms for the Char, Merge, and Exchange Property Classes can be extremely

reduced.

14.2 Service Design - “Building Blocks” of ACTAS

The experience with UDDI as a central repository showed that strict decoupling of resource

development like semantic descriptions has to be observed by a Service Discovery environment.

The resulting heterogeneity issues between resources have to be resolved through a centrality of

mediation (cf. [FeKeZa2008 section 44]). This is for instance a central vision of WSMO. For this

purpose WSMO inherits the concept of Universal Resource Identifier (URI) from the Web as the

mechanism for unique identification of resources including the mediation algorithms. The

6 tools.deri.org/wsml2reasoner/index.html

Evaluation

 176

centralized mediation does not only address ontologies, which are the core of the WSMO meta-

model, but also includes the mediation between service and goal classes.

Independently of WSMO, ACTAS developed a similar essential vision. The Service Discovery

environment cannot rely on the SOA alone, i.e. the publication, trading, and discovering of

services based on informal, functional, possibly semantically enhanced Service Descriptions. It

needs a centralized semantic categorisation of services and the common agreement on algorithms

applicable in the resulting semantic contexts of the categories. The centralisation of Semantic

Characteristics and Property Classes are achieved through the ontological repositories of these

entities. Like WSMO, ACTAS is using references, e.g. URI, in order to have a unique addressing

of the entities, which is important for the principal compatibility and the application of the right

algorithms.

OWL-S allows the use of descriptions in other languages (e.g. constraints written in KIF), but

it does not integrate algorithms like. The semantic hierarchy of Web Services is allowed, but I do

not know any application. ACTAS shows that the classification of services cannot be only

hierarchically, but has to include several aspects. WSMO restricts its centralized algorithms to the

mediation. It is worthwhile to have a closer look at the mediation of WSMO, in order to reach a

better delimitation towards ACTAS.

Three levels of mediations are supported by WSMO:

1. Data-level mediation - mediation between heterogeneous data sources; mostly ontology

integration

2. Protocol-level mediation - mediation between heterogeneous communication

protocols; i.e. the choreography entry in WSMO is concerned

3. Process-level mediation – mediation between heterogeneous business processes, i.e.

the orchestration entry in WSMO is concerned

WSMO defines mediator types between its components: OO Mediators, GG Mediators, WG

Mediators, and WW Mediators (O – Ontology, G – Goal, W – (Web) Service). The OO

Mediators resolve mismatches between ontologies and provide mediated domain knowledge

specifications to the target component. A GG Mediator connects goals and allows the creation of

a new goal from existing goals. The WG Mediators links a Web Service to a goal, resolving

terminological mismatches, and stating the functional difference (if any) between both. A WW

Mediator is used to establish interoperability between Web Services that are not interoperable a

priori.

ACTAS extends these concepts of WSMO, with adding reliable semantic contexts for the

centralized algorithms. These semantic contexts are called Semantic Characteristics and they gain

their semantic with relations to ontologies, which categorise various aspects of services (cf. State -

of-the-Art, section 2.3 and 9.1). Thus, ACTAS is working on two levels of abstractions of

services. The categorisation of services through Semantic Characteristics and their descriptions

ACTAS

177

through Service Properties wrapped in the semantic context of the characteristics. In Table 27,

assumed ontologies for the declaration of concepts based on the four aspects are introduced, e.g.:

 An ontology for application domains (),

 an ontology for the Service Design (),

 and an ontology for non-functional concepts ().

Examples for existing nfp-ontologies are given in appendix chapter B. In the appendix chapter

A, tables enumerate declarations and descriptions of Semantic Characteristics used in the thesis.

The Semantic Characteristics and the Property Classes are referenced through simple names.

Compatibility Characteristics and General Characteristics become distinguishable through the “is -

a” relation in their semantic description. Request Characteristics are Compatibility Characteristics,

which can have the additional relation “Can_be_used_by”. This relation can be specified in the

semantic description of the RCh. It relates the services classified by the Request Characteristics

with user groups defined in the assumed ontology . (The RCh concept in the “is-a”

relation is a sub-concept of CCh.)

In the following paragraphs, considerations for the introduction of Semantic Characteristics

and the Service Design are discussed. The Semantic Characteristics used as “building blocks” are

discussed in the first and the second case study. In this context, the “Works-with” relation is

mentioned again. It relates Semantic Characteristic working as “building blocks” together. Such

Semantic Characteristics are linked through Exchange Constraints. The “Works-with” relation

has three fields. The first two fields state the Semantic Characteristics. The third field contains

the identification of the linking Exchange Constraint of the secondly stated Semantic

Characteristic. The comparison with the mediation of WSMO is continued with the discussion of

Translation Offers (Service Offers, which use Exchange Constraints for the mediation between

the Semantic Properties of Semantic Characteristics) in Case Study 2: Distribute Feature

Composition (DFC).

 It is up to the ACTAS Administrator to decide, which ontologies he uses for the semantic

description of characteristics. Furthermore, he has to decide about the publication of Semantic

Characteristics and Property Classes. Ontologies like the nfp ones in appendix B can help for the

creation. Some concepts could be introduced as Semantic Characteristics; others could be bet ter

implemented as Property Classes. The Price Ontology is a candidate for a Property Class, since it

is mainly used as a type of attributes in other ontologies; whereas the Provider Ontology

describes an annotating non-functional parameter, which is of interest for the Service Selection.

Therefore, the administrator decides that it is worthwhile to introduce a General Characteristic

“ - ”. The semantic descriptions can be found in Table 30 to Table 34. In the

subsequent sections Semantic Characteristics in the context of the aspects of services are

discussed.

Evaluation

 178

14.2.1 Simple Semantic Characteristics

The location of a service is often decisive about its usability, e.g. for the selection of a

communication facility service or the use of the public transport. Therefore, the ACTAS

Administrator will consider the introduction of a Compatibility Characteristic, which allows the

testing of the principal compatibility in the context of service location. The principal

compatibility in this case means that the service declares that it provides the location information

in a commonly agreed way, and that it allows a pre-selective access of this information as well as

a matching and mediation of location descriptions. For this purpose, the semantic description of

the CCh “ ” in equation (22-17) of Table 34 - Request Characteristics (RCh) is defined

through the nfp-ontology concept “ ” (cf. appendix section B-3 - NFP-

Ontology for location (locative)).

For the Service Discovery, it is essential to have information about the kind of the functional

Service Description supported by a Service Offer (4 th aspect of services – Service Design

(phase 1)) or used by the Service Request. The Service Design is concerned with the Service

Description. Therefore, Semantic Characteristics, wrapping properties with WSMO and OWL-S

Service Descriptions, will be related in their semantic description with concepts from ontologies

in this direction (the assumed in this case). The Table 34 contains the Request

Characteristics “WSMO”, “OWL-S_with_IOPE”, and “OWL-S-Geodata” in the equations

(22-21), (22-18), and (22-19). The first one wraps a general WSMO component description. It

classifies all services using the SWS Service Description formalism WSMO; whereas the

Compatibility Characteristics “ - ” and “ - - ” address only the services

with a SWS Service Description in OWL-S. The former is declared in its semantic description as

a characteristic for a general OWL-S using IOPE. The latter connects the imagined domain

Geodata with the OWL-S Service Description. These associations are shown with concepts of a

design-ontology, which are named as “general”.

The meaning of “general” is up to this design-ontology classifying the different (functional)

Service Description formalism like WSMO, OWL-S, WSDL or UML. The design-ontology might

introduce more specific concepts, in order to describe for instance that a Service Description

contains simply capability descriptions, i.e. only parts of the Service Description formalism. For

one kind of Service Description, several Compatibility Characteristics can be introduced due to

alternative matching algorithms and domain specific application ontologies. Accordingly, the

logical expression of the semantic description will include several concepts of ontologies covering

multi dimensions of the semantic, i.e. all aspects of services (cf. section 2.3). The addressing of

specific matching algorithm could be reflected in the semantic description through the relation

with concepts of an ontology classifying the matching (in Table 27 - Assumed

Ontologies for the classification, phase 3 of the life cycle, i.e. the 4 th aspect of services).

The listed Compatibility Characteristics for the Service Description could wrap no Char

Properties. In this case, they simply would be “carrier” of their semantic description, in order to

ACTAS

179

select services supporting their description formalism. The Service Discovery would completely

take place in external environments. On the other hand and this is the more likely case, they have

Char Properties and the Service Designer can decide whether he wants to use them as Service

Properties. E.g. the RCh “WSMO” could declare a Char Property holding the information of a

WSMO component. This component can be initialised through a Value Constraint, giving the

URL of the WSMO component. In a Service Request, the component would be a goal, in the

other case a service component. The algorithms of the Property Class associated with the Char

Property should be able to execute the mediators as introduced above, since every component in

WSMO can be declared with the access on certain mediators. The advantage of ACTAS becomes

apparent as the Service Designer can rely on the associated algorithms. They will be capable to

deal properly with the complicated handling of WSMO components. Furthermore, he knows that

the merge, which includes mediation and matching, of comparable WSMO components (most

likely goal and service) are done in the right way. The Exchange Property Classes provide

additionally a bunch of algorithms for the mediation / translation of the information of the SWS

components in other formats. All these is done through centralized, referenced algorithms, which

offer a trustful and commonly agreed behaviour, since they are published in the managed

ontological repositories of Property Classes.

The Table 34 - Request Characteristics (RCh) also lists an RCh “Domain-Geodata” (equation

(22-14)). The assumed domain “Geodata” could be occupied with the processing of geographic

data. The association of the Service Description with a certain domain is shown through this

Semantic Characteristic (1st aspect of services). A service associated with the Compatibility

Characteristic “ - ” is just asking for Service Offers in this domain. In the context of

some applications, the association with just this Compatibility Characteristic might be enough as

a pre-selecting criterion, in order to fill domain-specific repositories with up to date Service

Offers or simply Service Providers. Alternatively, a service can be associated with several

Compatibility Characteristics. For instance, a service could hold the Compatibility Characteristics

“ - ” and “ - ”. The service instances categorised through this

combination of characteristics are the intersection of the service instance sets categorised through

a single characteristic. In the given example, only services in the Geodata domain using OWL-S

Service Descriptions are addressed through the combination.

Obviously, a service interface can be described in several ways. This leads to the discussion,

which option is preferable. On the one hand, the semantic description of a Semantic

Characteristic allows more constructors for the combination of ontological concepts. On the

other hand, such a Semantic Characteristic might be too restrictive and a combination of

characteristics in the Service Description could be more adaptive. However, when the discussion

is extended to the wrapped Char Properties, then a Semantic Characteristic with a more complex

semantic description can also include more sophisticated properties with more specialised

algorithms. In the context of Alternative Service Requests (cf. section 14.3), the possibility of the

description of services/requests in ACTAS in different ways is sketched anew.

Evaluation

 180

The figures Fig. 38 and Fig. 28 include the nfp-criterion “reliability”. The semantic description

of an RCh “ ” in Table 8 - Classification of OWL-S through the four aspects - speaks

more precisely of “Service-Reliability”. This Request Characteristic allows apparently a Service

Requester to look for a Service Offer supporting a certain method for checking of the reliability

of a service. The Char Properties of this characteristic could verify whether the Service Offer

fulfils some concretely demanded parameters of the supported method. The semantic description

of an RCh in Table 34 relates the requested services with a user group:

“ ”. Such an association for a Request Characteristic is also

principally illustrated in Fig. 28. This means that an ACTAS Administrator once introduced this

characteristic, in order to enable users having an ontological defined administrator role to look

for services supporting the intended reliability method. In fact, the quantifier “ ” might be

sensed as too restrictive here, as it means that the selected services can only be used by a user

group, in which each member is reduced to the administrator role. The existence quantifier (“ ”)

would only demand that the administrator role must be one of the roles of the members of the

user groups (cf. section Table 5 - Constructors of DL). Fig. 38 and Fig. 28 also introduce a

General Characteristic in the context of the nfp reliability, which leads to the extended usability

of Semantic Characteristics as “building blocks” considered in the next section.

14.2.2 Extended usability of Semantic Characteristics

In the System Environment (chapter 8), it was introduced as one goal of an ACTAS

Administrator to create and manage ontological repositories with Semantic Characteristics as

instances. This changes the view on Semantic Characteristics as commonly agreed concepts

classifying services as instances (as discussed in the last section) towards Semantic Characteristics

as instances of ontological repositories themselves. The Service Designer (could be the Service

Administrator mentioned as a user role in the description of the System Environment (cf. chapter

8)) can select semantically fitting Semantic Characteristics from these repositories through

concepts, which reflect the used criteria in the semantic description. The found Semantic

Characteristics can be used as “building blocks” for the Service Descriptions, in order to have

semantically correct interfaces using the intended algorithms for matching and checking of

constraints. The schemas of these ontological repositories have also to incorporate that

properties of Semantic Characteristics can be “linked” through Exchange Constraints (described

in section 10.4). One way of incorporation in the ontology is to relate the linked characteristic

instances. An example of such kind of relations is illustrated through the “Works with” edges in

Fig. 28, which relates instances of Compatibility Characteristics with instances of General

Characteristics. (The figure obviously integrates both views on Semantic Characteri stics.).

The tables in the appendix declare two Semantic Characteristics in the context of service

reliability: a General Characteristic (equation (22-2)) and a Request Characteristic (equation

(22-20)) both called “ ”. However, the semantic description contains different concepts:

the Compatibility Characteristic speaks of reliability on service level and the General

ACTAS

181

Characteristic on the level of a Composite Service. These characteristics could fit to the

Compatibility and General Characteristic related through a “Works with” edge in Fig. 28

(()). An explanation could be that the Request/Compatibility

Characteristic “ ” ensures that a service supports a reliability criterion. When a service

demands the composition of several services with this criterion, the service could use the General

Service “ ”, in order to calculate and check enhanced constraints. An adaptable

Exchange Constraint, which collects certain values from the Char Properties of the Compatibility

Characteristics, and which correlates them with Char Values of the General Characteristic, could

be already included in the char-environment (cf. Definition 4) of the General Characteristic. The

Service Designer could use the -relation, in order to find the Semantic Characteristics

working with the General Characteristics or with the Compatibility Characteristic, respectively. In

the latter case, DL offers the inverse use of the relation (cf. Table 5). For instance the equation

(Workswith { }) gives back all Compatibility Characteristics, which only work with the

General Characteristic “Reliability”. On the other hand, the equation (Workswith

-1
 { })

returns a set of the General Characteristics, which at least work the Compatibility Characteristic

“Reliability”.

The hypothesis of ACTAS implies that the discovery and composition become more

controllable with Semantic Characteristics. One aspect of services supports this vision directly:

the trading aspect (4 th aspect, phase 2). One can assume the introduction of a criterion, i.e. a

concept in an ontology for the second phase of the life cycle (Ontology trading), which is standing

for a certain kind of trading. A Trader Agent of ACTAS responsible for this kind of trading will

react when it finds a Compatibility Characteristic related with this criterion in a Trading Request

(TRe, cf. section 11.2). The criterion can be used for the inclusion of the trading environments of

other approaches. In this case, the TrA acts as a gateway to this trading environment: The

information of the TRe is mediated to information necessary for the access of the external

trading environment. With this information the Trader Agent performs a trading request with the

external trading environment. When a matching service is discovered, the TrA could work as a

FA for the found services.

The properties of a Compatibility Characteristic (CCh_Property in Definition 4) hold

Property_Merge_Class descriptions, i.e. algorithms for the checking of compatibility constraints

(so-called Merge Constraints). Characteristics could be associated with concepts selecting specific

matching and mediation algorithms. Examples for such matching algorithms are OWL-MX

[KluFri et al.2009] or WSMO-MX [KluKau2009], which include IR algorithms. WSMO supports

mediation algorithms between services and between goal and service. Service Grounding and the

Deployment may need a negotiation on the used Web Service standards. Some services use WS-I7

for this purpose. Thus, it might be important for the pre-selection of services that they support

such kind of negotiation. ACTAS could offer fitting characteristics.

7 OASIS, 14.01.2011

Evaluation

 182

14.3 Service Request

As shown in Definition 19, the Service Request is, despite its similarity in its data structure to a

Service Template, an entity, which holds various kinds of information. Firstly, it consists of

several Client Request Records with Request Ports as interfaces, since a Service Request in

ACTAS poses a request on behalf of several Service Clients. Secondly, a Service Request

possesses a Common Part, which allows the setting of constraints for the whole Composite

Service (cf. Definition 19). In the Service Composition, a Client Request Record is used to

generate an Actor Service Offer (ASO) (cf. C-Model, section 13.3). The Request Characteristics

describe a Request Port in the ASO.

Code 8 - Service Request for Alternative Client Requests

In Example 16, Alternative Client Requests were discussed, which would allow a Service Client

A to ask for the booking of a flight, the booking of a flight, and the hiring of a car in different

ways. In the context of this example, it was sketched, that Alternative Client Requests would get

recognisable in a Service Request through the referencing of the same Personal Agent (if the

application environment does not include Personal Agents, an identification of the Service Client

should be used instead). In Code 8 - Service Request for Alternative Client Requests, Alternative

Client Requests for the example are given. The resulting ASO is shown in Fig. 40.

An ASO is created for every Service Client stated in a Service Request. For Alternative Client

Requests, it is only one potential Service Client in accordance with its definition. Therefore, all

three Client Requests in the code appear as Request Modes in one Actor Service Offer in the

figure. The existing duality between Service Offer and Actor Service Offer becomes apparent.

Like the Service Modes of a Service Offer are selected due to the rule of principal during the

Composition Process, so a Request Mode must be selected by the Composition Agent for the

initialisation of the extended Composite Structure (CompSt-plus) (cf. section 13.3).

The first Request Mode (RM1) has only one Request Port holding three Compatibility

Characteristics for the mentioned services. In the appendix, these characteristics are introduced

with a semantic description relating them to their domain and a Service Design, which demands

WSMO goals in a Service Request and WSMO services in the Service Modes of principally

SReDFC= (SRe
ID ,ReARef,SRe-Common, Client-Request

Set
)

Client-Request
1
=(RM1

ID PAA
Ref ASTA

Ref RP1
Set, { }, SRe-Env

1
)

Client-Request
2
=(RM2

ID PAA
Ref ASTA

Ref RP2
Set, { }, SRe-Env

2
)

Client-Request
3
=(RM3

ID PAA
Ref ASTA

Ref RP3
Set, { }, SRe-Env

3
)

RP 1,1=((RM1,RP1)
ID, {HotelBooking, FlightBooking, CarHiring}, SRe-Env

3
)

RP 2,1=((RM2,RP1)
ID, {CompleteBooking}, SRe-Env

)

RP ,1=((RM ,RP1)
ID, {HotelBooking}, SRe-Env

)

RP =((RM ,RP2)
ID , {FlightBooking}, SRe-Env

)

RP =((RM ,RP)
ID , {CarHiring}, SRe-Env

)

ACTAS

183

compatible Service Offers. Thus, every Service Provider, who is offering these three services of

different kinds together, could publish a Service Template containing these three Compatibility

Characteristics.

Probably, the same Service Providers could answer the alternative Request Mode RM2, since it

uses a Compatibility Characteristic “CompleteBooking”, which allows several different kinds of

bookings including the ones needed in this case. In a WSMO-based booking environment, a

Service Requester would use such a booking service, in order to get the three services composed

in a proper way. Alternatively, the services could be discovered separately and composed through

the discovery environment. This happens with the third Request Mode RM3. The Compatibility

Characteristics stand in different Request Ports. In the WSMO-based environment, three

separate requests would be necessary.

Like in a WSMO-based environment, the “CompleteBooking” Compatibility Characteristic

would demand the existence of an extra booking service. However, the booking itself could

become quite flexible, since it will be possible to offer only a subset of the requested services,

when the originally requested services cannot be composed. In comparison of this Compatibility

Characteristic with the combination of simpler Semantic Characteristics in the Request Port of

the first Request Mode, it can be recorded that it might be easier to discover services with simple

Semantic Characteristics. However, their combination does not necessary request the same

services as a Semantic Characteristic, which combines in its semantic descriptions the semantic

descriptions of the simpler ones.

Fig. 40 - Actor Service Offer (ASO) for Alternative Client Requests

Evaluation

 184

14.4 Composition Process

The Request Agent (ReA) is part of the Application Environment and it is the interface to the

environment of ACTAS. The ReA will create the Composition Agent (CoA) with a behaviour

adapted to the application environment. Therefore, the CoA can be used, in order to integrate

established algorithms for Service Composition. In this section, an overview about different ways

of doing the Composition Process is discussed. The terms in Table 22 are used in the description.

Four cases are differentiated through the Composition Graph (cf. Definition 27):

 1st case: the resulting Composition Graph is a tree

 2nd case: the resulting Composition Graph does not contain a loop

 3rd case: the resulting Composition Graph is not restricted

 4th case: several edges between vertices are allowed

The Composition Algorithm starts with the Open Ports of the Actor Service Offers (ASO)

(()) created of every Client Service

Request of the Service Request (cf. section 13.3). The primary goal of the Composition

Algorithm is the looking for compatible services for the Open Service Ports (Principal

Compatibility in Definition 11 and equation (14-1)). The goal is an empty set of Open Ports

(), i.e. for all Open Ports a compatible Service Port was found and composed. The

result is the composition graph () (cf. Definition 27).

The data of the Open Port contains a field called “depth” (cf. Definition 27). Its definition

keeps in mind that the Composition Process starts with a Service Request and that an ASO is

based on a Client Request of a Service Request. The introduced algorithm of the Composition

Process in the C-Model description uses the field “depth”, in order to sort the set of Open Ports

in an ascending order. The Open Port with the smallest path length was chosen for the next

Service Discovery and Service Composition step. However, only Out Ports or non-directed Ports

were selected, since IN Ports only offer a service.

A more elaborated way to deal with the set of Open Ports is the splitting up of the set in

the subsets for IN Ports (), OUT Ports (), and non-directed Open Ports

(). In this way, the OUT Ports and non-directed Open Ports can be easier selected and

managed. In the following paragraphs some cases for the Composition Process are covered.

Principal compatibility in formula:

 () () () ()
 () ()

(14-1)

ACTAS

185

1st case) the resulting Composition Graph is a tree

The resulting graph will become a tree, when the selected Service Modes () may have only

one IN Port (()), but there is no restriction for number of the OUT

Ports. A Composition Agent, which follows an algorithm with this rule, could look effectively for

information retrieval services or services of the Cloud Computing, which distribute the

computation load on several services. The Compatibility Characteristics of these services will help

to get just these services.

2nd case) the resulting Composition Graph does not contain a loop

The CoA wants to avoid loops in the composition graph, therefore it follows the following

rule: the OUT Ports of a selected Service Mode smx will only become members of the Open

Ports (()), when all IN Ports of smx have been composed

(()).

Proof: It shall be assumed that a service (vertex) smy exists in the set of selected Service
Modes SC of G assembled with the above stated rule and smy shall have a loop starting at
one of its OUT Ports.
Length of the loop is 1: This cannot be because the OUT Ports of smy would be only
considered for composition, when all IN Ports are composed.
Length of the loop is greater than 1: When such a loop occurs, the vertex smy must have
got a path reaching a vertex sma, which had already a path with an IN Port of smy.
Following the rule, there will be always for every vertex an earlier time t, when all IN Ports
are composed, and a time t’, when an OUT Port was composed (t < t’). For the vertices
and their OUT Ports on the assumed path may these times (

) and (
),

respectively. Since smy was assumedly connected with sma it must be valid (
), but

sma shall also have a path to smy, i.e. (
), and this leads to non-resolvable conflict.

Therefore no loop can exist. <q.e.d.>

The avoidance of a loop inside of the graph ensures that no service relies on the other one.

ACTAS does not do a Service Composition on process level; these issues could be clarified

transparently through Merge Constraints. However, the directed Service Composition between

Client and Server Ports normally express a reliance relation between the services, i.e. a service is

likely to need the services requested with the OUT ports, in order to provide the services offered

at the IN ports. A supply chain might want to avoid such kind of reliance for the prevention of

resource conflicts.

3rd case) only one composition between two selected Service Modes

In the third considered case, the rules of the (composition) graph shall still be observed, i.e.

there shall be maximum one edge between two vertices. Loops are allowed. In a supply chain or

other e-business scenario, it can occur that a service which relies on other services can also offer

a service, which is of interest for the services; it relied on in the first place. It might be even

important for the supply chain that this loop in the composition graph exist. In the last case, the

loop was excluded, in order to avoid constraints of resources. An extra Option-Slot could ensure

that the loop is established by the Composition Agent.

Evaluation

 186

The application environment determines the policies for the composition of a CoA. A CoA for

the composition of communication services will likely try to achieve a connected graph keeping

the mentioned “depth” value as low as possible (cf. Definition 24). The value of the “depth” field

could be also used, in order to decide about the fail of a Service Composition, when it exceeds a

given threshold. An example for a CoA, which is interested in a connected composition graph, is

discussed in the next paragraphs in the context of MCU-Conferences.

A MCU-Conference enables a flexible number of Service Clients having a communication with

the help of a Multi Communication Unit (MCU). In the past, a MCU has been often a technical

facility installed in a special room, which had to be booked, in order to be used. Nowadays,

applications like Skype offer similar solutions with an ad-hoc access. In the ideal System

Environment of ACTAS, the Personal Agent could verify, if and when a user is available for the

use of conference applications like Skype.

In the terms of ACTAS, a MCU is represented through a Service Mode of a Service Offer,

which offers an adaptive number of Service Ports depending on the number of Service Clients

and their sub-graphs of services, which shall be composed with the Service Offer of the MCU.

The selection of the MCU Service Mode for the Composite Structure means, that the sub-graphs,

which started with the ASOs built of the Client Requests, get connected. In Fig. 41 - Composite

Structure (CompSt) with use of Multi Ports, an example of a Composite Service with a MCU is

shown. The Multi Port offers an Audio-Video-Conference through the Request Characteristic

“AV-Conference” (cf. equation (22-13)). Additionally, the Request Characteristic “Loc-Auth” (cf.

equation (22-16)) is used, in order to clarify that the MCU is reachable at a time slot and the

costumer has an authorisation for the using of the MCU. The General Characteristic “Planning”

could verify the planning of the time slots of the Service Clients. In this way, even a conference

with Skype could get planned as long as the application environment, which generated the

Service Request for the AV Conference in the first place, offers a user interface in this direction.

Fig. 41 - Composite Structure (CompSt) with use of Multi Ports

ACTAS

187

In section 10.2, the Option-Slots for the control of the behaviour of the Composition Process

were portrayed. A “multi-port” Option-Slot was introduced for the realisation of a Multi Port in

Table 13. The environment description (ST-Env in Definition 8) of a Service Port declared as a

Multi Port will contain this Option-Slot. It should at least specify the number of allowed

replications of the Service Port. The MCU might not demand that all possible Service Ports are

used. Thus, the FA could offer a Service Template for the MCU, which holds a Service Mode

with the number of Service Ports, which have to be composed as IN Ports in order to be able to

use the MCU. One of these Service Ports could be additionally declared as a Multi Port. A

Service Offer based on a Service Template with a Multi Port can automatically create a new

Service Port with the same information if useful in the Composition Process. Every Service Port

of a MCU Service Offer is based on the same basic information set through the Value

Constraints. In this way, an additional Service Client could use the MCU-facility.

A lot of publications like [ÇelElç2008] exist, which consider the composition of services based

on the IOPE capability description of SWS. OWL-S is mainly using this kind of capability

description. Many of the approaches, which could be adapted for the behaviour of the CoA, use

the input and output parameters given in the IOPE capabilities, in order to compose services.

Principally, they all try to produce the wished output parameters with the provided input

parameter. If one Component Service cannot produce all output parameters, a Service Discovery

for another Component Service will be started for the left output parameters. The Component

Service might follow the same principle on the next level, in order to produce its output

parameters. A complex Composite Service can be the result.

This scenario can become another application of the Multi Port in ACTAS, as shown in

Fig. 42. The OUT Ports of an ASO were declared as Multi Ports. This is the inverse application

of a Multi Port in comparison to the previously discussed application, where an IN Port was

replicated. The Service/Request Ports in the current example contain OWL-S Service

Descriptions wrapped in the Compatibility Characteristics “OWL-S_with_IOPE”, which were

Fig. 42 - Multi Port in an ASO for OWL-S Service Composition

Evaluation

 188

ealier covered. The Merge Property Class associated with the Char Property holding the Service

Description could give access to the matching results of the input and output parameter for a

Service Composition. Following, the mentioned algorithms and knowing the restrictions given

through the “multi-port” Option-Slot, the CoA can decide to create a new Request Port. Fig. 42

shows a possible result of the CompSt. The information in the OWL-S Service Descriptions

helps to perform the subsequent phases of the life cycle.

The discussion above showed that a Service Mode can have Service Compositions with several

other Service Modes. However, there is only one composition between two distinct Service

Modes possible in the current case (3 rd case). The Multi Port makes a Service Mode adaptable.

Therefore, the possibilities for the dynamic adaptation of the parts of the Service Description of

ACTAS shall be shortly discussed in the following.

The set of Compatibility Characteristics in the Service/Request Ports decide the principal

compatibility of services in ACTAS. A Trading Request (TRe, cf. Definition 20) contains a given

set of Compatibility Characteristics, which should not be changed, because the Composition

Process relies on them. If a Facility Agent or Trader Agent recognizes through the semantic

descriptions of the Compatibility Characteristics that it could offer a service fulfilling the

principal compatibility then the agent will react and extend the Service Template accordingly if

necessary. Such a dynamic extension of the ST done by the agent will be implemented in future

versions of ACTAS.

A further consideration would be the extensions of the rules of principal compatibility. Similar

to the matching ideas for IOPE matching in SWS, a Service Port offering less or more

Compatibility Characteristics than the demanded ones, could be still declared as a kind of

principally compatible. However, these ideas shall not be applied, since the agreement on the

categories is an essential principle of ACTAS.

The dynamic extension of the number of Service Ports of a Service Mode was answered with

the Multi Port idea. However, it shall be only applied where the Service Des igner set the “multi-

port” Option-Slot (cf. Table 13 - Option-Slots of Service Ports). Two Service Ports realises a

fixed directed or non-directed Service Composition between two Service Modes. In the State-of-

the-Art, it was discussed that in a Business Service the role of the involved parties can change

from a client to a provider and vice versa. In Fig. 43, this case is shown for the Service Client.,

Fig. 43 - Business Service with principal compatibility

ACTAS

189

who firstly requested a “Travel” service and combined this with a Compatibility Characteristic for

an “Insurance” service. One Service Port does only support one direction of Service

Composition. Nevertheless, the Service Provider felt obviously the need to settle the billing with

the costumer as early as the Service Discovery of ACTAS. At this time point the Personal Agent

of the costumer could come in the role of a Facility Agent. The Personal Agent could manage an

Actor Service Template (AST) similar like a Facility Agent its ST. In this way, a professional

costumer could provide a Service Mode for the billing. This Service Mode is then selected for the

Composite Structure.

4th case) Several Service Compositions between two Service Modes

The fourth case leaves the highest degree of freedom for the Service Composition in the

Composition Process. Even the definition of the Composition Graph in Definition 27 would

have to be adapted, in order to accept several edges between two vertices. This adaptation is

done through the introduction of the triple (V, E; I), V as the set of vertices, E as a set of entities

for the edges, and I as an incidence relation (). An application shall be sketched. The link

between two Technical Services can be split in several single links. For instance the transport of

gas or water between two sides can be done in several single pipelines (cf. Fig. 44). The

Composition Process could apply methods offered by the used Merge Property Class of the

Compatibility Characteristic “Pipeline”, in order to find out the used capacities of the pipelines

and the wished amount of transported gas. The different views on the Merge Property Objects

(cf. Definition 17) are certainly helpful for this purpose. Finally, the CoA will decide whether it

adds a new pair of Service Ports with the Compatibility Characteristic “Pipeline” depending on

the requested amount and the current resources. This idea could also involve the negotiation of

agents. The Composition Process could integrate graph algorithms like the Ford-Fulkerson’s

Algorithm for the maximum flow between two vertices, i.e. Service Modes for water or gas

supply in the assumed scenario.

Fig. 44 - Several compositions between selected Service Modes

Evaluation

 190

Term Description

 () Composition Graph as introduced in Definition 27

Set of directed edges in CompSt
 () () ()

 () Set of non-directed edges in CompSt

Sets

 Set of all Selected Service Modes in CompSt

 Set of all Merged Service Ports in CompSt

Sets of Open Ports in CompSt-plus
(with direction IN, OUT, non)

Set of Service Ports in CompSt-plus
(with direction IN, OUT, non)

 Set of all Service Modes

 Set of all Service Ports

Unified Set of all Service Offers and
Actor Service Offers

Set of all Property Objects,
the handles to the implementation instances

Functions

 (),
 ()

Getting Service Ports of a Service Mode
Getting Open Ports of a Service Mode

 () Getting IN Ports of a Service Mode

 () Getting OUT Ports of a Service Mode

ACTAS

191

Term Description

 () Getting non-directed Ports of a Service Mode

 ()
 (())

Getting the set (of references) of Compatibility Characteristics
from a Service Port

 () Getting the set of General Characteristics from a Service Port

 () Getting the set of Service Modes from a (Actor) Service Offer

 Getting the Client/IN Server Port of a Merged Service Port

Getting the Server/OUT Server Port of a Merged Service
Port

Getting the MeProperty from a Merged Service Port

 Getting the Client/IN Server Port of a Merged Service Port

Getting the Server/OUT Server Port of a Merged Service
Port

 Getting the Merged Port

Table 22 - Terms for the description of the Composition Process

15 Case Study 1: Technical Services with translation

Convergence of data and telecommunication networks leading to a coherent and transparent

technology promises better services and improved quality. The liberalization of the

telecommunication market allows the users the choosing of different operators for various

services. The result is a portability of services with respect to users’ needs enabling often already

for instance the transparent combination of data, voice, and video. As Cloud Computing shows,

Technical Services are increasingly combined with an elaborated prizing schema. Thus, the

aspects of different domains become combined and the search for a telecommunication Service

Providers involves the comparison of prizes. Currently, proprietary solutions dominate the

market in Cloud Computing leading to the previously mentioned Lock-in-Effect. However, the

pressure of the market will lead to autonomic Service Discovery and Composition. The

transparency of the technical side towards the Service Clients was discussed in the State -of-the-

Evaluation

 192

Art. From this point of view, Technical Services distinguish between B2C and B2B interfaces.

The latter interfaces used for the realization of the Technical Service itself.

15.1 The ACTAS Administrator

ACTAS supports the distinction of the two kinds of interfaces through the introduction of a

special kind of Compatibility Characteristic, the Request Characteristic used for the description of

the interface towards the Service Requests. On the one hand, an ACTAS Administrator could

rely on the existing networks and would not introduce specific Compatibility Characteristics for

the description of the technical interfaces. On the other hand, just the existing plurality of

Technical Services, partly intentionally increased as stated, could make a matching of service

parameters on the level of ACTAS interesting for Technical Services.

Thus, the ACTAS Administrator could introduce several Semantic Characteristics wrapping

such parameters in a specific semantic context. For the description of the internal interfaces, he

could publish Compatibility Characteristics like “Phone” for a telecommunication service as

given between telephone switchboards or exchange facilities. The audio-video standard H.3238

for IP-based networks could lead to the introduction of another Compatibility Characteristic,

named “H.323”, wrapping Char Properties, which help to clarify parameters of H.323 -based

connections.

Already Example 1 showed a communication service between two Service Clients having

communication facilities connected to different networks (telephone and H.323). In Autonomic

Service Oriented Computing, this fact shall stay transparent for them; especially the needed

network gateway is concealed. For the Service Client interface, the ACTAS Administrator can

introduce Request Characteristics describing the interface for the Service Clients. The Service

Clients do not describe their wished services in technical terms and it is not likely that they are

firm in the WSML language. Therefore, the ACTAS Administrator decides to publish a bunch of

Request Characteristics having Char Properties for a simple description: “General -Com”, “AV-

Com”, “Audio-Com”, and “Written-Com”. The first one should accept communication with any

combination of data, audio (includes simplex or higher quality), video, or voice. “AV -Com”

supports audio and video combinations. Blackboard, chat, or e-mail communication should be

covered with “Written-Com”.

The ideas of the ACTAS Administrator do not stop here. He realises, that Exchange

Constraints will be needed for the data mediation. ACTAS speaks in this context often of

“translation”, because it works with Property Objects (cf. C-Model), in order to access the

information hold in the implementation instances. Due to the declarative environment, the

Property Objects used in the Exchange Constraints have to be “borrowed”, their information

mediated, and then returned to the information of the Composite Service.

8 IEC, 2007

ACTAS

193

The ACTAS Administrator could consign the task of writing the Exchange Constraint to the

Service Designer. However, this would make the handling of ACTAS clumsy, since the Service

Designer would have to look up matching Exchange Property Classes on his own every time,

when he wanted to use the characteristics. ACTAS offers the possibility to introduce Semantic

Characteristics as “building blocks” for such translation tasks through pre -defined Exchange

Constraints. Mostly General Characteristics will be used for such a task. The General

Characteristics can be placed in the Service Mode or the Common Part of the Service

Description, i.e. the Service Template. The ACTAS Administrator introduces General

Characteristics for the translation task like the following ones: “Audio-Phone”, “Audio-H.323”,

and “AV-H.323”. These General Characteristics could have several Exchange Constraints, in

order to mediate from the information of the user interface to the information of the technical

interfaces.

The “ExchangeProperties” term (cf. Definition 18) of a pre-defined Exchange Constraint can

be empty or contain the names of Property Classes, which can be associated with the Exchange

Names. In the “view” field, it can specify the preferred view, in order to borrow a Property

Object of that Property Class from a Merge Property Object (cf. section Definition 18 (Ex-Co in

C-Model) Definition 15, and Definition 17). An adaptation of this pre-defined Exchange

Constraint through the “exchangeProperties” Option-Slot was illustrated in Example 15, which

showed a principal Service Mode holding a General Characteristic “Audio-Phone” with the pre-

defined Exchange Constraints, which in its adapted version translated values of the Semantic

Characteristic “Audio-Com” into values of the Semantic Characteristic “Phone”.

The principle of translation with an Exchange Constraint inside of a General Characteristic can

be extended through the use of so-called Translation Offers. In section 14.2, it was already

motivated that the vision of WSMO is based on mediators doing the mediation between its

components through centralized algorithms, i.e. external algorithms accessed through URLs. The

Translation Offers of ACTAS extend this vision. They set the mediation algorithms and other

centralized algorithms in the semantic context described through the Semantic Characteristics

and their definitions. As previously discussed, the mediators of WSMO can be used in the

constraints of ACTAS. The Value Constraints setting a goal or service component could

integrate the mediators defined for these components in their term “usesMediatior” (cf.

[FeKeZa2008]). For instance the component goal uses the ooMediator for data-to-data mediation

and a ggMediatior, in order to describe some extensions in comparison to another goal. The

Merge Constraint for a WSMO description could use besides the matching algorithm the

mediators allowed between goal and service. Finally, the Exchange Constraint could take

advantage of any mediator, in order to mediate between the WSMO elements. In ACTAS, the

Exchange Constraints extend the mediation to values not defined in WSMO.

A Translation Offer offers the mediation mainly based on Exchange Constraints to the service

world of ACTAS. It allows for instance the translation from one user interface (Request

Characteristic) to another one. Thus, service can be provided without the complicated Service

Evaluation

 194

Description of SWS, but with restricted and adapted describing options for the user application.

A Translation Offer can translate this user interface to the SWS interface, in order to use their

methods. In the following paragraphs the use of Translation Offers in the context of this case

study is covered. ACTAS speaks of “translation” instead of “mediation” due to the just discussed

extensions to the vision of WSMO.

15.2 Translation Offer

In Fig. 45, an example of a Translation Offer is shown. It translates information between the

Request Characteristics “AV-Com”, “Audio-Com”, or “Written-Com” and the Request

Characteristic “General-Com”. These are the Request Characteristics, which were assumedly

introduced by the ACTAS Administrator earlier on.

The advantage of these Translation Offers is that the Service Designer has not any longer to

think himself about the creation of Service Modes with General Characteristics for the translation

of different interfaces, his Service Offer could support. He can rely on the existence of

Fig. 45 - Example of a Translation Offer of ACTAS

ACTAS

195

Translation Offers. The Translation Offer in Fig. 45 uses the General Characteristics “General-

AV”, “General-Audio”, and “General-Written”, in order to keep pre-defined Exchange

Constraints for the mediation of the values of the enumerated Compatibility Characteristics. The

figure also shows the effect of the “exchangeProperties” Option-Slot. Service Properties of the

Compatibility Characteristics “General-Com” and “AV-Com” are associated with Exchange

Names of the pre-defined Exchange Constraints.

Finally, the Service Designer can use the provided and published Semantic Characteristics. He

defines Service Templates as discussed in Example 9, which consists of several Service Modes.

The design of Service Descriptions with Semantic Characteristics as “building blocks” was

sketched in Example 15, which portrayed the use of pre-defined Exchange Constraints for the

General Characteristic “Audio-Phone”, providing a translation from the Request Characteristic

“Audio-Com”, used in the user interface, to the Compatibility Characteristic “Phone”, used in

the transparent technical interface previously discussed. The Service Modes of the Translation

Offer provide a similar translation, but between user interfaces, i.e. it is dealing with Request

Characteristics.

 Audio-Video-Communication with Translation Example 20

A Service Request looks on behalf of a Service Client A for a general way of
communication (“General-Com”) and on behalf of a Service Client B for an audio-video-
communication (“AV-Com”). In the Composition Process, it turns out that “General-
Com” has to be translated, in order to find directly Service Offers for AV-Com. It is
assumed; that otherwise the Composition Process could not find composition graphs
with a satisfying path length (in short the “depth” value became too high every time so a
backtracking was forced, cf. section 14.4). A resulting Composite Structure is shown in
Fig. 46 - Audio-Video-Communication with Translation. It illustrates the used Exchange
Constraint for the translation and the Merge Constraint on one of the concerned Service
Properties.

Fig. 46 - Audio-Video-Communication with Translation

Evaluation

 196

In Example 17, the start of a Service Composition of a telecommunication service is shown

through Service Request, ASOs, and initialised Composite Structure. The Composition Process

with the necessary use of a gateway in telecommunication is portrayed in Example 18. In

Example 19, the resulting Composite Structure is given. The dual steps are shown for the audio-

video-communication with translation in the subsequent example.

The Fig. 46 shows that the Service Mode RM1 was chosen. (Remark: the identification of the

Service Port shows that is actually even a Request Mode, since it only contains Request Ports, i.e.

Request Characteristics, a translation of user interfaces.) The Translation Offer will have the

“translation” Option-Slot (cf. Table 14), in order to ensure that Exchange Constraints for the

translation are applied before the next Service Discovery step with a Trading Request (cf. C-

Model, section 13.4 - Step 3: Service Discovery and Principal Compatibility). It is this Option-

Slot, which indicates towards the CoA that it actually deals with a Translation Offer.

At closer inspection of the sketch Composition Process, one could complain that it is actually

undetermined when the Translation Offer is actually discovered and applied. On the one hand,

this is not necessarily a disadvantage, since a Service Offer might be discovered with the

Compatibility Characteristic “General-Com”, which integrates best into the Composite Service.

On the other hand, special Trader Agents could exist for the publication of Translation Offers.

When the Composition Agent early recognises that a translation is necessary, it will directly

address these Trader Agents with its next Trading Request for e.g. “General -Com”. The CoA

might even introduce an Option-Slot, in order to the Trader Agent with the TRe, which Semantic

Characteristics are wished as goal of the translation.

At the beginning of the evaluation, in chapter 14, the use of a criterion classified as belonging

to the second phase, the Trading Phase, of the life cycle (4 th aspect, phase 2) was discussed as a

criterion for the semantic description of a characteristic. When such a criterion for translation

trading is related in the semantic description with Compatibility Characteristic, for which

Fig. 47 - Alternative Example of Translation Offer

ACTAS

197

Translation Offers exist, then the Trader Agent will react automatically on the existence of these

Compatibility Characteristics inside of a Trading Request (TRe).An alternative way of forcing

early translation is shown in Fig. 47 - Alternative Example of Translation Offer.

The Request Port contains an additional Request Characteristic: “Translation”. This Request

Characteristic demands to further Compatibility Characteristics in the Service Port, namely the

two ones, which shall be mediated. A relationship established through the “exchangeProperties”

Option-Slot is again illustrated. Obviously only a Translation Offer offering this service in one of

its Service Modes will be discovered. Advantage is the avoidance of backtracking. However, the

Composition Agent must already decide at the time point of initialisation of the ASO (cf. section

13.3) that a Translation Offer is needed. The CoA must adapt the set of references of Request

Characteristics in the Request Mode, in order to include the Request Characteristic “Translation”.

A possibly resulting Composite Structure is shown in Fig. 48 - Audio-Video-Communication

with alternative Translation. It is straight forward and can be easily understand in comparison to

the original Service Composition in Fig. 46 - Audio-Video-Communication with Translation.

However, something new happened here. Previously, the application of (some) Exchange

Constraints had to be earlier, in order to have mediated information for the next Service

Discovery (Trading Request) step. With the alternative translation method the even the

processing order of the Service Ports becomes determined. The Service Port with the Request

Characteristic “Translation” has to be performed first, in order to transfer the information to the

Request Characteristic “AV-Com” in the second Request Port for the next Trading Request.

Fig. 48 - Audio-Video-Communication with alternative Translation

Evaluation

 198

16 Case Study 2: Distribute Feature Composition (DFC)

Before the application of Semantic Characteristics of ACTAS for the Service Description (S-

Model) and the Service Request (R-Model) is possible, ACTAS Administrators of diverse

application domains have to become active and must introduce applicable characteristics. In this

chapter, a simple example of Distributed Feature Composition in the domain of Technical

Services for the telecommunication (cf. Example 21) is used for the development of Semantic

Characteristics and their usage as “building blocks” for the Service Description and Service

Request. The Example was chosen, in order to include the use of the Common Part of a Service

Request and non-directed Service Composition.

The Example 21 - Distributed Feature Composition (DFC), gives a hint that in research areas,

which are ruled by proprietary solutions of industrial companies (in this case companies for the

production of telephone switchboards), the agreement on commonly accepted standards is not

easy and might not be even wished due to company policies and compliance. A common

research based on non-existing standards is not easy. For instance, every company can introduce

their own features and Feature Description Languages (FDL) in the case of DFC. Two different

approaches of FDL are discussed in the example.

An ACTAS Administrator in the domain of telecommunication will recognise that it could be

useful to clarify the constraints originated in DFC in the context of telephone exchange services

as early as possible, when he looks at the plurality of features and FDLs. However, he has to

distinguish between properties, which are of interest for the customer, and other ones, which are

more of use for the internal Service Compositions, which shall stay transparent for the Service

Clients. In short, similar to the distinction between B2C and B2B for the e-business domain, he

has to describe properties for the customer interfaces and other ones for the technical interfaces.

ACTAS supports this distinction through the use of Request Characteristics.

The FDL offered by the site [Dee2011] clarifies the message sequences between the Technical

Service of a telephone and the exchange. This is certainly a property, which is out of interest for

the customer. However, if the exchange cannot support the wished features, there is no sense to

go ahead with the establishment of the telecommunication connection. The second FDL,

introduced in the publication [DeuKli2002], is declarative and based on the Domain-Specific

Language (DSL) research and in the publication of [ShiAda et al.2010], it is shown and tested a

way how the interpretation of this FDL and other DSLs can be adaptively realised through an

SOA approach. Thus, the ACTAS Administrator sees a possibility to realise implementation

instances, which can deal with a property containing feature interactions described through a

program written in this declarative FDL.

Finally, the ACTAS Administrator could decide to introduce a Request Characteristic and a

General Characteristic and call them both simply “Feature” (cf. equation (22-15) in Table 34 -

Request Characteristics (RCh) and equation (22-6) in Table 32 - General Characteristics (GCh)).

The introduced Semantic Characteristics contain distinct Char Properties based on the different

ACTAS

199

FDLs. The Request Characteristic is for the description of compatibility between a Service

Request posed on behalf of a telecommunication customer, and a Service Offer offered by a

Service Provider of a telephone exchange. For this purpose, the ACTAS Administrator will

associate the Request Characteristic through its Semantic Description (cf. equation (22-15)) with

the telecommunication customers as a user group.

The Request Characteristic “Feature” wraps a Char Property named “Dependency” (cf.

equation (22-15)), which is assumedly based on the declarative FDL of [DeuKli2002]. The Char

Property Class (“declarativeFDL”) associated with the Char Property at its declaration could

point to an implementation using the interpretation environment for the declarative FDL

described by [ShiAda et al.2010]. The Value Constraints for the Char Property called

“Dependency” could use two methods of the Char Property Class for the initialisation of this

Char Property. The first method (assumedly called “setFDLprogram”) would describe the

constraints coming from the allowed feature interactions in the context of a given telephone

exchange in a declarative description based on this language. A program for the composition of

car parts is shown in Code 10 - Example for declarative FDL adapted from [KosMar et al.2008].

An initialisation with such a code is a typical initialisation of the Service Provider. The second

method (“setFeatures”) should enumerate the wished or offered features themselves. Like all

methods used of Property Classes, this latter method could accept in its parameters a URL link to

a file/resource describing the input. If the suggested initialisation file describes actually the

wished or offered features will certainly depend on the application of the Request Characteristic

in a Service Request or a Service Description, respectively.

In the next paragraph, the case study comes back to the FDL, which describes the features

through message sequences. In the made assumption, the ACTAS Administrator could decide

that the earlier introduced General Characteristic “Feature” (cf. equation (22-6)) wraps a Char

Property called “SequenceDiagram”. He thinks of the FDL offered by the site [Dee2011] as an at

least proprietarily accepted standard, in order to clarify the compatibility between the service of

the telephone exchange and the service of the telephone facility in the context of supported

features. Thus, he associates a Char Property Class “sequenceFDL” with the Char Property

“SequenceDiagram” at the time point of its declaration (cf. equation (22-6)), in order to take

advantage of algorithms handling this kind of FDL. However, since he does not believe that

anybody is interested in describing a Service Composition on the level of abstraction of the

message exchange between telephone and switchboard, he will not introduce a further

Compatibility Characteristic, but a General Characteristic, which can work with the previously

discussed Compatibility Characteristic (a Request Characteristic is a Compatibility Characteristic)

“Feature”, in order to have access to the “agreed” features for an Exchange Constraint kept in

the “merged” view of the Merge Property Object of the Service Property Dependency (c f.

equation (22-6) and Definition 17 - View on Merge Property Object).

The “agreement” on certain features is a result of the application of the Merge Constraint,

which will be applied on the property “Dependency” in the Composition Process (cf. section

Evaluation

 200

13.5 - Step 4: Checking of Merge Constraints). The ACTAS Administrator associated the Merge

Property Class “declarativeFDL-me” with the Char Property “Dependency” at its declaration in

the semantic context of the previously covered Request Characteristic “Feature” (cf. equation

(22-15)). The semantic context for both Semantic Characteristics is given through their Semantic

Description. Both are related with ontological concept of a domain “telecommunication” (cf.

equations (22-6) and (22-15) as well as Definition 5 - Semantic Description (SemDescr) of Char).

The Request Characteristic is additionally declared as being usable by a “phoneCustomer”, a

concept used in the assumedly existing ontology for the classification of user groups

“ ”.

The Service Designer will use for the Service Description the Semantic Characteristics

designed and published in the ontological repository by the ACTAS Administrators. This means,

he will firstly describe Service Templates like the one shown in Code 11 and Fig. 49. The “works-

with” relationships in the ontological repository of the Semantic Characteristics will help him to

understand the relationships between the Semantic Characteristics. In Example 15, the

Compatibility Characteristics “Phone” and “Audio-Com” as well as the General Characteristic

“Audio-Phone” were covered. In this chapter, an ACTAS Administrator, assumedly employed in

a telecommunication company and responsible for the support of DFC, might decide to

introduce two distinct Semantic Characteristics, in order to address both aspects: a Compatibility

Characteristic and a General Characteristic both called “Feature”. The Compatibility

Characteristics “Audio-Com” and “Feature” were also declared as Request Characteristics, in

order to use them for the description of a compatibility interface to the Service Request.

A possible Service Description for a telephone exchange/switchboard based on the mentioned

Semantic Characteristics is shown in Code 11 and Fig. 49 - Service Template for the Feature

Composition example. In opposite to the Service Template shown in Example 9, the illustrated

ST in Fig. 49 has only one Service Mode. This Service Mode SM1 has two Service Ports: SP1 and

SP2 (the Service Ports in Code 11 have two indices, in order to show that they belong to SM1).

SP1 offers a non-directed interface for the connection to another switchboard. This is a B2B like

interface, which stays transparent to the Service Client(s). In fact, the Service Designer could

describe a Service Mode without this interface in the assumption, that two telephone switchboard

will have a connection via the worldwide telephone network. Nevertheless, ACTAS allows

clarifying some additional parameters for this connection. Such kind of “phone” interfaces

become even more interesting, in order to clarify telephone conferencing or the necessary use of

a gateway, when the Service Clients have communication facilities linked to different networks.

The second Service Port is more important for the discovery of the Service Offer. It is

declared as a Request Port through the “request” Option-Slot and as Server Port through the

“direction” Option-Slot with the direction “IN”. The ST-Env4 is shown with a Value Constraint

for the initialisation of the Service Property “Dependency”, which was declared as Char Property

in the semantic context of the Request Characteristic “Feature” as earlier described.

ACTAS

201

 Distributed Feature Composition Example 21

Communication Services using telephone switchboards (also called exchanges) generate a

feature composition problem, which is research subject of Distributed Feature

Composition (DFC). DFC is a virtual architecture for specification and implementation

of telecommunication services (cf. [JacZav1998]). In DFC, a feature is an increment of
functionality, usually with a coherent purpose. In Table 23 several examples of features
offered by an American telephone company are listed. Features are popular in various
domains because they are easy to add and change. However, feature composition

generates also the problem of feature interaction. A feature interaction describes the

way, in which a feature or features modify or influence each other. Thus, feature
interactions are part of defining overall system behaviour. It is possible to distinguish
between the feature interactions on one side of the telecommunication (Local Feature
Composition) and the feature interactions arising between the features on distributed
sides of the telecommunication (Distributed Feature Composition).

Languages like for instance Feature Description Language (FDL) were developed, for the
analysis of feature compositions. However, different FDLs with various purposes have
been developed. Two approaches are discussed in this example. At the site [Dee2011], a
FDL is offered, which allows the introduction of features for the description of message

 Authorization Code

(Authcode)

 AutoDial

 Auto Display

 Automatic Call Distribution

(ACD)

 Busy Lamp Field

 Call Forward Busy

 Call Forward Don't Answer

 Call Forward Programmable*

 Call Hold*

 Call Hunt

 Call Park*

 Call Pickup

 Call Prompter

 Call Transfer*

 Call Waiting

 Consultation*

 Cutoff on Disconnect

 Executive Intercom

 Group Intercom

 Inbound Caller ID*

 Intercept Recording

 Last Number Redial

 Make Set Busy

 Message Waiting Indicator (MWI)*

 Multiple Appearance Directory Number

(MADN) feature

 Music on Hold

 Name Display

 Outbound Caller ID

 Ring Again*

 Simultaneous Ring (SimRing)

 Six-Way Conference

 Speed Calling

 Symposium Call Center

 Three-Way Conference*

 Voice Mail

 Voice Mail: Announce Only

* Standard features

Table 23 - Telephone Features

http://www.itcom.itd.umich.edu/telephone/features.html#authcode
http://www.itcom.itd.umich.edu/telephone/features.html#authcode
http://www.itcom.itd.umich.edu/telephone/features.html#AutoDial
http://www.itcom.itd.umich.edu/telephone/features.html#AutoDisplay
http://www.itcom.itd.umich.edu/telephone/features.html#ACD
http://www.itcom.itd.umich.edu/telephone/features.html#ACD
http://www.itcom.itd.umich.edu/telephone/features.html#Busy
http://www.itcom.itd.umich.edu/telephone/features.html#CallForwardBusy
http://www.itcom.itd.umich.edu/telephone/features.html#CallForwardDontAnswer
http://www.itcom.itd.umich.edu/telephone/features.html#CallForward
http://www.itcom.itd.umich.edu/telephone/features.html#CallHold
http://www.itcom.itd.umich.edu/telephone/features.html#CallHunt
http://www.itcom.itd.umich.edu/telephone/features.html#CallPark
http://www.itcom.itd.umich.edu/telephone/features.html#CallPickup
http://www.itcom.itd.umich.edu/telephone/features.html#CallPrompter
http://www.itcom.itd.umich.edu/telephone/features.html#CallTransfer
http://www.itcom.itd.umich.edu/telephone/features.html#CallWaiting
http://www.itcom.itd.umich.edu/telephone/features.html#Consultation
http://www.itcom.itd.umich.edu/telephone/features.html#CutoffOnDisconnect
http://www.itcom.itd.umich.edu/telephone/features.html#Executive
http://www.itcom.itd.umich.edu/telephone/features.html#GroupIntercom
http://www.itcom.itd.umich.edu/telephone/features.html#InboundCallerID
http://www.itcom.itd.umich.edu/telephone/features.html#Intercept
http://www.itcom.itd.umich.edu/telephone/features.html#LNR
http://www.itcom.itd.umich.edu/telephone/features.html#MakeSetBusy
http://www.itcom.itd.umich.edu/telephone/features.html#MWI
http://www.itcom.itd.umich.edu/telephone/features.html#Multiple
http://www.itcom.itd.umich.edu/telephone/features.html#Multiple
http://www.itcom.itd.umich.edu/telephone/features.html#MusicHold
http://www.itcom.itd.umich.edu/telephone/features.html#NameDisplay
http://www.itcom.itd.umich.edu/telephone/features.html#OutboundCallerID
http://www.itcom.itd.umich.edu/telephone/features.html#RingAgain
http://www.itcom.itd.umich.edu/telephone/features.html#simring
http://www.itcom.itd.umich.edu/telephone/features.html#SixWayConference
http://www.itcom.itd.umich.edu/telephone/features.html#SpeedCall
http://www.itcom.itd.umich.edu/telephone/features.html#Symposium
http://www.itcom.itd.umich.edu/telephone/features.html#ThreeWayConference
http://www.itcom.itd.umich.edu/telephone/features.html#VoiceMail
http://www.itcom.itd.umich.edu/telephone/features.html#VoiceMailAnnounce

Evaluation

 202

sequences between the phone and the exchange. In the publication of Deursen and Klint
[DeuKli2002], a declarative approach of FDL is introduced in the context of Domain-
Specific Languages. Their FDL is a declarative language that textually describes feature
diagrams.

The program in Code 9 is a simple example of the former FDL approach. It defines the
exchange of messages between a “customer” and a telephone “exchange”, introduced
through the “module” declaration in line 1. The “processor” statements in the next two
lines define different entities within the customer and the exchange. The “customer” gets
associated with a “phone” and the “exchange” shall contain a “frontend” and a “core”
processor. These relationships are specified through the keyword “in”. The “feature-
endfeature” block in line declares the feature “Call Setup”. The feature block encloses
all the interactions between the customer and the exchange, which are necessary for the
realisation of the feature.

The declarative FDL introduced in the publication of [DeuKli2002] is used for the
adapted example of [KosMar et al.2008] in Code 10. In this code, the possible feature
compositions for the assembling of a car are listed. In a publication of Shih-Hsi et al. of
the California State University [ShiAda et al.2010], this declarative FDL can be interpreted
as a Domain-Specific Language (DSL) through a SOA-based approach.

The two General Characteristics in the Service Mode part or the Common Part of the Service

Description (i.e. “Audio-Phone” (cf. equation (22-3) in Table 32 - General Characteristics (GCh))

and “Feature” (cf. equation (22-6)) respectively) are examples for the use of Semantic

Characteristics as “building blocks”. The use of the General Characteristic as “building block”

was already discussed in 0. Its Exchange Constraint was adapted to the access of the Service

1. module : customer, exchange

2. processor : phone in customer

3. processor : frontend in exchange, core in exchange

4. feature "Call Setup"

5. offhook : phone -> frontend

6. dialtone : frontend -> phone

7. digits : phone -> frontend

8. setup_call : frontend -> core

9. setup_complete : core -> frontend

10. ringback : core -> phone

11. endfeature

Code 9 - Feature Description and Message Exchange with FDL offered by [Dee2011]

1. Car: all (carbody, Transmission, Engine,

2. Horsepower, opt(pullsTrailer))

3. Transmission : one-of (automatic, manual)

4. Engine : more-of (electric, gasoline)

5. Horsepower : one-of (lowPower, mediumPower, highPower)

6. include pullsTrailer

7. pullsTrailer requires highPower

Result:

one-of (

 all (carbody, pullsTrailer, manual, highPower, gasoline, electric),

 all (carbody, pullsTrailer, manual, highPower, gasoline),

 all (carbody, pullsTrailer, manual, highPower, electric),

 all (carbody, pullsTrailer, automatic, highPower, gasoline, electric),

 all (carbody, pullsTrailer, automatic, highPower, gasoline),

 all (carbody, pullsTrailer, automatic, highPower, electric))

Code 10 - Example for declarative FDL adapted from [KosMar et al.2008]

ACTAS

203

Properties of the Compatibility Characteristics “Phone” and “Audio-Com” with an

“exchangeProperties” Option-Slot, which is again listed for the ST-Env2.

In this Chapter, the General Characteristic “Feature” for the checking of the message sequence

necessary for the realisation of the agreed features was discussed. The ACTAS Administrator

provided even a Service Property “SequenceDiagram” declared in the context of this General

Characteristic, in order to store the information about the necessary message sequences. An

Exchange Property Class “sequenceFDLex” is used for the realisation of Exchange Constraint

Char_Ex_Co1 in the declaration of the GCh “Feature” (cf. equation (22-6)).

The “exchangeProperty” Option-Slot2,1 in Code 11 adapts this Exchange Constraint (clearly

referenced through (Feature)) and links the Service Property “Dependency” of the Request

Fig. 49 - Service Template for the Feature Composition example

 =(tele
ID , FAtele

Ref, SM
 , { }, ST-Env

)

SM1=(SM1
ID SP1

Set, {Audio-Phone}, ST-Env

)

SP 1,1=((SM1 SP1)
ID, {Phone}, ST-Env

3
)

SP 1,2=((SM SP)
ID , {Audio-Com, Feature}, ST-Env

)

ST-Env
1
=(Va-Co

1

Set
 Ex-Co

1

Set
, Option-Slot

1

Set
)

Option-Slot

 ((Feature)

 ([(prop-ref(Dependency) merged)

(prop-ref())])

ST-Env

=(Va-Co

Set
 Ex-Co

Set
, Option-Slot

Set
)

Option-Slot

 ((Audio-Phone)

 ([(prop-ref(- -) server)

(prop-ref()) (prop-ref())])

ST-Env

=(Va-Co

Set
 Ex-Co

Set
, Option-Slot

Set
)

Va-Co
 ,1
=va-co(prop-ref(Feature,Dependency), [setFDLprogram([〈URL to file〉])])

Option-Slot
 ,1
= direction(IN)

Option-Slot
 ,2
= request

Code 11 - Service Description for telecommunication

Evaluation

 204

Characteristic “Feature” with the Exchange Name “Features” as well as the Service Property

“SequenceDiagram” of the General Characteristic “Feature” with the Exchange Name

“Sequence”. (Please consider that the Property References (cf. Definition 15 - Reference of a

Service Property) in this Option-Slot contain either the Service Port (SP1,2) for the referencing of

the Compatibility Characteristic or the Common Part (ST tele) for the referencing of the General

Characteristic, which have both the name “Feature”.) In order to access only the “agreed”

features, the link of the Service Property “Dependency” is done with the view “merged” (cf.

Definition 17), i.e. the resulting information of the Merge Constraint in the Composition Process

(C-Model) as previously said. The link between the Service Property “SequenceDiagram” of the

General Characteristic “Feature” with the Exchange Name “Sequence” does not contain a view

entry, since a Merge Constraint is only applied on the Service Properties of Compatibility

Characteristics, in order to have an additional proof for the Service Compatibility.

Distributed Feature Composition (cf. Example 21) is a straight forward example for the use of

the Common Part of the Service Request (cf. Code 12 - Service Request for DFC). The Common

Part of a Service Request (SRe-Common in Definition 19) can contain a set of General

Characteristics and environment information (SRe-Env in Definition 19). Following again the

“building blocks” concept discussed in the S-Model, the administrator of the application

environment, responsible for the design of Service Requests, can use additional General

Characteristics and environment descriptions in the Common Part of the SRe, in order to define

constraints and general information valid for several Client Requests or greater parts of the

Composite Structure (CompSt). The Common Part of the Service Request becomes the

Common Part of the CompSt data structure (cf. Definition 19 and Definition 24). In Fig. 50 and

other figures, a General Characteristic originated of - is shown with an additional

yellow rectangle. The visibility of Service Properties in the Composite Structure is discussed more

in detail, in section 13.3.3.

Fig. 50 - Initialised Composite Structure (CompSt) with global GCh from SRe

ACTAS

205

The Distributed Feature Composition cannot be directly faced, without the Common Part of

the Service Request (- in Definition 19), because the Service Property

“Dependency” in the Request Characteristic “Feature” can only check the Local Feature

Composition. The information of several Service Properties “Dependency”, containing the

collections of features wished by diverse Service Clients of a requested Communication Service,

has to be checked for Distributed Feature Composition. ACTAS allow the definition of

Exchange Constraints in this direction in the Common Part of the Service Request.

In Code 12, the Service Request uses a General Characteristic “Feature Composition” (cf.

equation (22-7) in Table 32 - General Characteristics (GCh)), which is settled like the previously

discussed Semantic Characteristics in the domain telecommuniction. This General Characteristic

supplies an Exchange Constraint, which will compare two feature collections, accessed through

the Exchange Names “FeatureOne” and “FeatureTwo”, through the method “checkDFC” of the

assumed Exchange Property Class “declarativeFDL-ex”. The method will check if the collections

satisfy the conditions of the DFC. The parameters of this method could adapt the checking of

the DFC to domain-specific settings similar to the initialisation of the Service Property

“Dependency” for the checking of the Local Feature Composition through the Value Constraint

Va-Co4,1 in Code 11.

Again an “exchangeProperties” Option-Slot is used in Code 12, in order to link the Exchange

Names of the “imported” Exchange Constraint with the Service Properties. These are just the

Service Properties “Dependency” in the Request Characteristics of the two Client Requests. In

section 13.3.3, is discussed future research, which allow the additional reference of Service

Properties of the Composite Structure, which is still unknown at the time point of the generation

of the Service Request by the application environment.

SRe CommonDFC

 ([Feature Composition]

(Va Co
 Ex Co

 , [exchangeProperties((Feature Composition Ex Co)

 ([(prop ref((RM1,RP1),Feature, dependency) merged, FeatureOne)

(prop ref(() Feature, dependency) merged,FeatureTwo)]))]))

SReDFC= (SReDFC
ID ,ReADFC

Ref ,SRe-CommonDFC , Client-Request
Set
)

Client-Request
1
=(RM1

ID PAA
Ref ASTA

Ref RP1
Set, { }, SRe-Env

1
)

Client-Request
2
=(RM2

ID PAB
Ref ASTB

Ref RP2
Set, { }, SRe-Env

2
)

RP 1,1=((RM1,RP1)
ID, {Audio-Com, Feature}, SRe-Env

3
)

RP 2,1=((RM2,RP1)
ID, {Audio-Com, Feature}, SRe-Env

)

Code 12 - Service Request for DFC

Evaluation

 206

Fig. 50 - Initialised Composite Structure (CompSt) with global GCh from SRe, shows how the

information is used for the initialisation of CompSt, which is a data structure of the C-Model

introduced in the next chapters.

Fig. 51 - Composite Structure with global GCh for Ex- – shows schematic a possible Service

Composition of two Telephone Switchboards, which are linked through a common Phone

standard (non-directed Service Composition with the Compatibility Characteristic “Phone”). The

two Client Requests of the Service Request became the two ASOs. They were done on behalf of

Service Client A and Service Client B. The combination of the two Request Characteristics

“Audio-Com” and “Feature” in the Request Ports expresses that the (potential) Service Client are

interested in an audio communication supporting the feature composition. The Local Feature

Composition (cf. Example 21) can be tackled with Exchange Constraints defined in the

Compatibility Characteristic “Feature”. The found services of Telephone Switchboards keep

additionally a General Characteristic also called “Feature” in their Common Part. It is likely, that

this General Characteristic contains further Exchange Constraints linked with the Service

Properties of the Compatibility Characteristic “Feature”, in order to perform extended tests for

the Local Feature Composition. Another General Characteristic “Audio-Phone” appears in the

Service Mode part. It could contain just information about this Service Mode.

The figure shows nicely, that the Service Composition with the principal compatibility (cf.

Fig. 51 - Composite Structure with global GCh for Ex-) leads to a selection of a Service Mode.

(The example of a Service Template in Fig. 30 had two Service Modes for comparison. In the

current version of ACTAS, a General Characteristic can only appear once.) Obviously, the

Service Provider tackle the Local Feature Composition for all offered through writing the

General Characteristic in the Common Part.

Fig. 51 - Composite Structure with global GCh for Ex-Constraint

ACTAS

207

Code 13 - CompSt for DFC

 DFC=(DFC
ID , - , - Set)

Selected-SM
1
=(RM1

ID
Ref ASO-RM

1

Ref
 ModeProperty

1

Set
, { - })

Selected-SM
2
=(RM2

ID
Ref ASO-RM

2

Ref
 ModeProperty

2

Set
, { - })

Selected-SM
3
=(SM

ID
Ref SO-SM

Ref
 - ModeProperty

Set
 { - - })

Selected-SM

=(SM

ID
Ref SO-SM

Ref
 - ModeProperty

Set
, { - - })

 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()
 ()

Merged-SP

=(-

ID Cl-SP

Ref
 -

Ref
Set)

Merged-SP

=(-

ID Cl-SP

Ref
 -

Ref
Set)

Merged-SP

=(-

ID Cl-SP

Ref
 -

Ref
Set)

 ()

 ()

 ()

 (
 - -

)

 ()

 (
 - -

)

 ()

 ()

Evaluation

 208

17 Case Study 3: Supply Chain, B2B Integration

In Motivation and Evolution of DIS middleware, Fig. 11, the Supply Chain scenario was

discussed as a motivation of Enterprise Application Integration (EAI), the enhancement of DIS

with business and process logic like Workflow Management Systems, in order to overcome the

integration challenge. The following scenario was adapted from [FeKeZa2008]. RosettaNet 9 is an

example for an EAI environment. It defines standardized partner interface processes (PIPs),

which include standard intercompany choreographies (e.g., PIP3A4 Request Purchase Order),

and the structure and semantics of business messages. Although such standards certainly enable

B2B integration, they still suffer from several drawbacks. All partners must agree to use the same

standards and often the rigid configuration of standards makes them difficult to adapt to local

business needs.

This scenario is settled in the category of the third aspect of services introduced in the State-

of-the-Art for the classification of services. The inherent complexity of services given through

the Service Composition on process level, i.e. business processes as discussed in section 3.5,

makes the B2B integration complicated. The B2B integration in supply chain environments and

its challenges enforced the development of DIS, EAI, and SOC as illustrated previously in the

thesis. In chapter 12 of [FeKeZa2008], the help of SESA (cf. section 5.2.3) in resolving

interoperability problems between business partners is discussed with an example originated in

the SWS Challenge10. Their example consists of several Service Providers offering various

purchasing and shipment options for diverse products through an e-marketplace called Moon.

An assumed Service Requester called Blue intends to buy and ship a specified product for the

best possible price.

The short and simplified scenario of Example 22 shows the challenges; a Semantic Web

Services Execution Framework like SESA has to deal with. Since these frameworks also support

the later phases of the life cycle, they have to deal with the inherent complexity of services. In the

scenario of [FeKeZa2008], they even avoided additional issues with the orchestration. They only

considered Abstract Services as a direct category of Concrete Services. The issues become nearly

impossible to handle, when for instance the orchestration is kept transparent or is even settled in

the Execution Phase possibly due to company policies.

 The settlement of non-functional properties is another issue. In principle, every description of

an entity in WSML (the specification language of WSMO) allows the specification of non-

functional properties. However, it is not closer specified what they are. Ontologies in WSML for

the closer description of such non-functional properties are listed in the appendix. In the scenario

of [FeKeZa2008], they considered user preferences with the help of non-functional properties.

9 www.rosettanet.org

10 www.sws-challenge.org

ACTAS

209

 The SESA support of B2B integration Example 22

Following services and applications are involved:

 Customer service is done through a Customer Relationship Management (CRM)
system.

 An Order Management System (OMS) is integrated.

 The application of Blue follows the RosettaNet standard, which includes the
standardization of choreographies like a Request Purchase Order, and business
messages.

The integration of these systems through Web Services is given. WSMO engineers are
assumed in the SESA scenario designing model services and requests and publish them in
the Moon middleware repositories. They also define mappings between several ontologies
published in the same repositories. However interoperability issues occur since engineers
on the requester’s and provider’s side model services independently, meaning that they
use different ontologies for the Capability Descriptions and diverse descriptions of the
choreographies. Blue might do his design on the base of the Rosetta standard, whereas a
Service Provider could use proprietary information and choreography specifications of his
CRM/OMS system. This is just the problem stated in Problem Statement in chapter 6.
An Autonomic SOC is hardly possible.

The solution developed with SESA, i.e. on the base of the WSMO standards in
[FeKeZa2008] is innovative, but proprietary again in the end. Nevertheless it is an
interesting solution, which should be used by Autonomic SOC, since the integration
issues are certainly solved for the given environment. Therefore, the solution of SESA is
shortly discussed in the following paragraphs.

Firstly, the business services are modelled as Web Services. The created Web Services
serve as adapters to the mentioned environment (CRM/OMS and RosettaNet). They are
described through WSDL files, including XML Schema for messages, definition of
interfaces, operations, bindings, and end points. The adapters perform lifting and
lowering functionality for XML Schema and ontologies needed for the Service Grounding
(phase 5 of the life cycle of services) definitions of WSMO services.

The definition of the Service Grounding, i.e. the transformation of the semantic
descriptions of WSMO to the syntactic descriptions of WSDL has to be done in a second
step. This transformation was an integral part of OWL-S standard. In WSMO, Semantic
Web Services Execution Frameworks like SESA offer a certain support. The results of the
second step are Semantic Web Services and goals described according the WSMO
definitions of these components (cf. section 4.4.3). The book has a closer look at this
second step. It separates the description in the (1) creation of ontologies and grounding,
(2) the creation of functional and non-functional descriptions, (3) the creation of
interfaces and grounding, as well as the (4) creation of ontology mappings.

The several times stressed complexity of the dealing with the inherent complexity during
this thesis becomes anew evident in the fact, that the scenario of SESA is restricted to the
choreographic part of the WSMO interface description. The standards of WSMO
distinguish between choreography for the Service Discovery and for the Service
Execution phase. The former is also closer specified as “late-binding”, when the Service
Provider offers Abstract Services and the choreography has to be clarified with the
Concrete Service, the instance of the service, in the later Service Grounding (phase 5 of
the life cycle of the services). The execution choreography in the interface of a WSMO

Evaluation

 210

Service Description shall define the exchange of messages in the sixth phase of the life
cycle.

The scenario considers one case more closely, namely the so-called AchieveGoal
execution. The Service Provider environment looks firstly for WSMO Service
Descriptions stored in its repository, in order to discover Abstract Services matching the
WSMO goal specifications of the received message from the user application. This can be
seen as a kind of Service Trading (phase 2 of the life cycle of services). With the found
Abstract Services the matching is extended to the known instances of services being in
the category described through the Abstract Service (phase 3 of the life cycle). A Service
Ranking and Selection is performed in the SESA scenario afterwards (phase 4 of life
cycle). The late-binding choreography is used for the upsetting of the negotiation
conversion between Service Provider and Service Requester in the Service Grounding
phase. The Deployment Phase has to do a Process Mediation. A Data Mediation as added
in the Execution Phase (phase 6 of the life cycle). The mapping rules for these mediations
had to be stored in the middleware repositories doing the Service Discovery (inclusive the
dealing with Abstract Services) in the Service Design phase (phase 1 of the life cycle),
which was previously sketched.

Summarizing, the described solution of SESA left us with an approach, which works fine for

the specific relationship, and it should continue to work fine until the involved parties decide to

use new ontologies or choreographies. This decision for changing the outer parameters might not

be arbitrary. A change of the standards like RosettaNet can lead to such a situation. Nevertheless,

the organization of Blue could wish to extend its business relationships, on the one hand. It

would prefer to use the given environment, but want to reach additional Service Providers. On

the other hand, Service Providers, not knowing about the sketched solution, might be interested

in offering their products/services. Here comes ACTAS into the game.

17.1 Offering the local solution in ACTAS

ACTAS closes the illustrated gap between the existing solutions and interested parties.For this

purpose, it supports earlier phases of the life cycle of services, relies on given approaches, and

allows the checking of several constraints, in order to have an early exclusion of non-matching

services through its declarative environment. However, it only considers the Semantic

Characteristics of the services and requests, which are seen as relevant for this ea rly exclusion.

On the next level of abstraction, ACTAS looks closer at the Service Properties declared in the

semantic context of the Semantic Characteristics, in order to check the constraints with

algorithms likely originated in the approaches themselves.

Let us get concrete in this scenario. The rumour of interested Service Providers and companies

in the innovative solution of SESA may be heard by an ACTAS Administrator, at last. This

administrator could exist in the company of Blue as well as on the side of the Service Provider.

The first step, he has to do is the analysing of the solution through a classification by the four

aspects of services.

ACTAS

211

The sketched solution obviously belongs in the domain of e-business. It describes the sale

from the B2B perspective. This means first of all that points like extended warranty, which might

be relevant in a B2C interface, are not considered. Secondly, a WSMO description can certainly

not be handled by a normal costumer. The existence of an upper ontology was

assumed for this evaluation. This ontology might define a concept “ProductSaleB2B”, which

appears most appropriate for the domain description of the solution. The Service Design (1 st

phase, 4th aspect) is obviously done in WSMO. The use of the Abstract Service could mean the

involvement of Service Trading (a criterion of phase 2 of the 4th aspect). The user preferences are

integrated as a non-functional criterion (second aspect).

The ACTAS Administrator could find out several other criteria for the solution. A criterion for

the third aspect could describe that different choreographies are used and adapted (e.g.

RosettaNet or proprietary). Another criterion, settled in the fourth aspect fifth phase, could

describe the use of the late-binding choreography or Abstract Services. A criterion, which also

belongs to the fourth aspect, could specify that the solution is able to use the WSMO execution

choreography in the Execution Phase. The latter criterion could be reflected in the existence of a

Char Property that enables the checking of the matching of the execution choreographies. The

diverse mapping of ontologies for the Process and Data Mediation could also lead to some

criteria.

In the end, the ACTAS Administrator ends up with a bunch of criteria valid for the approach.

The next step will be his pondering about the introduction of Semantic Characteristics and their

Char Properties. For the declaration of the latter, he has to find out, which algorithms for their

handling can be developed and offered. The introduction of distinct Semantic Characteristics and

their Semantic Description (cf. Definition 4) is not independent of the available implementations.

For instance, if he related a Semantic Characteristic in its Semantic Description with the handling

of negotiation choreographies (such kind of negotiation was done in the scenario above) it would

be appropriate to introduce a Char Property, which describes closer the used choreographies on

both sides (e.g. the standard on which they are based). In this way, the Composition Process

could check the supported choreographies through a Merge Constraint.

18 Case Study 4: Weather Forecast Scenario

In Example 23, a weather forecast scenario is described with several potential Service Providers

and Service Clients settled in the domain of meteorology. It can easily be envisioned, how such

kind of scenario can lead to a market for weather forecast or weather data providing services.

Similar the Cloud Computing vision, advanced services and people could use these services. At

last, (advanced) services could become Component Services for offering enhanced information

and functionality of meteorology for Composite Service originated in various domains. The

composition of interdisciplinary services would also have to observe a taking place of a dynamic

change of Service Providers in these market places. As the previous case studies described the

Evaluation

 212

role of the ACTAS Administrator and Service Designer more closely, this case study is rather

kept short, in order to carry over the idea of an adaptive, domain-general market place for

advanced services to a similar scenario given in the fifth case study concerned with smart grids.

The offered services may describe the functional side of their services through different

designs (e.g. WSDL, OWL-S, or WSMO). Through Compatibility Characteristics classified for

the different Service Designs compatibility can early be ensured. A domain and application

specific Compatibility Characteristic could be provided for the selection of the right Service

Candidates. For an additional categorization of the world of services in the context of the

weather forecast, Compatibility/Request Characteristics with non-functional Service Properties

should be introduced, in order to check the reliability of the services or the compatibility of the

output data of the supported weather models. The earlier discussed “Reliability” Request

Characteristic could be applied in this direction. The location of the data providing services is

important for the weather forecast services of the regions. Therefore, a Compatibility

Characteristic classified for location recognition would also be of interest in the given context.

 Weather Forecast Scenario Example 23

The existence of services for the calculation of weather forecasts for selected regions and
a more global area is assumed. The calculation is based on weather models. The services
need input data on wind speed, wind direction, air pressure, humidity, and many more.
Further services could exist, which offer these weather data from multiple regions. The
services for the calculation of the weather forecast shall rely on the data providing
services.

Each weather model is working with its own compilations of input data and integrates
several algorithms adapted to various conditions, such as the climate, the current weather
conditions, the location, and the time of the year. Thus, a given weather model may be
appropriate for a certain region only at a defined period of time. The weather forecast for
another region might work with another weather model. Changing weather conditions
may make another weather model more appropriate for the calculation of a relevant
weather forecast for a given region than other ones. Besides that the weather models have
to be changed or adapted, the results of several fitting weather models have still to be
weighted and chosen.

Therefore, a service, calculating the weather forecast for a global area, is likely to include
calculations of several services, which possibly offer only a forecasting for the weather of
partial regions. The calculation of the weather forecast from data of partial regions
demands an agreement on data compatibility with the output data of the regional weather
models. Another potential goal of an advanced service could be a specialisation of the
weather forecast like for instance a severe weather forecast. Finally, the Component
Services for the calculation of advanced weather forecasts could be organised like a grid.
The scenario can generally be interpreted as a world of services, i.e. a market place of
services provided by different companies and offered on different levels of abstraction
could be envisioned, which allows the permanent entry and exit of Service Providers.

In figure “Fig. 52 - Weather Forecast Scenario”, a possible application of the MAS of ACTAS

is scratched. Facility Agents offer pro-actively the services of the Service Providers. Basic

services, providing for instance data of weather stations or satellites, could be accessed by various

ACTAS

213

services operating with the weather models. Advanced services, in the figure one for severe

weather forecast is portrayed, can rely on output data of these calculating services. ACTAS helps

to discover and compose the (advanced) services. According to the introduction of the system

environment, a Service Request starts in an application environment with its Request Agent.

The CoA will use Service Descriptions with a combination of the mentioned CChs/RChs, in

order to exclude non-interesting service candidates as early as possible. Especially, the domain

and application specific Compatibility Characteristics will make sure the discovery of Service

Providers of the right service market. Nevertheless, the MAS of ACTAS can become active in an

additional ways. The CoA could negotiate with the found FAs, in order to agree on Compatibility

Characteristics, which are most appropriate for upcoming Service Discovery actions. In future

research, results of the negotiation and its involved learning can be store in Actor Serv ice

Template (AST), in order to create more appropriate Actor Service Offers for the Service

Clients/users. The Facility Agents of the Service Providers offering data for the weather forecast

of specific regions could further allow an enhanced observation of the relevance of the used

weather models. Depending on time of the year and the current weather in the regions some

models might be more appropriate than others. Through the SOER an FA can “activate” or

“deactivate” the according Service Modes of its Service Offers.

Fig. 52 - Weather Forecast Scenario

Evaluation

 214

19 Case Study 5: Interpretation of Smart Grid as SOC

A smart grid is a generic term for digitally enabled transmission and distribution grids as used

for power supply. The goal for the addressed grids is an autonomic adaptation towards the

needed flow capacities and available resources as well as a changing set of participants (suppliers,

network providers, and consumers). For this purpose including the guarantee of economics and

reliability of the supply, data/communication networks became essential parts of a smart grid. A

smart grid has to comply with the regulations and requirements of the involved markets as well as

national and international laws. Proprietary solutions and policies of the companies establish

further challenges for the autonomic design of smart grids.

In figure Fig. 53, a data network is shown as a central part of a smart grid. It functions as the

digital enhancement of the technical network for the supply, an electrical grid in this case.

Following the figure, the data/communication network could complement the technical

components of the electrical grid with modules for the management of mobile and emergency

workforces as well as metering. The data of these basic entities is used for the gathering and

processing of information, as it is needed for smart metering or cost-processing. Global data

networks allow the provision of advanced services like for example billing of the customers of

various smart grids. Fig. 53 also coins the term “processing services”. In this case study, a

processing service is not necessarily visible to applications or Service Clients/Requesters, but it

can be used as a Component Service of advanced services. For example, a cost-monitoring of a

specific smart grid might be used as a processing service in an advanced service for the billing of

the consumers.

In origin, the term smart grid was related with an electrical grid (cf. [AmiWol2005]). Due to an

extended liberation of the power supply market and a similar interpretation of transmission and

distribution grids, the term smart grid is increasingly applied to power grids in general. In this

way, different energy carriers and systems (electricity, gas, and heat/refrigeration) can be linked

with each other and be integrated into one comprehensive energy environment in a more

efficient way. Besides the usage of storage power stations and rechargeable battery packs, the

combination of gas and electrical grid allows additional ways for the necessary storing of the

energy surpluses from non-controllable renewable energies like wind and solar. The smart grid

idea might be extended to other grids like for example the ones used for the water supply, since

they have to deal with similar challenges and they have their links to power grids as for instance,

water gets heated, pumped, and used in storage power stations.

Development of flexible power grids has already commenced as it can be seen on various

company sites (e.g. web interfaces of two power suppliers in UK and Germany 11). “Th EU ms

to ful gr rg m rk s 2014 … c s m rs c sw ch s rs f r g s

11 http://www.nationalgrid.com/uk/LandandDevelopment/DDC/GasElectricNW/ or

https://www.rwe.com/web/cms/en/183890/rwe/innovation/projects-technologies/power-and-gas-grids/

ACTAS

215

electricity, and suppliers must provide clear explanations of terms and conditions. Work still to

be done includes aligning national market and network operation rules for gas and electricity as

well as making cross- r r v s m rg fr s r c r s r.” (Quotation from

[Eur2013 p. 1]) It is estimated that double-digit billion euro investments will be needed in the

coming years to expand the electricity and gas grids in the direction of the idea of smart grids.

Some key players and pilot projects of smart grids as well as smart homes in various countries

are portrayed in [GunSah et al.2012]. The publication of Ardito et al. [ArdPro et al.2013]

concentrates its view on the technical development of smart grids in Europe. Many of the

research projects in the area of smart homes, especially smart metering, can be seen as

supplementary for the research area of smart grids. Smart metering will be applied for the

management of power consumption, in order to take advantage of low cost periods with a

surplus of energy. The German concept of smart metering is different from the others. A multi-

utility metering system is deployed: gas, water, and electricity meters are connected to a multi-

utility communication (MUC) controller (cf. [GunSah et al.2012 p. 29]). With these controllers

for a general power grid and the use of concentrators (cf. Fig. 53), the consumers can

simultaneously use various power suppliers on the liberated market. However, this kind of smart

metering demands advanced services for an efficient billing of the customers.

Fig. 53 - Smart Grid

Evaluation

 216

The smart grid on a whole has to achieve a supply-demand match, which implies besides other

reasons the low-latency communication and monitoring for some mission critical applications.

An essential infrastructure like a smart grid also entails security issues. In the case of a smart grid,

the security aspect does not only cover the usual data security coming with the communication

network, but also integrates cyber and physical security of the electrical/power grid. According to

[EroMou2013], this extended security aspect led even to a new supplementary research area of

smart grids: smart grid forensic science. It is based on the experience that post-mortem analysis

of a power system after a cyber-attack or natural disaster generally provides the most accurate

comprehension of the causes. Its research goals are the protection against similar attacks in the

future as well as the avoidance of failures during disasters.

19.1 SOC for a smart grid

It is a challenge to develop models for the smart grid research idea due to the different views on a

smart grid. Following two approaches are mentioned as examples: (1) the Open Smart Grid

Protocol (OSGP) [OSG2012], which is a family of specifications published by the European

Telecommunications Standards Institute (ETSI), and (2) the Smart Grid Architecture Model

(SGMA) [CEN2011] (cf. Fig. 54), which is a standardization proposal of joint European

standardization organizations. OSGP is often used in conjunction with the ISO/IEC 14908

control networking standard for smart grid applications. In general, OSGP is an

extension/adaptation of the Open Systems Interconnection Reference Model (ISO/OSI), which

introduced standardized layers for the different levels of abstraction of

networking/communication protocols starting from the application through security and

transport down to the physical layer. With nearly 3 million OSGP compatible smart meters and

other [smart grid] devices already installed in Europe, OSGP has become a [quasi] standard for

smart meters and smart grid infrastructure communications in Europe according to [OSG2012 p.

11]. According to Fig. 54, the SGMA approach principally introduces new dimensions besides

the technical ones originated in the OSI model. In a first additional dimension, the involved

domains of a smart grid are addressed (Generation, Transmission, Distribution, Distributed

Energy Resources (DER), and Customer Premises). In a second dimension, diverse “zones” of

SGMA are presented for different levels of abstractions starting from the technical/process view

and ending at the business/market view on a smart grid.

Increasingly, smart grids are interpreted as service-oriented environments. The publication of

[LiaRod2013] proposes a service-oriented middleware for a partly implementation of a smart

grid. In my publication [KlUnBr2012], I introduced a more general interpretation of the smart

grid as a SOC environment, which involves a categorization of services through a semantic

classification based on the aspects of services, particularly with regard to the semantic view on

services in smart grids given with the discussed models. Thus, the fifth case study debates how

ACTAS can improve the discovery of smart grid applications interpreted as service

environments. The semantic classification related to the dimensions of the smart grid models

ACTAS

217

achieves a more reliable compatibility description as well as the possibility to publish and

compose services on different levels of abstractions. In its complexity, this case study extends the

adaptive service market idea of the preceding fourth case study with its weather forecast related

service environments.

Fitting to Fig. 54, ACTAS administrator could agree to introduce Semantic Characteristics

standing for advanced services, which allow a data aggregation for the “market zone” as well as

an advanced grid management on the level of the involved enterprises and the market. Other

Semantic Characteristics could distinguish the processing services done by an adapted smart

metering in the industry or at smart homes. The distinction between the supply network and the

data network shall also be reflected in the classification of the Semantic Characteristics used in

the smart grid scenarios of ACTAS. In fact, the shortly discussed dimensions of the SGMA

model can lead to a useful, commonly agreed classification of the Semantic Characteristics. In

this way, the Service Discovery can be done for services, which are clearly categorized through

the semantics of a smart grid model like SGMA. For instance, an integration of technical devices

into the power grid can be addressed in the SOC environment of ACTAS through Service

Descriptions holding Semantic Characteristics classified as semantically belonging to the process

level and the distribution sub-network. In Fig. 54, feeder automation and DER integration are

mentioned in this direction.

In this case study, three examples are of closer interest: Example 24 - Wind Turbine Scenario,

Example 25 - Consumer Scenario, and Example 26 - Billing Scenario. In Example 24, the

technical network, an electrical grid built by possibly several Service Providers, has to integrate

the service of a wind turbine, which is a technical entity that delivers energy in an unsteady way.

The so-called consumer in Example 25 is the opposite entity to an energy delivering entity like

the wind turbine. Thus, it could be modeled as a Service Requester/Client from this point of

view. However, the role of the consumer in the technical network is more complex than that.

Fig. 54 - SGMA adapted from [CEN2011]

Evaluation

 218

Therefore, its role gets reinterpreted, and the additional consideration of constraints is shown in

this case study. Finally, the support of a discovery and composition of an advanced service is

illustrated through Example 26.

 Wind Turbine Scenario Example 24

A wind turbine and solar panels are examples of delivering sustainable, renewable energy.
However, their power delivery depends on natural sources like wind or sun light. Thus,
the electrical grid has to cope with the unsteady supply of energy, which can lead to
periods of surplus or shortage of power in the grid. Additionally, the electrical grid can
consist of several Service Providers in a liberated market. Thus, the delivery of energy
might not only be split among distinct technical networks, but the environment might
have to deal with different market interfaces built on the proprietary rules and laws
coming with one specific Service Provider.

 Consumer Scenario Example 25

A consumer for the supplied energy of a power grid is likely to have a contract with at
least one Service Provider. Thus, he is bound by his contracts to certain power grids.
Besides these commercial constraints, technical restrictions can occur. The customer can
be connected to the distribution network in different ways and it might be compulsory
that he is using fitting smart metering facilities.

 Billing Scenario (Advanced Service) Example 26

In Fig. 54, aggregate services can be interpreted as advanced services in the sense
introduced with Fig. 53. For instance, a corporate office, responsible for the service of
customers of a liberated power market, will include in its application environment a
billing service. The billing service might be offered as an advanced service by several
Service Providers since it has to comply with different laws and a bunch of constraints.
The billing service itself might aggregate data from several smart grids, to which a
customer was connected in a given period. These data processing services themselves
might rely on smart metering again.

The interpretation of a smart grid as based on SOC helps to deal with the challenges related

with the liberation of the power supply market, where several smart grid Service Providers might

compete. Each involved network needs its own expertise and possibly cannot be extended

without planning, simulation, and testing. Therefore, the autonomic adaptation to a changing

number of participants and resources on the one hand has to go together with the need of

expertise for the various techniques and policies on the other hand. Considering these details of

smart grids leads to a Service Provision that does not take place in a black box, i.e. the services

have to be described on different levels of abstraction. A Service Request on a higher level of

abstraction, which requests an advanced service providing a reliable and economic power supply,

has to consider constraints on the service level of the smart grid: for instance the provider and

consumer in Example 25 must be member of the same power grid, and the right data for smart

metering must be provided through the data network. On one lower level of abstraction (in

Fig. 54 the process level), the SOC of ACTAS could even describe the Service Composition of

the technical services, e.g. the technically fitting components of an electrical grid or the gateways

of different kinds of data networks. However, latest at this level of abstraction, the Service

ACTAS

219

Provider have to decide whether an adaptive discovery and composition of technical devices is

wished and of advantage.

Alternatively, an enhanced service environment for smart grids can always take advantage of

the expertise of existing solutions and reflects the availability for instance of technical services

through offerings of services on a higher level of abstraction. In the end, it is up to the ACTAS

administrator and the service designer of the Service provision to limit the service paradigm of

the SOC environment of smart grids rather to the terminal/access points of the mentioned two

networks without an extension to their technical services.

Nevertheless, services on a higher level of abstraction have their implications on the used

networks, which should be reflected in the classification of their Semantic Characteristic s through

the second aspect of services. Examples of such constraints for the needed features of the data

networks are listed in Table 24 - Key requirements for the data network. An enhanced service

environment should agree on the interpretation of these key requirements as non-functional

parameters (nfp) for the Service Discovery. The mentioned quality of service (QoS) in this table

is the standardized one for data networks as introduced in the section 2.3.2 - 2nd aspect of

services: non-functional attributes. It is the ability to adapt data transfer priority and the

according allocation of network resources to different applications, users, or data flows. A goal is

to guarantee a certain level of performance to a data flow. In this case study, the term QoS is not

restricted to data networks, but also used for the introduction of Semantic Characteristics for the

categorization of advanced services.

Applications Key requirements (2
nd

 aspect of services)

Remote surveillance
Remote control capabilities

High uplink throughput for remote cameras
Real-time connectivity with high availability and
low latency
QoS
Secure connections

Remote real-time monitoring
Real-time connectivity with high availability
QoS
Secure connections

Smart metering for residential and business
locations

Support for a very large number of terminal
devices
QoS
Secure connections

Table 24 - Key requirements for the data network

Evaluation

 220

19.2 ACTAS for an enhanced service environment

For the support of pro-activity and autonomy, the service discovery framework ACTAS is based

on software agents. Facility Agents (FA) and Trader Agents (TrA) are responsible for the

publishing and trading of Service Offers as well as Service Templates. For instance, a member of

the mobile workforce (cf. Fig. 53) has to deal with a changing access to terminals of eventually

different kinds of data networks. Thus, even in times of smartphones, it might be a challenge for

travelling workforce members to get connected to a data network fulfilling the key requirements

as listed in Table 24. A software agent, in ACTAS preferable a TrA, responsible for the data

network of the smart grid could keep track of the currently available possibilities of data transfer.

The Personal Agent (PA) of a workforce member could act as a FA. Ideally, the current

availability and capability of communication components is reflected in its Service Offers,

whereas the Service Templates allow a planning with all potential components.

As an extension of this idea, each involved network (in Fig. 55 the supply network (Electrical

Grid) and the data network) could be associated with a TrA, which handles the integration of

services of technical components/facilities published by various FAs. The pro-active behavior of

the Trader Agent must comply with the general features of the smart grid and the specific

features of the managed technical network (e.g. national regulations and maximum flow capacity

Fig. 55 - Smart Grid and ACTAS

ACTAS

221

must be observed). In accordance with its pro-active and re-active behavior, each TrA will

discover the Service Offers of Candidate Services as they fit to the specific demands of its own

network. In Fig. 55 - Smart Grid and ACTAS, the two shown Trader Agents belong to the

Electrical Grid and data network of a smart grid provided by a Service Provider called A. Other

Service Providers for smart grid might compete in a liberated power market. It is up to the trader

to integrate the Candidate Services into the network. Alternatively, resources of not any longer

needed services could be released. As in the examples introduced, constraints like a given

contract, capability, or a given metering could be early checked.

 Wind Turbine Scenario – continued Example 27

A FA of a wind turbine could publish several Service Offers to the connected technical
networks: one for the electrical transmission grid and other ones for its processing
services, i.e. services like self-monitoring. The published Service Template would make
the wind turbine known to the TrAs for planning. It is an advantage for the dealing with
the changing availability of wind energy that the resources of the wind turbine are under
control of just one software agent. Supporting the liberation of market, the wind turbine
could be published through a Service Template with several Service Modes as a potential
member of transmission grids of separate smart grids. The Service Offers reflect the
current amount of produced electricity available to a certain Electrical Grid. A TrA might
only “buy” a partial amount of this energy matching to the degree of capacity utilization.
Additionally, the FA of the wind turbine could publish a functional Service Description
via the data network offering a service for self-monitoring, i.e. the provision of
monitoring information for its function control.

 Consumer Scenario – continued Example 28

Incorporating the TrA assumed to be responsible for the supply grid (Electrical Grid in
Fig. 55); two alternative approaches may be discussed for its service interface to the
consumers. On the one hand, the TrA could take over the role of a FA and offer the
energy supply. On the other hand, the consumer themselves could be seen as services
offering the function “to consume the energy”. In the view of an adaptable, liberated
market, the latter case might build a more homogenous model; since the facilities of the
consumers get simply connected to terminals of the technical networks similar the ones
of a wind turbine. The TrA might also check how the consumer is connected to its smart
grid. In the case of a demanded smart metering, a proper data providing/processing
service should exist. Assuming the constellation of Trader Agents as shown in Fig. 55, the
TrA of the data network could act again as a FA offering smart metering services for the
consumers, which are currently connected with the right facilities and features. In this
way, the earlier introduced MUC controller and their concentrator function for the smart
metering can be covered.

In Example 27, the wind turbine scenario is continued with the incorporation of the

introduced Trader Agents of Fig. 55. In the case of offering a monitoring service (cf. Fig. 55), it

might be an additional constraint that the TrA of the electrical grid integrated the wind turbine as

a Component Service. However, such kind of an additional constraint is already covered through

the Consumer Scenario (cf. Example 25), which is continued in Example 27. In the service-

oriented view of the smart grid, the wind turbine service gets deployed and executed, in order to

use the offered function through the data network for self-monitoring. However, in order to

Evaluation

 222

have a proper running service, the function has to be supported by the current features of the

data network connected with the wind turbine (cf. key requirements in Table 24). Finally, the TrA

of the data network itself could offer in a new role as a FA a processing service with accumulated

self-monitoring data of several connected basic entities, which would be again usable for a

control loop by the TrA of the electrical grid. Similar scenarios could be developed with

surveillance or workforce services, which would not be directly related to a specific entity like a

wind turbine but relevant for the smart grid at whole (cf. Fig. 53). Nevertheless, there might be

constraints in particular smart grids that only wind turbines with existing surveillance cameras for

security and existing workforce support get be integrated into a certain Electrical Grid. These

additional constraints could be reflected in the Service Descriptions as discussed in the consumer

scenario.

In Example 28, the consumer service is alternatively described from the same point of view

like the service of the wind turbine in Example 27, i.e. it is offered by its FA and integrated into

the Electrical Grid by the specific TrA. This is useful, since the main distinction between both

services is simply that one is providing and the other one is consuming energy. Like the wind

turbine the consumer should have contracts with the Service Providers of the potential supply

grids, which can be used as a selective criterion through a Semantic Characteristic. The example

also discusses the consideration of the constraint that the smart grid has to provide an additional

service for the consumer with smart metering. Service Clients/Requesters can use advanced

services for monitoring of the consumers’ facilities or the billing, which might concern several

smart grids, when the consumer rely on several kinds of service provision. An advanced service

for billing is considered in the billing scenario, which is continued in Example 29.

 Billing Scenario (Advanced Service) –continued Example 29

Through a FA, the corporate office might publish its billing service applicable for a group
of consumers. A Service Request for such a kind of billing service (agreement on a
Semantic Characteristic) will lead to a CoA that assumingly discovers the offered service.
In this example, it is guessed that the service relies on processing services (called Cost -
monitoring in Fig. 55) offered by the various smart grids, to which the consumers, given
in the Service Request, are connected. The cost-monitoring of one certain smart grid
might take advantage of the smart metering of its consumers.

The Fig. 55 - Smart Grid and ACTAS – lists as advanced services monitoring, surveillance, and

billing. The request of advanced services initiates an application specific composition of currently

available services, which will be done by a specific Composition Agent (CoA) in ACTAS. The

monitoring and surveillance services might be used for several smart grids by applications for the

management of power supply or security. Possible implications on the service provision of basic

entities like the wind turbine and specific smart grids were shortly discussed earlier. The advanced

service for billing is further discussed in Example 29. The applications, diverse services and

Service Clients are connected to the data network in various technical ways, which have to fulfil

key requirements as listed in Table 24. Therefore, the Service Description of the enhanced service

ACTAS

223

environment should contain information about the currently supported or needed features. In

the next section, a possible Service Description with ACTAS is portrayed.

19.3 Semantic Characteristics for smart grid scenarios

In the introduced three smart grid scenarios, ACTAS administrators will introduce Semantic

Characteristics, which are semantically classified for (1) the advertisement of

advanced/processing services, (2) the support of autonomic integration of basic entities into the

involved networks, and (3) the guarantee of some non-functional parameters like the discussed

key-features of the data network. Service Designers will use the Semantic Characteristics for

Service Description, in order to categorize their services accordingly. Finally, the Service Provider

will advertise Service Templates with potential Service Modes and adapting Service Offer Export

Records through his FA(s). In this section, possible Semantic Characteristics for the smart grid

scenarios are scratched.

In Table 25, possible Sematic Characteristics are listed with hints on their semantic

classification. The kind of a Semantic Characteristic is revealed through the name affixes General

Characteristic (GCh), Compatibility Characteristic (CCh), and Request Characteristic (RCh).

Request Characteristics are a special kind of Compatibility Characteristics. According to the terms

introduced in this case study, advanced services are advertised through Request Characteristics

for possibly closer specified Service Clients, whereas processing services will be advertised

through a simple Compatibility Characteristic, in order to be discovered as a Component Service

(cf. section 9.1 - S-Model: Semantic Characteristics).

Examples of Compatibility Characteristics for the advertisement of processing services are

CostMonitoringCCh, SmartMeteringCCh, SurveillanceCameraCCh, and SelfMonitoringCCh as listed in

Table 25. In the last section, a general debate took place to the processing services of self-

monitoring and the dealing with surveillance cameras as basic entities. The processing services for

cost-monitoring and smart metering are used in the billing scenario (cf. Example 29). The

classification of the Compatibility Characteristics shall ensure the right domain and the view on

the service (1st aspect of services). At least the use in the context of a smart grid should be

ensured. Since the mentioned Compatibility Characteristics advertise the processing services quite

directly, a classification through the phase 1 of the 4 th aspect, the service design, is a good idea,

because an agreement on the used kind of Service Description of the actual services (e.g. OWL-S,

WSMO, or WSDL) will improve the (principal) compatibility (cf. Definition 11 - Principal

Compatibility for services and Service Ports).

At this point, it has again to be stressed that the Service Description of the service discovery

framework ACTAS based on Semantic Characteristics is in fact an abstraction of Service

Descriptions and criteria of actual services of service environments relayed through the FAs by

the Service Providers. Although a classification of the Compatibility Characteristics for the

Service Design might exist, it does not necessarily mean that the Service Description of an actual

service is given in a Char Property declared in the Compatibility Characteristic. When such a

Evaluation

 224

Char Property is declared, then Value Constraints will exist for the initialization with an

appropriate Service Description (preferable located with a URI like in WSMO and propagated by

Mr. Lee). It may be remarked that depending on the use of the Compatibility Characteristic, the

Char Property might also be initialized with a Service Request, i.e. a goal in the case of WSMO. A

Merge Constraint for this Char Property, which has to be declared in a Compatibility

Characteristic (cf. Definition 4 - (Semantic) Characteristic (Char)), will later access an established

algorithm (again preferable through a URI), in order to check the matching of Service

Descriptions/Request (cf. section 10.4.2 - Merge Constraints).

The Compatibility Characteristics for the processing services are shown with further assumed

Char Properties in Table 25. The Char Property for “Consumers” is imagined as holding the

information of the consumers, who are involved with the particular service. The smart metering

has further to clarify the current “grids” and the “contract”. The cost-monitoring has to achieve

an agreement on the “period”.

In Table 25 - Semantic Characteristics, the Compatibility Characteristic for the cost-monitoring

assumingly works with a General Characteristic for cost-monitoring (cf. works-with relationship

in Fig. 28 - Principal ontological categorization of Semantic Characteristics, and in section 14.2 -

Service Design - “Building Blocks” of ACTAS), which is the only General Characteristic closer

discussed in this case study. In the billing scenario (cf. Example 29), the advanced service for the

billing of consumers is supposed to take advantage of the processing services for cost -monitoring

and eventually smart metering. The cost-monitoring was assumed to be done for a specific smart

grid. Thus, possibly several cost-monitoring services have to be coordinated for the billing

service. The General Characteristic and its Exchange Constraints, as discussed in preceding case

studies, can support this coordination on the early state of Service Discovery done by ACTAS.

For this purpose, it contains in our example the same Char Properties like the Compatibility

Characteristic.

The advanced services for the billing of consumers can be categorized through the Request

Characteristic BillingRCh (cf. Table 25). As presented in section 9.1, S-Model: Semantic

Characteristics, the Request Characteristic is further classified with the user groups which contain

the commonly agreed potential Service Clients/Requesters of the advanced services. For

simplification, only one Char Property is mentioned: “Billing Data”. It is assumed that Exchange

Constraints will translate from this Char Property to the Char Properties of the cost-monitoring.

A Semantic Characteristic, used for the service-oriented modeling of the supply network,

should contain specifications about the concrete smart grid like its identification, the kind of grid

(e.g. gas grid, electrical grid), and possibly its location for the planning of the infrastructure. In

our scenario, these specifications are kept in the Char Properties of the characteristic

SmartGridCCh. It is worthwhile to mention that this Semantic Characteristic is also classified

through the trading phase (phase 2) of the fourth aspect. As discussed in section 14.2.2 -

Extended usability of Semantic Characteristics, this classification goes beyond a normal one,

because it can also be used as an influence on the trading process. For instance, Trader Agents

ACTAS

225

might react in a special way on services and requests, which hold a Semantic Characteristics

classified through the phase 2 of the 4th aspect of services. Therefore, Service Offers, advertised

with SmartGridCCh, are of interest for the introduced Trader Agents of the smart grid. The

Semantic Characteristic SmartGridCCh could have Char Properties holding information about the

national and proprietary regulations of the smart grid (3rd aspect of services in the classification).

Additionally, a specific Semantic Characteristic for a supply market of a certain country could be

introduced (in Table 25 the Compatibility Characteristic SmartGridGeCCh for a German market is

stated).

The entities of the supply network get their own Semantic Characteristics for a closer

description and classification. In this case study, the Compatibility Characteristics for the wind

turbine and for the consumer are introduced: WindTurbineCCh and ConsumerCCh. One of the

suggested Char Properties covers the “Capacity”, i.e. the amount of energy, which can be

provided or shall be consumed respectively. Furthermore, information about the contracts with

Service Providers of particular smart grids as well as the location of the entities could be

supported for the selection of Service Candidates. The location is important for a wind turbine,

in order to figure out, if the infrastructure of the supply network allows an efficient energy

transport, since a smart grid in America will be not interested in an energy surplus of a wind

turbine sited at the German coast line.

A basis of ACTAS is the categorization of the world of services through ontologically

classified and commonly agreed Semantic Characteristics, in order to exclude as early as possible

non-matching services from the set of prospective Service Candidates. Due to the abstraction of

the published Semantic Characteristics used as building blocks of the Service Descriptions and

Service Requests of ACTAS, the categorized world of services is not restricted to specific service

environments; and Service Candidates of various SOC approaches can be pro-actively discovered

and composed by software agents. In ACTAS, it is possible to look for services just fulfilling

non-functional criteria, the 2nd aspect of services. In Table 25, two Semantic Characteristics

simply named as QoS1 and QoS2 are introduced in this direction. They are not the standardized

QoS criteria of data networks mentioned in Table 24, but semantically wrap agreed quality

features usable in diverse contexts, which might be further restricted with classifications through

the 1st aspect of services. The combination of several Semantic Characteristics results in the

intersection of the sets of Service Candidates linked with each category of a single Semantic

Characteristic given in the combination. Thus, QoS1 can reduce the set of entities integrated into

the supply network with the Semantic Characteristic SmartGridCCh to the ones, which fulfill

certain pricing criteria. QoS2 might be useful in combination with the billing service, in order to

guarantee some fiscal features.

Evaluation

 226

QoS1

Price_Period

Quality

QoS2

Tax_Guidelines

SmartMetering

Customers

Contract

Grids

Cost Monitoring

Consumers

Period

Cost Monitoring

Consumers

Period

SmartGrid

Linked_With

Kind_Of

Semantic

Characteristic
Classification Char Properties

SmartGridCCh

(SmartGridGCh)

SmartGridGeCCh

1st aspect: domain smart grid,
supply network
(3rd aspect: laws, policies,
SmartGridGeCCh for German
laws)
4th aspect, phase 2: TrA for smart
grids

Identification of the smart
grid and its technical network
(Linked_With, Kind_Of)

WindTurbineCCh
1st aspect: specific technical
component of electrical grid

Capacity - Information
includes its current free power
capacity and its location
Location and further
information

ConsumerCCh 1st aspect: specification of
electrical grid and the special
consumer view

Capacity - Information about
the wished/current power
consumption
Contract – Includes
information about smart grid
/ Service Provider

QoSCCh
 Mainly classification through 2nd

aspect of service, i.e. nfp

Specifications for the
technical service of the data
network

SmartMeteringCCh

(SelfMonitoringCCh,
SurveillanceCameraCCh)

1st and 2nd aspect: technical
component of smart grid with
self-monitoring, smart metering,
or surveillance function,
respectively
4th aspect, phase 1: the used
functional description

Costumers – The consumers
for whom the smart metering
is given
Contract – Conditions
Grids – Smart Grids for
which the smart metering is
given
(Eventually Service
Description)

CostMonitoringRCh,

CostMonitoringGCh

1st aspect: interface of the smart
grid for cost-monitoring
4th aspect, phase 1: the used
functional description

Consumers – The consumers
for whom the cost-monitoring
is given
Period for cost-monitoring
(Eventually Service
Description)

BillingRCh

1st aspect: user interface – billing
for the consumers of smart grids
4th aspect, phase 1: the used
functional description

Billing Data
(Eventually Service
Description)

Table 25 - Semantic Characteristics

WindTurbine

Capacity

Location

Consumer

Capacity

Contract

Billing

Billing Data

ACTAS

227

19.4 Service Descriptions for smart grid scenarios

With the publication of the Semantic Characteristics, the Service Designers on the side of the

Service Provision will have a tool box of building blocks for their Service Descriptions. They

might decide to offer Service Templates with several Services Modes, in order to cover for

example distinct contracts of a wind turbine with possibly diverse power suppliers separately. In

this section, the three grid scenarios are continued with the discussion of Service Descriptions.

Service Requests and the Service Composition are tackled in the subsequent section.

 Wind Turbine Scenario – continued Example 30

The Service Template in Fig. 56 has two Service Modes for the wind turbine. Both
Service Modes have only one Service Port, which is declared as an IN Port through an
Option-Slot. Obviously, the Service Designer intends to address in the second Service
Mode the compliance with the German smart grid market. In the common part of the
Service Description a General Characteristic for a closer description of the owner of the
wind turbine is sketched. The Service Designer will include Value Constraints into the
environments of the Service Description, in order to set accordingly the Char Properties,
which are addressed as Service Properties in a Service Description. Additionally, Service
Offer Export Records (SOER) are designed for the adaptation of the Service Template
through the publishing FA. For instance the current capability of the wind turbine could
be adapted.

The Compatibility Characteristics SmartGridCCh and SmartGridGeCCh were introduced and

classified for being discovered by a TrA of a supply network. Through their classification with

the 4th aspect, phase 2, they are quasi flagged for the interest of this kind of software agents.

Thus, the TrA of the electrical grid will look for services advertised for a grid of its kind. In

combination with a Semantic Characteristic giving a closer service description of a basic entity of

the smart grid, the Service Port of a Service Template can be designed. Through the principal

compatibility a TrA responsible for the supply network will be able to discover matching services

of basic entities. Eventually, the Trader Agent will check more closely the Merge Constraints of

the Char/Service Properties of the Semantic Characteristics of principally compatible Service

Ports (cf. Fig. 60 - Principal Compatibility with applied Merge Constraints).

The Service Designers for the wind turbine or consumer scenarios could use fitting

combinations in the Service Ports of their Service Descriptions. This is shown in Example 30 for

the wind turbine and in Example 31 for the consumer. Example 31 demonstrates through an

Fig. 56 - Service Template/Offer for wind turbine scenario

Evaluation

 228

additional Service Port the consideration of a constraint demanding the existence of smart

metering that fulfils given quality criteria. In the next section, the wind turbine and the consumer

scenario will come to a conclusion with the Example 33, showing the support of ACTAS for the

TrA of the electrical grid and the integration of the basic entities.

 Consumer Scenario – continued Example 31

Similar to the Service Description in Fig. 56, the Service Description of the “consumer
service” in Fig. 57 has a Service Port, which is declared as an IN Port. It contains a
combination of two Semantic Characteristics. One is the SmartGridCCh and the other
Compatibility Characteristic (ConsumerCCh) stands for a closer description of the
consumer. However, in this scenario an additional constraint shall be observed.
Therefore, the Service Mode contains a second Service Port declared as an OUT Port,
which asks for a smart metering (SmartMeteringCCh) that fulfils the special quality of
service features as specified by the value constraints in the Service Properties of the
Semantic Characteristic QoS1,CCh.

The continuation of the billing scenario in Example 32 shows a possible Service Template,

which allows various Service Providers to offer a billing service as an advanced service visible for

a Service Request generated in an application. The Service Template contains in its common part

a commonly agreed description of the Service Provider through a General Characteristic (cf.

Fig. 58) that might be helpful for the selecting of Service Candidates. The shown Service

Template has two closer discussed Service Modes. In the next section, the initiation of the

Service Request in an application and the Service Composition is of interest.

Fig. 57 - Sketched Service Mode of the “Consumer Service”

Fig. 58 - Service Template for billing service

ACTAS

229

 Billing Scenario (Advanced Service) – continued Example 32

As an advanced service, the billing service (BillingRCh) is directly offered for Service
Clients through Request Ports (Option-Slots “Request” and IN Port) given in the two
Service Modes of the Service Template shown in Fig. 58. In the upper Service Mode of
this figure, just the Request Characteristic for the billing service is demanded for the
principal compatibility. However, through a second Service Port, which was designed as
an OUT Port, the cost monitoring service with a specific quality of service is requested
(CostMonitoringCCh, QoS2,CCh). As explained already in Example 29, the cost monitoring
service is assumingly a processing service of a certain smart grid; and it can be that several
cost monitoring services have to be discovered and composed, in order to do the billing
for all enumerated consumers, especially when a consumer is actually a customer of
several smart grids. Therefore, this OUT Port has additionally the Option-Slot setting for
a “Multi-port”, i.e. the Service Port can be used for integration of several compatible
Component Services. The General Characteristic CostMonitoringGCh (portrayed in yellow
in the figure) as introduced in Table 25 - Semantic Characteristics, can be used with its
Exchange Constraints for the “coordination” of the Service Properties of the
Compatibility Characteristics “Cost Monitoring” appearing in the Service Ports of the
found Composite Services. It is future research to improve the flexibility of the Exchange
Constraints, in order to improve the dealing with a flexible number of Semantic
Characteristics occurring in such scenarios.

The lower Service Mode illustrated in Fig. 58 has only one Request Port for the billing
service. Nevertheless, this Service Port includes two further Request Characteristics,
which are not closer classified in this case study, although one is called “ContractRCh” like
an earlier discussed Compatibility Characteristic (cf. section 19.3). Obviously, there shall
be a given contract for the billing service as well as an authentification and location check
(Request Characteristic “Loc-AuthRCh”) for the (principal) compatibility.

19.5 Application of the Service Descriptions and Requests

The Trader Agent of the electrical grid can react on or look specifically for services offered with

the Compatibility Characteristics SmartGridCCh or SmartGridGeCCh as discussed in the preceding

sections. It is up to the behaviour of the TrA to determine what happens with the found

information. On the one hand, the TrA could just be interested in the Service Templates and the

rest of the scenario takes place out of control of ACTAS. On the other hand, the TrA could take

advantage of the Service Offers and the involved resource management of the publishing Facility

Agents, in order to achieve an effective availability control. In this latter case during the

composition process, the TrA can also check additional constraints as they are assumed in the

consumer scenario. Therefore Example 33 shows a possible conclusion of the consumer scenario

with a Composite Service illustrated in Fig. 59 - Consumer Scenario applied by TrA.

In the billing scenario, it is assumed that a corporate office is running an application, which

generates a Service Request for the billing of varying groups of consumers of possibly diverse

sets of smart grids. This means, that the Request Agent of this application will create a

Composition Agent looking for the introduced billing service. A continuation and conclusion of

the billing scenario in this way is shown in Example 34. Nevertheless, the possible Service

Request illustrated in Fig. 61 has an alternative Request Mode (RM) or Client Request for the

Service Client A looking directly for the cost monitoring service. Alternative Client Requests were

Evaluation

 230

discussed in Example 16 and section 13.2 - Step 1: Getting Information. It is the assumption of

the billing scenario that the cost monitoring service is directly offered by a FA of a certain smart

grid. A closer description of the requesting application might be given through a commonly

agreed General Characteristic as shown in the common part of the Service Request in Fig. 61

(ApplicationGCh). In this case study, it was assumed that the application would be a corporate

office for advanced consumer services. Further General Characteristics describing Exchange

Constraints for the whole resulting Composite Structure can be given in this common part as

discussed in section 13.3 - Step2: Initialisation of the Composite Structure.

 Consumer Scenario – concluded Example 33

In order to check an additional constraint occurring in the Service Description of a basic
entity like the consumer in the consumer Scenario, the TrA can become an actor. Thus in
Fig. 59 - Consumer Scenario applied by TrA, the Actor Service Offer (ASO) for the
trader agent appears. In earlier discussions such an ASO appeared only for a Service
Client of a Service Request. However, in this case study the trader agent uses pro-actively
the resource management and availability control of the publishing Facility Agents. It will
be future research, to clarify even further the role of an actor in ACTAS and to integrate
learnt information with Actor Service Template (AST) (cf. section 8.6, Phase 6 – Service
Execution and Feedback, and Definition 19). After the Service Composition of Fig. 59,
the FA will adapt its Service Offers accordingly, since the consumer should receive an
amount of energy of the electrical grid represented through the TrA. Additionally , it
should be given that the consumer is connected through smart metering with the
electrical grid. The Facility Agents of the consumer and the smart metering service of the
smart grid can further support the deployment and operating of the smart metering and
energy delivery.

In this case study, only the principal Service Composition of the billing service is further

described. Nevertheless, the figure Fig. 60 - Principal Compatibility with applied Merge

Constraints sketches the consideration of Merge Constraints for the Service Properties similar the

figure Fig. 32 - Me-Constraints for directed and non-directed composition in section 10.4.2,

which discussed more closely the application of Merge Constraints. As the smart grid scenarios

could also include technical services for the supply networks, the Fig. 60 shows similar to Fig. 32

a non-directed Service Composition, too. In a supply network for water or gas, ACTAS could

help with the planning of pipeline usage considering the specific connection, their capacity, and

other qualities.

Fig. 59 - Consumer Scenario applied by TrA

ACTAS

231

 Billing Scenario (Advanced Service) – concluded Example 34

The shown Service Request in Fig. 61 has two alternative Request Modes, Client Request,
for a Service Client A. Both have one Request Port with the Option-Slots for “Request”
and OUT Port. In fact, there are no Request Modes or Client Requests for other Service
Clients in this Service Request. The first Request Mode is looking for the billing service
through a Request Port that just contains the Request Characteristic (BillingRCh) from
Table 25 - Semantic Characteristics. The other Request Mode has in its Request Port a
combination of two Request Characteristics (CostMonitioringRCh and QoS2,RCh). In
Table 25, these Semantic Characteristics are only listed as Compatibility Characteristic,
since the scenarios of this case study assumed the cost monitoring service rather as a
processing service of a specific smart grid. It was not directly planned to offer this service
directly to a Service Client through a Request Characteristic. In this sense, the illustrated
Service Request is an extension of the scenario. It is hinted that a General Characteristic
in the Request Mode might help out in providing fitting Exchange Constraints for the
dealing with the constraints of the cost monitoring service.

Fig. 60 - Principal Compatibility with applied Merge Constraints

Fig. 61 - Possible Service Request for the Billing Scenario

GCh of

RM
Cost Monitoring

QoS2

Billing

Application

(Corporate

Offices)

GCh of

SRe

R

Service

Client A

Service

Client A

Request

OUT

Request

OUT
R

Request

Characteristic

(RCh) in

Request Port

Request Port

General

Characteristic

SRe Common

Environment

SRe Common

Environment

Request Port

Environment

RM

Client

Request /

Request

Mode (RM)

Evaluation

 232

The Request Agent will transfer the Service Request to the specifically created
Composition Agent (cf. section 8.3 - Phase 3 – Service Request and Composition). It is
likely that the CoA will select one of the Request Modes for the Service Client as
discussed with alternative Client Requests in section 13.3 - Step2: Initialisation of the
Composite Structure, in order to create the starting Actor Service Offer (ASO) of the
Composite Structure (CompSt). However, since an agent is free in its pro-active
behaviour, the CoA might create directly separate ASOs for both Request Modes
following its own, application specific interpretation of the Service Request.

Observing the scope of this thesis, the discussion of the Service Composition by the CoA
directly steps to a possible CompSt shown in Fig. 62 - Billing Scenario with resulting
Composite Service. Obviously three smart grid, named from A to C, were discovered as
having consumers belonging to list of consumers given with the Request Characteristic
for the billing service (BillingRCh). With the help of the Exchange Constraints of the
General Characteristic for the cost monitoring service (CostMonitoringGCh), these
consumers were distributed to the fitting Service Properties of the Compatibility
Characteristics (CostMonitoringCCh) of the cost monitoring service. The Option-Slot for
the Multi-port allowed the composition of three cost monitoring services. In the case of
the smart grid C, a (principally) compatible Service Mode was selected, which further
demands a smart metering service of a certain quality (SmartMeteringCCh, QoS1,CCh). In the
following, the discovered Facility Agents will negotiate for the grounding of the advanced
service for billing. This might involve another Service Discovery and/or Service
Composition done by the service environments of the Service Providers linked with the
FAs. However, ACTAS certainly excluded already non-fitting Service Candidates and
helped to integrate formerly separated service environments.

Fig. 62 - Billing Scenario with resulting Composite Service

ACTAS

233

20 Limitations of ACTAS

The section about limitations of ACTAS starts with a quote of Berners-Lee about Web Services

and Semantic Web: “The argument against integration of the technologies is mainly social. It is

costly to coordinate very large groups. It is much more efficient to develop WS and SW

independently. Neither side has a great incentive to take on the learning required to absorb the

needs and potentials of the other. Using technology in preparation by another group takes a great

leap of faith, and does really add to the development time. These are real issues.” [Ber2003 p. 5]

It can be no doubt, that this statement is even true in the context of ACTAS, which proposes

holistic models for the categorization of services through the classification of Semantic

Characteristics based on aspects of services going beyond the functional aspect. These

classifications have to be introduced, published, and managed. Additionally, the models of

ACTAS propose the use of established SOC algorithms in fixed semantic contexts on the

abstraction level of properties of the Semantic Characteristics. ACTAS suggests that such

algorithms are published and adapted, in order to use common, reliable, and actualized

constraints with the applied characteristics in the descriptions of services or requests. This

additional effort for the entities of ACTAS can be questioned whether justified. As limitation, it

could be also discussed if ACTAS would be able to cover all relevant cases.

Berners-Lee made his statement in 2000. It is fact that the merge of Web Services and

Semantic Web took already place and led to the successful approaches of Semantic Web Services.

Thus, problems in various domains were answered on the base of e-services using enhanced

methods of Service Description, Matching, and Composition. However, these solutions take

mostly advantage of self-contained service-oriented architectures with specific repositories,

interfaces, methods, and kinds of Service Descriptions. In this way, these service -oriented

approaches are very well adapted to their domain but mutually often incompatible and

undiscovered. With the remark of Berners-Lee in one’s mind, it would be a shame not to use the

expertise of the various approaches for the building of greater, comprehensive, and trans-sectoral

environments.

For this purpose, an abstraction of the Service Description becomes necessary, which allows a

reliable, flexible agreement on some common characteristics and appropriate constraints for the

world of services, in order to discover and compose services of independent service-oriented

architectures as well as to exclude non-compatible service candidates as early as possible. It is the

justified object of the newly introduced entities of ACTAS, its framework character, and the pro-

active behaviour of its software agents to achieve such an integration of various service-oriented

application environments. As the starting quotation illustrated, the limitations come rather with

the social acceptance of the additional effort. Therefore, the effort must be reasonable in terms

of (1) the number of Service Modes, (2) the amount of new entities, and (3) the resulting

performance of ACTAS, at all.

Evaluation

 234

A Service Description in ACTAS wraps up several Service Modes. The Service Discovery

process leads to the selection of one of these Service Modes. Controversially, a Service Template

cannot offer Service Modes for all possible combinations of published Compatibility

Characteristics relevant for an offered service, since the management of Service Modes for the

Service Offers became already too vast. Nevertheless, it is not the goal of the Service Designer to

cover all possible cases but to answer the likely constellations of Compatibility Characteristics.

Keeping together the Service Modes of these constellations in one Service Description is an

advantage on its own. In the future, the Facility Agent will pro-actively decide if he can support a

requested set of CChs, i.e. the number of Service Modes in the Service Template can be

automatically extended by the FA. For this purpose, the Semantic Characteristics should be

semantically classified in a sufficient way.

In general, one could complain about the management of too many Semantic Characteristics

and Property Classes necessary for ACTAS. Considering only the mediation between the Service

Properties as realized through the Exchange Constraints, it is even more obvious that not all

cases, i.e. combinations of Service Properties, can be covered. The number of possible Exchange

Constraints became even exorbintant, if one would tackle all possible translations coming with

the Service Properties of the Semantic Characteristics appearing in a Service Description:

() (number of involved Semantic Characteristics multiplied by

the average number of their properties powered with the number of used Exchange Names, cf.

Definition 18). Then again, it is not the object of environments like ACTAS or WSMO to cover

every possibility. Like the mediator entities in WSMO, it is the goal to support likely cases of

mediation. In ACTAS, General Characteristics can be introduced as “building blocks”, in order

to ease the translation between the Service Properties of several Semantic Characteristics through

Exchange Constraints.

It has to be stressed that Exchange Constraints cannot replace a programming language.

Furthermore, an Exchange Constraint can just verify the information available at the time point

of its application. If later value changes of some involved property objects lead to restrictions,

which are incompatible with the earlier applied Exchange Constraint, then these incompatibilities

might not be recognized, because an Exchange Constraint “fires” only once for performance

reason (cf. section 13.6 - Step 5: Checking of Exchange Constraints). In other words, the

monotony of the constraints is not directly checked by ACTAS. In this sense, ACTAS can be

rather seen as a tool for the early exclusion of Service Candidates.

The number of algorithms used in the Property Classes can be reduced, when existing tools for

the reasoning or interpretation are used. This was discussed in the context of the declarative FDL

with a SOA-based approach published in [ShiAda et al.2010] (cf. Case Study 2: Distribute Feature

Composition (DFC)). Future research will demonstrate that the creation of Semantic

Characteristics can also be automated. In the case study, the integrat ion of WSML-written

ontologies, as they are listed for nfp-criteria in the appendix, through the use of the

WSML2Reasoner framework was suggested. In this way, the properties described in the

ACTAS

235

ontologies could be directly realised as several Char Properties or wrapped as one Char Property.

Appropiate set and get methods in the related Value Property Classes could be also generated.

The internal constraints defined in the ontologies would be checked by these generated

algorithms through reasoning with the definitions of the ontologies (cf. rule ()).

Summarising, it can be said that an innovative generating of the algorithms can reduce the effort

for their management extremely.

The debate about the algorithms would not be complete without a general discussion of their

performance. This extended discussion can only be general since firstly more running

environments of ACTAS have still to be tested, and secondly the performance of a framework

middleware like ACTAS deeply depends on its current application environment. It is the strength

of ACTAS, that the administrator of an application environment can adapt the Service Discovery

process of ACTAS to its application through the building of pro-active software agents, i.e. a

Request Agent and/or a Composition Agent. It is up to them, whether a complex Service

Composition or the collection of Service Candidates is the goal of the pro-activity. In every case,

the application will gain access to a set of Facility Agents, which have to do the Service

Grounding. The performance of the latter, realising the Service Grounding in the perspective of

ACTAS, cannot be concern of consideration in this thesis since it would depend on the

discovered services and their service environments. Nevertheless, the active communication

between the software agents and their pro-active behaviour should lead to an improved

performance in comparison to a strict server-client approach. The algorithm of the Composition

Agent is supposed to be a declarative one. It is well known, that such an algorithm can be in the

worst case exponential in space as well as in time, but since it can be specialized to the application

environment, one should expect a better performance. The integration of possibly non-

declarative algorithms for the constraints into the declarative environment of ACTAS also leads

to earlier discussed challenges (cf. section 13.1 - The Property Objects/Classes in the C-Model),

which will have a huge effect on the performance, but it can be assumed that further research

and standardisation will show a great improvement. The propagated use of services for the

algorithms of the constraints is consequent and compulsory for an adaptive framework, but it will

have its effect on the performance. This is especially true, when the algorithms include a

generation of code as discussed in this section. Some hints about the slow performance in this

later case can be found in [ShiAda et al.2010]. Summarizing, one could argue that the

performance of ACTAS will be likely a bad one in some applications, when only used for the

answering of Service Requests directly. However, the MAS of ACTAS, includes Trader Agents,

which can offer appropiatly composed services. Including the Service Trading, ACTAS appears

as a justified framework tool that interlinks independent service environments in a semantically

reliable and commonly agreed way despite all discussed limitations.

Evaluation

 236

21 Summary of evaluation

The evaluation firstly showed the rationality of ACTAS. It was identified that ACTAS is not just

another Service Description environment, as they are given with WSDL for Web Services as well

as OWL-S and WSMO for Semantic Web Services. It is rather a framework that combines

common Semantic Characteristics of services with semantically fitting algorithms for the

checking of constraints, in order to achieve a reliable Service Discovery and Service Composition.

Other Service Discovery environments will not be replaced; they apply ACTAS for the

advertisement of their services on a more global level through a set of commonly agreed

Semantic Characteristics for the description of the interface. The MAS of ACTAS will pro-

actively help to use and to integrate the discovered services. From the point of view of ACTAS,

the established Service Discovery environments are necessary for the Service Grounding and

Service Deployment. Therefore, it was important to clarify again the service idea of ACTAS and

how this interpretation depends on its directed or non-directed interface description. The

software agents of the MAS allow the support of the diverse roles of the involved parties as well

as the direct consideration of non-functional parameters like the availability by the Facility

Agents.

Subsequent to the general consideration of ACTAS, following topics were specifically

addressed: (1) system environment, (2) service design, (3) service request, and (4) the composition

process. The system environment of ACTAS will require a certain adjustment, i.e. agreements on

the published Semantic Characteristics as well as the provision of established algorithms for the

constraints. These algorithms must be usable within the declarative environment by ACTAS. The

necessary customizations and Web Services as an approach for the provision of the algorithms

were discussed. The resulting limitations coming with this approach were addressed in a separate

chapter at the end of the evaluation. Through the use of related General Characteristics and

Compatibility Characteristics, service descriptions in ACTAS can be assembled as from modules

or building blocks. In particular the Exchange Constraints can be made available through General

Characteristics. Similar to the design of Service Descriptions in ACTAS, the design of Service

Requests were discussed. Based on the specific interpretation of Request Modes, the use of

Alternative Client Request was mentioned. Various cases increasing in complexity were addressed

in the debate of Service Composition. Among other criteria the complexity of the cases was

determind through a potential existence of loops in the composition graph and the use of so-

called Multi Ports. Service Ports are declared as Multi Ports through Option-Slots, when several

services share a common service (e.g. a common multimedia conference facility). Another

application of Multi Ports might be the use of multiple services of same type. An example in this

direction could be the employment of multiple contractors for the construction of a house.

Finally, the Multi Ports have been proposed for technical services such as for example the use of

multiple alternative pipelines for the transport of gas.

Technical services were also content of the first of five case studies building the next part of

the evaluation. Technical services include non-directed interfaces for the Service Composition.

ACTAS

237

The use of special Translation Offers was discussed. Translation Offers allow the implementation

and application of technical standards, in order to examine the possible composition of technical

services published with different standards. Thus, ACTAS can ensure that current standards are

observed and translated during the Service Composition without the need that a service designer

considers all of them in his Service Description.

The second case study evaluated the flexible application of constraints in particular for the

feature compilation. It was shown that Exchange Constraints can be applied not only for the

interfaces of Service Composition, i.e. Service/Request Ports, but also on a higher level of the

composite structure. Additionally, it was considered how the used algorithms of the constraints

can be customized through the help of the Web Services themselves. In this way, a reduction of

the number of published and maintained algorithms could be achieved. Service environments like

e.g. SESA for WSMO contain modules to support business policies. How the resulting inherent

complexity can be supported by ACTAS, was principally discussed in the third case study.

The fourth and fifth case studies are related, since they show both the application of ACTAS

and its MAS in a larger scenario. The fourth case study creates a scenario for the weather

forecast, in which an assumedly existing free market of various service providers offers the

provision and processing of data for the weather forecast for different geographical areas

fulfilling different purposes. The adaptable offering of these services, as well as their discovery

and use by applications were content of the considerations of this case study. The fifth case study

enhanced the outlined ideas and applies them on an existing and evolving scenario, the so-called

smart grid. After the introduction in the area of smart grids, this concluding case study shows

how occurring entities and applications of a smart grid are classified at different levels through

existing models of smart-grids. The service idea of ACTAS proved in this context as useful, since

its categorization of services through ontologically classified Semantic Characteristics allows a

perfect adaptation to these models. It was shown that the additional use of the software agents of

ACTAS achieves a flexible and reliable Service Discovery and Service Composition environment,

which integrates the existing environments of the smart grids.

ACTAS

239

CONCLUSION

22 Conclusion and Future Research

The experience and research in the field of distributed computing led to the development of

software engineering paradigms like distributed objects, software agents, and electronic services.

Early on, it was recognized that the realisation of complex information systems and technical

support environments had to overcome at least two common challenges: firstly the integration of

dispersed hardware and software components, and secondly an agreement on the semantic of the

functional parameters. Service-Oriented Architectures gained their popularity due to the

standardization and trading of Web Services addressing the challenges of integration. The

addition of methods and solutions of the research area Semantic Web answered the semantic

challenge of Web Services initiating approaches and standards of Semantic Web Services. An on-

going goal of research is Autonomic Service-Oriented Computing, i.e. an improvement and

development of adaptive solutions for the different phases of the life cycle of services, in order to

reduce the necessary human intervention. Especially Service Discovery and Service Selection are

decisive phases for the achievement of Autonomic SOC. The inclusion of non-functional service

criteria for the Service Discovery, the federation of Service Trading, innovative methods of

Service Matching and Data Mediation as well as the application of software agents for the

achieving of a pro-active and re-active behaviour of service environments are extensions of SOC,

in order to approach the ultimate goal of autonomic computing. However, the diverse domains

led to different solutions and approaches keeping the information of their services in separate

repositories. Company, government, and other policies as well as the observing of varying

contexts of services for the discovery and deployment generated additionally an inherent

complexity for the Service Composition and Service Coordination. Therefore, the extended

challenges of Autonomic SOC demand on the one hand an adaptive classification of services, in

order to avoid inflexible and incompatible repositories. On the other hand, approaches of

Autonomic SOC should take advantage of the current algorithms developed for the approaches

of different domain, in order to deal with the inherent complexity.

ACTAS (Adaptive Composition and Trading with Agents for Services), introduced and

discussed in this thesis, is a framework for the Service Discovery and Service Composition, which

complies to the made considerations of Autonomic SOC on four stages: (1) a multi -dimensional

classification of services based on four aspects, (2) the checking of constraints through

centralized and approved algorithms on the level of properties of the Semantic Characteristics,

(3) an adaptive and context sensitive service description with the Semantic Characteristics, as well

as (4) the use of software agents, in order to integrate pro- and re-actively involved environments

Conclusion

 240

and existing solutions of SOC. The figure “Fig. 64 - ACTAS Overview” illustrates these concepts

of ACTAS. The Table 26 compromises their resulting features.

Semantic Web Services use ontologically introduced semantic enhancements for the functional

description of services, in order to have a reliable discovering, matching, and composition.

ACTAS extends this vision to the level of the services themselves. OWL-S offers with the

hierarchization of services an approach in the same direction. However, no applications of this

feature of OWL-S are known. It might be due to the fact that OWL-S does not specify how this

one-dimensional hierarchization between services can be achieved. It is a result of the thesis that

a multi-dimensional classification of services eases the Service Discovery and Service

Composition as long as commonly agreed criteria are used. Therefore, ontologically defined

Semantic Characteristics can be published as a common agreement on criteria for the Service

Discovery. The proposal of the four aspects of services for this purpose is a result of the thesis.

Services are categorized for the Service Discovery through the association with sets of Semantic

Characteristics (cf. Fig. 63 - New entities of ACTAS). The principal compatibility of services,

used for the Service Discovery and Service Composition in ACTAS, is straight forward defined

on the base of equal sets of Semantic Characteristics. Semantic Characteristics allow the adaptive

discovery and selection of services even without functional criteria. In Appendix B, examples for

ontologies of non-functional criteria are listed, which could be used for the semantic definition of

Semantic Characteristics, in order to classify services for the Service Discovery through these

criteria. ACTAS allows the Service Discovery not only with functional criteria. The ontologically

based semantic definition of Semantic Characteristics can include criteria like application domain

and policies (first and third aspect of services). Due to this inclusion of multi -dimensional criteria

in the semantic definition of characteristics, separate repositories are not any longer necessary

and composable services can be found easier in a more flexible way.

Fig. 63 - New entities of ACTAS

ACTAS

241

OWL-S offered a support for the whole life cycle of the service, whereas WSMO concentrated

on its four components and kept only information about the inherent complexity of the service.

The greater vision of WSMO is the awareness that ontological definitions cannot be centralized,

but the algorithms for their mediation. Therefore, WSMO accesses external algorithms for the

mediation. ACTAS extends this vision, when it bases its Service Selection on constraints (Value

Constraints, Merge Constraints, and Exchange Constraints) using centralized algorithms that are

defined externally through the introduction of Property Classes (cf. Fig. 63 - New entities of

ACTAS). ACTAS is not another “complete” service environment just extending the functional

description of Web Services like OWL-S or WSMO. It is a framework working with information

about general e-services on two levels: (1) the Service Discovery and Service Composition based

on sets of Semantic Characteristics (principal compatibility), and (2) the Service Selection through

the solving of constraints associated with the properties of the Semantic Characteristics.

The WSML ontologies of non-functional criteria listed in appendix B have attributes. Such

attributes can be used for the declaration of properties (Char Properties) in the semantic context

of Semantic Characteristics declared for these non-functional criteria. The idea of ACTAS is to

take advantage of algorithms of existing approaches. The association of Property Classes with the

Char Properties allows the integration of commonly agreed, approved and secured algorithms,

which can be controlled and improved due to their centralized, quasi standardized character. For

instance, solutions of existing Service Discovery approaches using OWL-S, WSMO, or WSDL

can be applied, when their data structures are managed in Char Properties of Semantic

Characteristics, which are semantically described in an appropriate way. The fourth aspect of

services covers the phases of the life cycle of a service. An appropriate semantic description of a

Semantic Characteristic would use a criterion ontologically defined with the first phase of the life

cycle, which is concerned with the Service Design. Further examples and appropriate semantic

descriptions of Semantic Characteristics were discussed in the thesis.

In the ideal case, ACTAS can support the discovery of new Composite Services, and exclude

inappropriate services at an early stage through given algorithms. For this purpose, the Service

Designer can use the Semantic Characteristics like “building blocks”, in order to publish

alternative Service Descriptions (so-called Service Modes). A Service Requester uses the “building

blocks” in a similar way for his Service Requests. The necessary data-structures of ACTAS were

covered in the S-Model and R-Model. The algorithms of the Property Classes, associated with

the Char Properties of the used Semantic Characteristics, can be used for a “standardized”

handling of the introduced service/request properties under the consideration of the semantic

context given with the used Semantic Characteristic as well as specific ontologies and Value

Constraints valid in the context of the Service Mode or Service Request, respectively. Thus, the

context of the service or the request can also be involved in the processing of ACTAS relying on

established ontologies and algorithms for the constraints.

ACTAS is kept simple; it works with only two kinds of Semantic Characteristics (General

Characteristic and Compatibility Characteristic) and three different kinds of constraints (Value,

Conclusion

 242

Merge, and Exchange Constraints). The Compatibility Constraints are used for the description of

compatibility between services as well as service and request. The principal compatibility leads to

Comparable Properties. The Merge Constraints built for these Comparable Properties allow the

application of established matching and mediation algorithms. The General Characteristics

support the Service Selection through Value Constraints. The usages of Exchange Constraints,

which import algorithms dealing with properties of possibly several Semantic Characteristics,

were also discussed in the thesis. An extended mediation defined for several Service/Request

Properties was examined with the introduction of so-called Translation Offers.

In the fourth stage of the support of the vision of Automatic SOC by ACTAS, the thesis

introduces a Multi-Agent System (MAS) environment, which integrates the application, trading

and provision environments through specific agents. The S-Model of ACTAS supports the

agents responsible for the Service Provision interface (Facility Agent, FA) in the management of

the resources, negotiation, and deployment of services (e.g. distinction between ST and SOER).

The Service Grounding and Service Deployment of ACTAS are done through the discovered and

selected Service Provision. These phases are likely to integrate existing Service Oriented

Architectures dealing with the inherent complexity of the Composite Service. The integration of

an existing SOA was also discussed in the context of the trading environment using Semantic

Characteristics, which have a special trading criterion in their semantic description.

The dealing with a Service Request was introduced with the C-Model and evaluated through

several scenarios debating services in technical and business domains. The application

environment is the origin of the Service Request and it is also in control of the Service

Composition process as it generates the responsible Composition Agent (CoA). The Service

Composition Process takes place in a declarative environment. Therefore, the advantages of such

environments can be used for the Service Selection involving the context of the serv ices and

established algorithms. The challenges of the integration of centralized algorithms into the

declarative environment of ACTAS through Property Objects, built from the Property Classes,

were discussed in the thesis. Concern of future research will be the centralized provision of

Property Classes and their deployment as Property Object, in order to reassemble the stack of the

declarative environment.

A sophisticated support for Service Designer and Service Requester is a goal of future

research. Prototypes of the agents shall help with the creation of appropriate agents for the MAS

of ACTAS. A tool may assist with the Service Description and the building of Service Request. It

would show the available Semantic Characteristics. The “works-with” relationship between the

Semantic Characteristics will be the basis for such kind of a tool. This relationship will also be

helpful for the dynamic creation of Service Modes and Service Requests done by the agents

during the Composition Process. Like a Service Description can have several Service Modes, a

future Service Request could deal with alternative Client Request as discussed in the thesis. The

learning of Service Client preferences with the help of Personal Agents and Actor Service

Templates (AST), which could be compared with Service Templates of the Service Offers, is

ACTAS

243

another intention of future research. ACTAS enables the involvement of existing environments

of Service Oriented Computing in several ways. The later phases of the life cycle of services in

ACTAS are built on their expertise. The extension of the composition process with such

environments especially for Service Trading can be controlled through suitable semantic

descriptions of the Semantic Characteristics. Therefore, the concepts of ACTAS can become an

exciting step towards Autonomic Service Oriented Computing.

Feature of ACTAS Description

Mapping of Algorithms
Char Property Class
Merge Property Class
Exchange Property Class

 Property Classes realize access to algorithms

 The declaration of properties as Char Properties in the

context of Semantic Characteristics maps their algorithms

and settings into this semantic context. In this way,

specific constraints and ontologies can be set.

 Algorithms are distinguished between algorithms for the

management of properties (Char Property Classes), for

the matching of properties (Merge Property Classes), and

for the mediation of several properties (Exchange

Property Classes).

Getting information for
the Negotiation Phase

 The declarative solving of constraints through approved

and context sensitive selected algorithms leads to new

information useful for the Negotiation Phase.

 The selection of a certain Service Mode in the

Composition Process with the rules of principal

compatibility, early determines the direction of the

negotiation.

 Reservation of resources or the Component Services on

the base of the SOER could make the subsequent

Deployment Phase more reliable.

Conclusion

 244

Feature of ACTAS Description

Adaptation for different
domains and users
(1st aspect of services:
the view on the service)
Consideration of other
aspects of service
(2nd aspect: non-
functional aspects)
(3rd aspect: inherent
complexity)
(4th aspect: phases of the
life cycle)

 The Semantic Characteristics define Value and Exchange

Constraints, in order to describe constraints, which are

relevant the information of its Char Properties in its

semantic context, e.g. domain specific restrictions for the

values and ontologies could be specified.

 Semantic Characteristic can also wrap properties

describing other aspects of services more closely, e.g.

non-functional aspects like trust and reliability.

 Request Characteristics, a specific kind of Compatibility

Characteristics, can be related with designated user

groups, in order to precise the Service Requests.

 Each Semantic Characteristic classifies through its

Semantic Description services, i.e. services fulfilling the

constraints of the Semantic Description are addressed.

The combination of Semantic Characteristics means an

intersection of the sets of the addressed services of each

Semantic Characteristic.

Simple Description of
Service Compatibility

 Principally Compatible Component Services are found

through common sets of Compatibility Characteristics (a

specific kind of Semantic Characteristic) in their interface

(i.e. Service Port).

 Differentiation between B2C and B2B Service

Composition through the use of solely Request

Characteristics in the interface description of a service.

 The compatibility of services is checked on the level of

Service Properties through Merge Constraints, which test

the matching of Service Properties, which became

comparable due to the principal compatibility of their

services. The Merge Constraints allow the integration of

approved matching and mediation algorithms.

ACTAS

245

Feature of ACTAS Description

Access of
implementation instances
of the algorithms
associated with the
Service Properties
through Property
Objects and their
integration in a
declarative environment

 Property Objects are created on the base of Property

Classes

 They encapsulate the handle for the access of an

implementation instance of the algorithm described with

the Property Class.

 The clowning of the Property Objects and their

implementation instances as well as the addressing of

variants enables the backtracking of the declarative

environment of the C-Model, in order to realize the

Composition Process. That means that the

implementation instances have to support their clowning

as well as that their methods should support the

addressing of variants.

 Service Properties are declared as Char Properties with

Char Property Classes in the context Semantic

Characteristics. Their Property Objects are created, when

the Service and Request Descriptions of the S-Model and

R-Model are used in the declarative environment

described through the C-Model.

 Service Properties, which were declared as Char

Properties in the context of a Compatibility

Characteristic, are additionally associated with a Merge

Property Class. A Merge Property Object will be built,

when the Merge Constraint is applied on this Service

Property and a comparable one.

 The mediation between several Service Properties is done

with Exchange Constraints, which use methods of

Exchange Property Classes. The Exchange Property

Objects are built, when the methods are applied.

 For the access of Service Properties of Merged Service

Ports, the Exchange Constraints use Merge Property

Objects, in order to receive Property Objects and in

order to hand them back. In this process, the Merge

Property Object will check if the information of the

Property Object still complies with the Merge Constraint.

Conclusion

 246

Feature of ACTAS Description

Multi-Agents System
(MAS)
Facility Agent (FA)
Personal Agent (PA)
Trader Agent (TrA)
Request Agent (ReA)
Composition Agent
(CoA)

 The MAS is the running environment, the middleware

for the declarative environment of ACTAS. It allows the

concentration on the Service Discovery based on the

Semantic Characteristics. The other environments of

(autonomic) Service Processing can be addressed by the

ReA subsequently. The gained information of ACTAS

can help to address the right environments and Service

Providers.

 The agents are pro-active, running algorithms, which are

determined through the roles involved in the Service-

oriented Architecture. The FA realises the policies of the

Service Provider. The ReA is part of the application

environment. Therefore, it will create a CoA for a Service

Request, which performs a Composition Process

according to the policies of the application. Each TrA

follows its own policies in providing Service Offers. The

PA introduces the interest of the additional role of a

Service Client, which is necessary for a commonly usable

framework like ACTAS.

 The agents can also support the subsequent phases of the

life cycle of services. The Facility Agents can play an

active role in the negotiation phase. The feedback of the

Execution Phase could be used for a redo of the

Composition Process or the learning of users’

preferences.

 The FA could realise the resource management including

the reservation of resources for a Component Service.

The Res-Info field in the Selected Service Mode of the

Composite Structure (CompSt) (cf. Definition 24)

could support the FA.

 The FA can react on a changed availability with new

SOERs.

Table 26 - Features of ACTAS

ACTAS

247

Fig. 64 - ACTAS Overview

ACTAS

249

APPENDIX

A Collection of used ontologies and ACTAS Entities

In this chapter of the appendix the used ontologies and entities of ACTAS in the thesis are listed.

The listing of ACTAS entities begins with the various Property Classes. Merge Property Classes

are normally marked with “-me”, whereas Exchange Property Classes have the mark “-ex”. Only

methods and properties, mentioned in the text, are part of the listing.

A-1 Used Ontologies

Various ontologies are developed and will be developed that can be used as classification

additions for the characteristics of ACTAS. For the semantic description of the Semantic

Characteristics, the main ontologies should be related to the four aspects of services introduced

in the State-of-the-Art. For simplification, ontologies for the direct support of the aspects of

services shall be assumed in this thesis. In the chapter B of the appendix, existing ontologies for

the support of the second aspect, the non-functional properties (nfp) are listed.

Assumed Ontology Description

 Concepts of application domains (1st aspect of services)

 Non-functional concepts (cf. also chapter B) (2nd aspect of services)

 Concepts for the choreography (3rd aspect of services)

Concepts for the designs (4th aspect of services)
E.g. three kinds of language concepts for Service Descriptions are
distinguished: written language (e.g. English), spoken language (e.g.
German) and standard language (e.g. WSDL).

 Concepts to the Trading Phase (4th aspect of services)

 Concepts to the Matching Phase (4th aspect of services)

 Concepts for the other phases of Life Cycle (4th aspect of services)

 Concepts for the classification of users (used by RCh)

Table 27 - Assumed Ontologies for the classification

Appendix

 250

A-2 ACTAS entities

In the following subsections ACTAS entities used in the thesis are listed:

 General Characteristics (GCh)

 Compatibility Characteristics (CCh), including the Request Characteristics (RCh)

 Property Classes

A-2.1 Descriptions of used General Characteristics (GCh)

General
Characteristic

(GCh)
Description

Audio-H.323

Used in Example 9.
A General Characteristic, which is supposed to translate between the Service
Properties of the following CChs: H.323 and Audio-Com.
This translation shall be similar to the one sketched in Example 15.

Audio-Phone
Used in Example 15
A General Characteristic, which is supposed to translate between the Service
Properties of the following CChs: Phone and Audio-Com.

AV-Com
(RCh)

Used in Example 9.
Communication service for audio and video communication

AV-Com
(RCh)

Used in Example 9.
Communication service for audio and video communication

AV-
Conference
(RCh)

Used for the demonstration of Multi Port in Fig. 41.
It belongs to the domain of telecommunication.
No Char Properties given.

AV-H.323

Used in Example 9.
A General Characteristic, which is supposed to translate between the Service
Properties of the following CChs: H.323 and AV-Com.
This translation shall be similar to the one sketched in Example 15.

AV-H.323-
Reliability

Used in Example 9.
This General Characteristic is supposed to integrate Exchange Constraints, which
enable the checking of reliability and mediate between the data of the
Service/Char Properties of the CCh H.323-Reliability and the RCh AV-
Reliability. This means, they translate the requested reliability data of the user into
the data of the H.323 standard and its reliability description.

Feature
This General Characteristic includes Exchange Constraints for the checking of
the choreography of message sequences generated on the basis of a set of
telephone features (cf. Case Study 2: Distribute Feature Composition (DFC)).

Feature-
Composition

This General Characteristic is an example for the use of General Characteristics
in the Common Part of the Service Request. It offers Exchange constraints for
the checking of Distributed Feature Constraints of two sets of features located in
the Client Request. The set of features are described with the declarative FDL
language debated in Case Study 2: Distribute Feature Composition (DFC).

Planning

Used in Fig. 41 - Composite Structure (CompSt) with use of Multi Ports
The Request Characteristic “Loc-Auth” (cf. equation (22-16)) is used, in order to
clarify that the MCU is reachable at a time slot and the costumer has an
authorisation for the using of the MCU. The General Characteristic “Planning”
could verify the planning of the time slots of the Service Clients.

ACTAS

251

General
Characteristic

(GCh)
Description

Provider-
Description

Used in Example 9
In the appendix Chapter B, the nfp-ontologies are listed. The provider ontology
is one of these. In the thesis, it is described how these ontologies given in WSML
can become Semantic Characteristics of ACTAS using existing WSML interpreter
for the implementation of the Property Classes (cf. 14.1 - Environment of
ACTAS).

Reliability

Used in Example 9.
This General Characteristic might work with other General Characteristics or
Compatibility Characteristics about reliability. A good candidate is the Request
Characteristic of the same name, which might deliver values based on the same
standard built for the Component Services. Its Exchange Constraints could be
linked with Char Properties of these characteristics, in order to calculate a more
general value for the reliability of the service, based on several reliability values
originated from the other characteristics.

Table 28 - Used General Characteristics (GCh)

A-2.2 Descriptions of used Compatibility Characteristics (CCh and RCh)

Compatibility
Characteristic (CCh)

(CChs declared as RCh
are marked)

Description

Availability (RCh)

Discussed in chapter 14.
The nfp-ontology for availability is shown in section B-1 of the
appendix. The ontology defines several properties for the concept
“Availability”: “isAvailableAt”, “isAvailableDuring”, and
“isAvailableTo”. This concept is extended to the concept
“RequestAvailability” providing the additional properties:
“forRequest”, “hasNegotiableTime”, and “isContinuouslyAvailable”.

AV-Com (RCh)

Used in Example 9.
This Request Characteristic demands a service, which supports Audio-
Video Communication. Its Char Properties shall not be too
technically, since it describes a user interface.

AV-Com (RCh)
Used in Example 9.
Communication service for audio and video communication

AV-Conference (RCh)
Used for the demonstration of Multi Port in Fig. 41.
It belongs to the domain of telecommunication.
No Char Properties given.

AV-Reliability (RCh)

Used in Example 9.
The existence of this Request Characteristic was motivated through
the assumption that a standard for AV connection exist, which are
open to the Service Client. That means that Service Client can and will
demand services, which support this standard. ACTAS allows the
discovery of AV-services supporting just this standard through the
combination with the RCh AV-Com. Other possible incompatible
standards of AV might have other Request Characteristics. Thus, this
characteristic shows the adaptive pre-selection through categorisation
in ACTAS pretty nicely.

Appendix

 252

Compatibility
Characteristic (CCh)

(CChs declared as RCh
are marked)

Description

General-Com (RCh)

It is used in the case study 1, in order to discuss the application of
Translation Offers, i.e. the autonomic translation between the RChs:
AV-Com, Audio-Com, Written-Com, and General-Com.
This RCh allows the discovery of communication services providing
any kind of communication: written, audio, video or combinations.
Its Char Properties shall not be too technically, since it describes a
user interface.Properties:
Transfer – Audio, Video, Written or any combination of them

GeodataWSMOTrader

The Semantic Description of this CCh in equation (9-1) in section 9.1
- S-Model: Semantic Characteristics - motivated the idea of Example 5
that a trading criteria associated in the semantic description with a
Semantic Characteristic can be interpreted through the Trader Agents
of ACTAS and even include external trading environments in this
way.
Transfer – Audio, Video, Written or any combination of them

H.323

Used in Example 9.
Non-directed Technical Service for communication facilities fulfilling
the H.323 standard for video-conferencing , i.e. communication based
on audio and video transfer (av)

H.323-Reliability

Used in Example 9.
This Compatibility Characteristic is supposed to wrap some Char
Properties, which keep some information about the reliability of
H.323 connections. This Semantic Characteristic can be combined
with the H.323 characteristic, in order to look for H.323 connections,
which support the reliability rules connected with this CCh.

Insurance (RCh)

Used in Example 13
In the semantic description, this Semantic Characteristic is associated
with the domain “TravelInsurance”. Therfore, a combination with the
RCh “Travel” will look for services, which allow a booking of travel
and offer also a fitting insurance.

Location (RCh)

The semantic description of the CCh “Location” in equation (22-17)

of Table 34 - Request Characteristics (RCh) is defined through the
nfp-ontology concept “GeographicalRegion” (cf. appendix

section B-3 - NFP-Ontology for location (locative)).

Loc-Auth (RCh)

Used in Example 9
Allows the identification of the location of a service. It can be used
for the checking of the security, e.g. the authentification of the user. It
might also contain Char Properties for the checking of the availability
of the service, in order to do even some planning.

Phone

Used in several examples and case study 1
The CCh is supposed to describe the connection between telephone
exchange/switchboards. These are non-directed Technical Services,
which shall stay transparent for the Service Clients, the telephone
customers. Therefore, the CCh is not declared as RCh.

Pipeline
This CCh demonstrates several compositions between two selected
Service Modes (cf. section 14.4 - Composition Process).

ACTAS

253

Compatibility
Characteristic (CCh)

(CChs declared as RCh
are marked)

Description

Reliability (RCh)

This General Characteristic might work with the General
Characteristic of the same name. It works with the same standards of
reliability like the GCh. As a Request/Compatibility Characteristic it
can deliver reliability values of the Component Services supporting
these reliability standards.

Travel (RCh)
Used in Example 13
This Request Characteristic shall allow the search for services
providing the booking of travels.

Table 29 – Used Compatibility and Request Characteristics

A-2.3 Property Classes

In the following tables, assumed Property Classes are listed and described as they are mentioned

in the thesis. Their preferred methods are sketched. The listing is separated in two tables. The

first one enumerates Char and Merge Property Classes. The second table lists the sketched

Exchange Property Classes.

The Char and Merge Property Classes are described together, since them both part of an

association with a Char Property in a Compatibility Characteristic at declaration time. The Merge

Property Class just joins Service Properties of the same Char Property Class through the “merge”

method (cf. C-Model, section 13.5 - Step 4: Checking of Merge Constraints). It further offers

methods for the “borrowing” and “returning” of a property of that Char Property Class, in order

to enable the application of an Exchange Constraint (cf. C-Model, section 13.6 - Step 5: Checking

of Exchange Constraints).

In the thesis, it is proposed that the Char Property Classes should contain methods for

accessing its information especially for the later phases of the life cycle of the discovered

Composite Services of ACTAS. Beside others, the method “printValues” was suggested (cf. page

86).

Appendix

 254

Char
Property Class

Description
Used for Char

Properties in Char

audioQuality
audioQuality-me

Expressing the quality of audio transport in a
user friendly way. In Example 15, its value is
mediated to values of properties of the CCh
“Phone”.

Audio-Com (RCh)

availability
availability-me

With a WSDL interpreter as discussed in
section 14.1, the implementation instances of
these Property Classes could be realized, since
the declaration of the Request Characteristic
“Availability” follows an nfp-ontology written
in WSML. In the declaration of the RCh
“Availability”, all three given Char Properties
are declared with this Property Classes, in the
assumption, that they have methods for the
initialisation fitting to the actual property.

Availability (RCh)

declarativeFDL
declarativeFDL-me

The Property Class “declarativeFDL” can
interpret declarative programs describing the
constraints between diverse features. The
implementation instance could be Web Services
following ideas of SOA based support for this
DSL language published in [ShiAda et al.2010].

Feature
(RCh)

sequenceFDL

The two Property Classes “sequenceFDL” and
“declarativeFDL” are introduced in the case
study about the solving of constraints in the
context of DFC. Two languages, named
Feature Description Languages (FDL), were
described. The Property Class “sequenceFDL”
shall support a FDL, which describes the
features as message sequences between phone
and exchange.

Feature (GCh)

policySpec
policySpec-me

In Example 13 Merge Constraints are
motivated with the listed Char and Merge
Property Classes.

Insurance (RCh)

OWL-S-capability
OWL-S-capability-me

Introduced in Example 7 as a Char Property
Class for the handling of capability information
inside of an OWL-S description. It has a
method for the initialisation with an OWL-S
description referenced through a URL. Ideally,
the class include a plausibility check for the
OWL-S description.
The Merge Property Class realises the Merge
Constraint (method “merge”) checking the
IOPE of the comparable properties declared
with the Char Property Class OWL-S-
capability. The direction of the composition is
important, since only in this way the client and
server description in OWL-S can be
distinguished.

OWL-S_with_IOPE
(RCh)

ACTAS

255

Char
Property Class

Description
Used for Char

Properties in Char

phoneSpeed
phoneSpeed-me

phoneQuality
phoneQuality-me

providerSpec
providerSpec-me

Two Property Classes are used for the
sketching of the technical “Phone” service in
the thesis. In Example 15) the information of
Service Properties declared with theses
Property Classes is translated to the
information of the RCh “Audio-Phone” and
vice versa.
In Example 13 Merge Constraints are
motivated with the listed Char and Merge
Property Classes.

Phone (CCh)

journeySpec
journeySpec-me

costSpec
costSpec-me

In Example 13 Merge Constraints are
motivated with the listed Char and Merge
Property Classes.

Travel (RCh)

Table 30 – Used Char Property Classes

Exchange
Property Class

Description
Used for
Exchange

Constraints in

audioQuality-ex

Offers methods for the mediation/translation between the
RCh “Audio-Com” and the CCh “Phone”. An example
for B2C mediation in ACTAS (cf. Case Study 1: Technical
Services with translation).

Audio-Phone

declarativeFDL-ex

Offers methods for the checking of Distributed Feature
Constraints of two sets of features described with the
declarative FDL language debated in Case Study 2:
Distribute Feature Composition (DFC).

Feature-
Composition

phoneH323-ex

Offers methods for the mediation between Char
Properties of the Semantic Characteristics “H.323” and
“Phone”, which describe Technical Services, which shall
be kept transparent towards the Service Clients. It is an
example of B2B mediation in ACTAS (cf. Case Study 1:
Technical Services with translation).

Phone-H.323

sequenceFDL-ex

Offers methods for the choreography between telephone
exchange and phone set based on message sequences
generated on the basis of a set of telephone features (cf.
Case Study 2: Distribute Feature Composition (DFC)).

Feature

(GCh)

Table 31 – Used Exchange Property Classes

Appendix

 256

A-3 Formal definitions of Semantic Characteristics

In this section, the Semantic Characteristics used in the thesis are shortly described. The

declarations of the Semantic Characteristics are listed in separate tables in the following sub-

sections.

In the context of the use of Semantic Characteristics as “building blocks”, the relation “Works-

with” was mentioned (cf. Fig. 28 - Principal ontological categorization of Semantic

Characteristics). The relation allows the Service Designer to find Semantic Characteristics, which

are related to each other. This relation can be a translation/mediation of values as shown in

Example 15. It can also be the testing of further going constraints between the involved Service

Properties like in Case Study 2: Distribute Feature Composition (DFC). The “Works-with”

relation has the subsequent signature:

Works-with (<Char1>, <Char2>, <Ex-CoRef>)

Char2, which is a General Characteristic normally, contains an Exchange Constraint referenced

through Ex-CoRef. The relation expresses that the referenced Exchange Constraint could be

used with a Service/Char Property declared in the Semantic Characteristic Char1. The used

Service Properties of an Exchange Constraint are listed in the “ExchangeProperties” term (cf.

Definition 18). In so-called pre-defined Exchange Constraints only the Property Classes and the

preferred views are listed in the “ExchangeProperrties” term. The “ExchangeProperties” term

can be adapted through the “exchangeProperties” Option-Slot (cf. Table 14 - Option-Slots of

Service Modes and Common Part of Service Descriptions). This was shown in Example 15 and

in several case studies of the thesis.

In the ontology of characteristics, the concept of an RCh has a specific relationship to

concepts of a user ontology (in Fig. 28 - Principal ontological categorization of Semantic

Characteristics: „Can_be_used_with“-relation), i.e. the semantic description (in

Definition 4 and Definition 5) of a Request Characteristic restricts the semantic context of Client

Requests to specific user groups.

Like the Service Designer does not have to use every Char Property of the Semantic

Characteristics, since ACTAS is an open and adaptive environment, the declarations in this

section cannot be complete, either. In the header of the tables the definition of the entities is

partly repeated. The elements of the sets are simply listed. For simplification their indices start

with one every time as long as the listing is unambiguous.

A general remark to the terms Char Property and Service Property shall be repeated. A

Semantic Characteristic wraps Char Properties. When a Semantic Characteristic gets part of a

Service Description (or Service Request) then its properties will be also addressed as Service

Properties.

ACTAS

257

A-3.1 General Characteristics

General Characteristics (GCh ())

C ar nv C ar a CoSet C ar Co)

Provider-
Description

SemDescr = ({ }, [(Ontology
nfp
 ProviderDescription)]) (22-1)

Reliability SemDescr = ({GCh}, [(Ontology
nfp
 Service_Reliability)]) (22-2)

Audio-Phone

SemDescr = ({GCh}, [(Ontology

 telecommunication)

(Ontology

 phone)])

(22-3)

Char_Ex_Co = ex-co(
 (([(PC1,View1)

(PC2,View2) (PC3, View3)]) ([audioQuality-ex]))

([audioQuality-ex.hasValue([] [])]

[audioQuality-ex.translation_phone([] [])]))

Works-with(Audio-Com, Audio-Phone, Ex_Co1)
Works-with(Phone, Audio-Phone, Ex_Co1)

Audio-H.323

SemDescr = ({GCh}, [(Ontology

 telecommunication)

(Ontology

 H.323)])

(22-4)

Char_Ex_Co = ex-co(
 (([(PC1,View1)

(PC2,View2)]) ([audioQuality-ex]))

([audioQuality-ex.hasValue([] [])]

[audioQuality-ex.translation_h323([] [])]))

Works-with(Audio-Com, Audio-H.323, Ex_Co1)
Works-with(H.323, Audio-H.323, Ex_Co1)

Phone-H.323

SemDescr = ({GCh}, [(Ontology

 telecommunication)

(Ontology

 phone) (Ontology

 H.323)])

(22-5)

Char_Ex_Co = ex-co(
 (([(PC1,View1)

(PC2,View2)]) ([phoneH323-ex]))

([phoneH323-ex.hasValue([] [])]

[phoneH323-ex.translation([] [])]))

Char_Ex_Co = ex-co(
 (([(PC1,View1)

(PC2,View2)]) ([phoneH323-ex]))

([phoneH323-ex.hasValue([] [])]

[phoneH323-ex.translation([] [])]))

Works-with(H.323, Phone-H.323, Ex_Co1)
Works-with(Phone, Phone-H.323, Ex_Co1)
Works-with(H.323, Phone-H.323, Ex_Co2)
Works-with(Phone, Phone-H.323, Ex_Co2)

Feature

SemDescr = ({GCh}, [(telecommunication)

(Ontology
Choreography

 simpleMessageExchange)]) (22-6)

 (SequenceDiagram sequenceFDL)

Appendix

 258

General Characteristics (GCh ())

C ar nv C ar a Co
Set

 C ar Co

)

Char_Ex_Co = ex-co(
 (([(PC1,View1)

(PC2,View2)]) ()) ([]

[sequenceFDL-ex.checkSeq([] [])]))

Works-with(FeatureCCh, FeatureGCh, Ex_Co1)

Feature
Composition

SemDescr = ({GCh}, [(Ontology

 telecommunication)])

(22-7)

Char_Ex_Co = ex-co(
 (([(PC1,View1)

(PC2,View2)]) ())

([]

[declarativeFDL-ex.checkDFC([] [])]))

Table 32 - General Characteristics (GCh)

A-3.2 Compatibility Characteristics

Compatibility Characteristics (
()

C ar nv C ar a CoSet C ar Co)

Phone

SemDescr = (

{ }

 [
()

(Ontology

 telestandard)
]
)

(22-8)

 (Speed phoneSpeed phoneSpeed-me)

 (Quality phoneQuality phoneQuality-me)

 (Provider providerSpec providerSpec-me)

Works-with(Phone, Audio-Phone, Ex_Co1)
Works-with(Phone, Phone-H.323, Ex_Co1)
Works-with(Phone, Phone-H.323, Ex_Co2)

H.323

SemDescr = (

{ }

 [
(telecommunication)

 (Ontology

 telestandard)
]
)

(22-9)
Works-with(H.323, Audio-H.323, Ex_Co1)
Works-with(H.323, Phone-H.323, Ex_Co1)
Works-with(H.323, Phone-H.323, Ex_Co2)

Table 33 - Compatibility Characteristics (CCh)

ACTAS

259

A-3.3 Compatibility Characteristics for Service Requests – Request Characteristics

Request Characteristics (RCh)

 like CC but additionally t e relation “Can be used by” Services Users))

Audio-Com

SemDescr = ({RCh}, [(telecommunication)

(all)])

(22-10)

(Audio-Quality)

Works-with(Audio-Com, Audio-Phone, Ex_Co1)

Availability

SemDescr = ({RCh}, [(nfp availability)

(all)])

(22-11) (isAvailableAt availability availability-me)

 (isAvailableDuring availability availability-me)

 (isAvailableTo availability availability-me)

AV-Com
SemDescr = (

{RCh},

[
(telecommunication)

(all)
]
)

(22-12)

Works-with(AV-Com, General-AV, Ex_Co1)

AV-Conference
SemDescr = ({RCh}, [(telecommunication)

(all)])
(22-13)

Domain-
Geodata

SemDescr({RCh}, [(Ontology
Domain

 Geodata)]) (22-14)

Feature

SemDescr = ({RCh}, [
(telecommunication)
(phoneCustomer)

])

(Depedency, declarativeFDL, declarativeFDL-me)

(22-15)

Loc-Auth

SemDescr({RCh}, [(Ontology
nfp
 GeographicalRegion)

 (Ontology
nfp
 Availability)

 (Ontology
nfp
 Security)]) (22-16)

 (RegionSpec audioQuality audioQuality-me)

Appendix

 260

Request Characteristics (RCh)

 like CC but additionally t e relation “Can be used by” Services Users))

Location SemDescr({RCh}, [(Ontology
nfp
 GeographicalRegion)]) (22-17)

OWL-S
_with_IOPE

SemDescr({SWS RCh}, [(Ontology
Design

 OWL Sgeneral)])

(Capability OWL-S-capability OWL-S-capability-me)

(22-18)

OWL-S-
Geodata

SemDescr({RCh}, [
(Ontology

Design
,OWL-Sgeneral)

(Ontology
Domain

 Geodata)
]) (22-19)

Reliability SemDescr({Nfp-RCh}, [
(Ontology

nfp
 Service_Reliability)

(Administrator)
]) (22-20)

WSMO SemDescr({SWS-RCh}, [(Ontology
Design

 WSMOgeneral)]) (22-21)

Travel

SemDescr({RCh}, [(Ontology
Domain

 TravelBooking)])

(22-22)
 (Journey journeySpec journeySpec-me)

 (Cost costSpec costSpec-me)

Insurance

SemDescr({RCh}, [(Ontology
Domain

 TravelInsurance)])
(22-23)

 (Policy policySpec policySpec-me)

Table 34 - Request Characteristics (RCh)

ACTAS

261

B NFP-Ontologies

Based on the conceptual model provided in [O’EdHo2005] the WSMO Deliverable D28. v0.1

[TomFox2006] developed a set of ontologies and provided complete descriptions of these

ontologies in WSML. The non-functional properties were modeled as ontologies in WSML listed

in Table 35 Some of these ontologies are listed here in the appendix.

Nfp-

ontologies

in WSML

Description

Availability
The availability of a service combines temporal and locative aspects of the
service to describe when and where one can interact with the service.

Currency
The Currency Ontology is a simple ontology that contains the most used
currencies.

Discounts
Closely related to the notions of price and payment is the notion of Discount.
Discounts are view from the service requestor perspective and are categorized
according to the payment method and requestor’s identity.

Intellectual
Property

The Intellectual Property Ontology provides the concepts that are needed to
describe Intellectual Property aspects. Main concepts include: IPRight,
Trademark, Patent, Design, etc.

Location
The Locative Model is used to model the location of a service. Concepts like:
Address, Region, Route, Point, Street Directory Reference, PhoneNumber,
URI, IPAddress and Spectrum are directly related to this model.

Measures
The Measures Ontology provides a general measures terminology. Main
concepts include: UnitOfMeasure, MeasurableQuantity, Distance, etc.

Obligation
The Obligations model captures the responsibilities of both service requestor
and service provider. Three kinds of obligations were defined: Pricing
obligations, Payment obligations and Relationship obligations.

Payment
The Payment model captures the manner in which a service requestor can fulfil
their payment obligations. As stated before, payment and price are
complementary.

Penalties

The Penalties are used by a service provider to specify what exactly will occur if
a service requestor does not comply with a specific obligation. The same should
hold the other way around. Penalties should be described by both the service
provider and service requester and should apply to both.

Price

Price and Payment are seen as complementary non-functional properties. They
represent two views of the same thing but from different perspectives. The
payment (cost) is the user’s perspective and the price is the provider’s
perspective.

Provider
The Service Provider model captures information about: the service identifier
which can be a UNSPSC12 code, the service name and the provider of the
service.

12 The United Nations Standard Products and Services Code (UNSPSC) is a taxonomy of products and services for use in

e-commerce. It is a five-level hierarchy coded as an 8-digit number.

Appendix

 262

Nfp-

ontologies

in WSML

Description

Quality-of-
Service
(QoS)

Quality is described relative to a standard, an industrial benchmark and/or a
ranking schema.

Rewards
The Rewards Ontology includes concepts such as AccumulatedReward,
AccumulatedPriceReward, RedeemableReward, etc

Rights
The Rights model captures the permissions granted to service providers and
service requestors to perform operations.

Security
The Security model is attached to the locative aspect of the service and it’s
divided in two dimensions: identification and confidentiality.

Time

The Temporal Model provides the temporal concepts that are needed for time
related descriptions of a service. These are: Temporal Date, Time, Temporal
Interval and Temporal Duration. These concepts can further be refined in more
specific concepts like Calendar Date for example.

Trust
Trust is a notion understood in various ways by different people. The Trust
model is directly influenced by other models like endorsement and service
inception.

Table 35 - Nfp-ontologies

B-1 NFP-Ontology for availability

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"

namespace { _"http://www.wsmo.org/ontologies/nfp/availabilityNFPOntology#",

dc _"http://purl.org/dc/elements/1.1#",
xsd _"http://www.w3.org/2001/XMLSchema#",
wsml _"http://www.wsmo.org/wsml/wsml-syntax#",
loc _"http://www.wsmo.org/ontologies/nfp/locativeNFPOntology#",

temp _"http://www.wsmo.org/ontologies/nfp/temporalNFPOntology#",
qua _"http://www.wsmo.org/ontologies/nfp/qualityNFPOntology#"

}

ontology _"http://www.wsmo.org/ontologies/nfp/availabilityNFPOntology"
nonFunctionalProperties

dc#title hasValue "Availability Ontology"
dc#type hasValue _"http://www.wsmo.org/2004/d2#ontologies"

dc#format hasValue "text/html"
dc#identifier hasValue _"http://www.wsmo.org/ontologies/nfp/availabilityNFPOntology"
dc#language hasValue "en-US"

wsml#version hasValue "$Revision: 1.0 $"
endNonFunctionalProperties

concept Availability

nonFunctionalProperties
dc#description hasValue "Availability in terms of when, where, and to whom something is available"

endNonFunctionalProperties
isAvailableAt ofType (1 *) loc#LocativeEntity

isAvailableDuring ofType (1 *) temp#TemporalEntity
isAvailableTo ofType (1 *) _iri

concept RequestAvailability subConceptOf Availability

nonFunctionalProperties
dc#description hasValue "links Availability to request"

endNonFunctionalProperties

forRequest ofType (1 1) _iri
hasNegotiableTime ofType (0 1) _boolean
isContinuouslyAvailable ofType (0 1) _boolean

ACTAS

263

B-2 NFP-Ontology for provider

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"

namespace { _"http://www.wsmo.org/ontologies/nfp/providerNFPOntology#",

 dc _"http://purl.org/dc/elements/1.1#",
 xsd _"http://www.w3.org/2001/XMLSchema#",
 wsml _"http://www.wsmo.org/wsml/wsml-syntax#",
 loc _"http://www.wsmo.org/ontologies/nfp/locativeNFPOntology#",

 tmp _"http://www.wsmo.org/ontologies/nfp/temporalNFPOntology#",
 obl _"http://www.wsmo.org/ontologies/nfp/obligationsNFPOntology#",
 qua _"http://www.wsmo.org/ontologies/nfp/qualityNFPOntology#"
}

ontology _"http://www.wsmo.org/ontologies/nfp/providerNFPOntology"
 nonFunctionalProperties
 dc#title hasValue "Provider Ontology"

 dc#creator hasValue {"Ioan Toma"}
 dc#subject hasValue {"Provider"}
 dc#description hasValue "Provider Ontology"

 dc#publisher hasValue "DERI Innsbruck"
 dc#contributor hasValue {"Ioan Toma"}
 dc#date hasValue "2006-05-08"
 dc#type hasValue _"http://www.wsmo.org/2004/d2#ontologies"

 dc#format hasValue "text/html"
dc#identifier hasValue _"http://www.wsmo.org/ontologies/nfp/providerNFPOntology"

 dc#language hasValue "en-US"
 wsml#version hasValue "$Revision: 1.0 $"

 endNonFunctionalProperties

 concept Provider
 nonFunctionalProperties

 dc#description hasValue "Provider concept definition"
 endNonFunctionalProperties
 hasName ofType (1 1) _string

 hasPriceMatching ofType (1 1) PriceMatching
 hasCompliance ofType AchievedCompliance
 offersPriceMatching ofType (1 1) PriceMatching
 hasProviderFeedback ofType (0 1) Endorsement

 hasMissionStatement ofType (0 1) Statement
 isLegallyBoundBy ofType (1 *) Legislation
 hasYearOfInception ofType (0 1) _year
 hasProviderMembership ofType ProviderMembership

 hasAssociationWith ofType AssociationTypeProvider

 concept AssociationTypeProvider
 nonFunctionalProperties

 dc#description hasValue "AssociationTypeProvider concept definition"
 endNonFunctionalProperties
 hasAssociationType ofType (1 1) AssociationType
 withProvider ofType (1 1) Provider

 concept ProviderMembership
 nonFunctionalProperties

 dc#description hasValue "ProviderMembership concept definition"
 endNonFunctionalProperties
 providerOf ofType (1 1) Provider
 hasMembership ofType (1 1) obl#Membership

 wasAchievedOn ofType (1 1) tmp#TemporalDate
 hasMembershipExpiryOf ofType (1 1) tmp#TemporalDate

 concept AchievedCompliance

 nonFunctionalProperties
 dc#description hasValue "AchievedCompliance concept definition"
 endNonFunctionalProperties
 hasCompliance ofType (1 1) Compliance

 hasConformanceRating ofType (1 1) StandardLevelName
 wasAchievedOn ofType (1 1) tmp#TemporalDate
 wasVerifiedBy ofType (1 1) Provider

 concept Compliance
 nonFunctionalProperties
 dc#description hasValue "Compliance concept definition"

 endNonFunctionalProperties
 achievedConformanceOfStandard ofType (1 1) qua#Standard
 forService ofType (1 1) _iri //Service

Appendix

 264

 concept AssociationType

 nonFunctionalProperties
 dc#description hasValue "AssociationType concept definition"
 endNonFunctionalProperties

 concept PartnerType subConceptOf AssociationType
 nonFunctionalProperties
 dc#description hasValue "PartnerType concept definition"

 endNonFunctionalProperties

 concept SubsidiaryType subConceptOf AssociationType
 nonFunctionalProperties

 dc#description hasValue "SubsidiaryType concept definition"
 endNonFunctionalProperties

 concept OwnerType subConceptOf AssociationType

 nonFunctionalProperties
 dc#description hasValue "OwnerType concept definition"
 endNonFunctionalProperties

 concept SupplierToType subConceptOf AssociationType
 nonFunctionalProperties
 dc#description hasValue "SupplierToType concept definition"

 endNonFunctionalProperties

 concept AgencyType subConceptOf AssociationType
 nonFunctionalProperties

 dc#description hasValue "AgencyType concept definition"
 endNonFunctionalProperties

 concept DivisionType subConceptOf AssociationType

 nonFunctionalProperties
 dc#description hasValue "DivisionType concept definition"
 endNonFunctionalProperties

 concept BranchType subConceptOf AssociationType
 nonFunctionalProperties
 dc#description hasValue "BranchType concept definition"

 endNonFunctionalProperties

B-3 NFP-Ontology for location (locative)

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"

namespace { _"http://www.wsmo.org/ontologies/nfp/locativeNFPOntology#",
dc _"http://purl.org/dc/elements/1.1#",
xsd _"http://www.w3.org/2001/XMLSchema#",

wsml _"http://www.wsmo.org/wsml/wsml-syntax#",
temp _"http://www.wsmo.org/ontologies/nfp/temporalNFPOntology",
qu _"http://www.wsmo.org/ontologies/nfp/qualityNFPOntology",
sec _"http://www.wsmo.org/ontologies/nfp/qualityNFPOntology",

meas _"http://www.wsmo.org/ontologies/nfp/measuresNFPOntology"
}

ontology _"http://www.wsmo.org/ontologies/nfp/locativeNFPOntology"

nonFunctionalProperties
dc#title hasValue "Locative Ontology"

endNonFunctionalProperties

importsOntology {_"http://www.wsmo.org/ontologies/nfp/temporalNFPOntology",
_"http://www.wsmo.org/ontologies/nfp/qualityNFPOntology",
_"http://www.wsmo.org/ontologies/nfp/securityNFPOntology",
_"http://www.wsmo.org/ontologies/nfp/measuresNFPOntology"}

concept LocativeEntity

nonFunctionalProperties

dc#description hasValue "LocativeEntity concept definition"
endNonFunctionalProperties
hasName ofType _string
supportsWrittenLanguage ofType Language

supportsSpokenLanguage ofType Language
canBeComunicatedAccordingTo ofType qu#Standard
hasIdentificationRequirement ofType (1) sec#IdentificationRequirement
hasConfidentiality ofType (1) sec#Confidentiality

ACTAS

265

concept GeoLocation subConceptOf LocativeEntity

nonFunctionalProperties
dc#description hasValue "GeoLocation concept definition"
dc#relation hasValue { validLatitude, validLongitude, validPoleGeoLocation}

endNonFunctionalProperties
hasLatitude ofType (1) meas#Angle
hasLongitude ofType (1 1) meas#Angle
hasAltitude ofType (0 1) meas#Distance

axiom validLatitude

definedBy
!- ?point [latitude hasValue ?LA] memberOf GeoLocation and

?LA [numUnits hasValue ?NU, ofUnits hasValue meas#DegreeOfArc] memberOf meas#Angle and
(less(90, ?NU) or greater(_decimal("-90"), ?NU)).

axiom validLongitude

definedBy
!- ?point [longitude hasValue ?LO] memberOf GeoLocation and
?LO [numUnits hasValue ?NU, ofUnits hasValue meas#DegreeOfArc] memberOf meas#Angle and

(less(180, ?NU) or greaterEqual(_decimal("-180"), ?NU)).

axiom validPoleGeoLocation
definedBy

!- ?point [latitude hasValue ?LA, longitude hasValue ?LO] memberOf GeoLocation and
?LA [numUnits hasValue 90, ofUnits hasValue meas#DegreeOfArc] memberOf meas#Angle and
?LO [numUnits hasValue ?NU, ofUnits hasValue meas#DegreeOfArc] memberOf meas#Angle.

concept CompassDirection
nonFunctionalProperties

dc#description hasValue "Direction concept definition"
dc#relation hasValue validCompassDirection

endNonFunctionalProperties
ofUnits ofType meas#UnitOfArc

axiom validCompassDirection

definedBy
!- ?dir [numUnits hasValue ?ANGLE, ofUnits hasValue meas#DegreeOfArc]
memberOf CompassDirection and (lessEqual(360, ?ANGLE) or greater(0, ?ANGLE)).

concept VehicularRoute subConceptOf LocativeEntity

nonFunctionalProperties
dc#description hasValue "VehicularRoute concept definition"

endNonFunctionalProperties
hasName ofType (1 1) _string
hasSpecification ofType RouteSpecification
intendedForVehicles ofType (1 *) Vehicle

possiblePathFor ofType (1 *) Vehicle

concept VehicleType

nonFunctionalProperties

dc#description hasValue "VehicleType"
endNonFunctionalProperties

concept PathThroughWater subConceptOf VehicularRoute
nonFunctionalProperties

dc#description hasValue "PathThroughWater concept definition"
endNonFunctionalProperties

concept WaterSurfacePath subConceptOf PathThroughWater

nonFunctionalProperties
dc#description hasValue "WaterSurfacePath concept definition"

endNonFunctionalProperties

concept Canal subConceptOf WaterSurfacePath
nonFunctionalProperties

dc#description hasValue "Canal concept definition"
endNonFunctionalProperties

concept SeaLane subConceptOf WaterSurfacePath
nonFunctionalProperties

dc#description hasValue "SeaLane concept definition"
endNonFunctionalProperties

concept SolidSurfacePathThroughAir subConceptOf VehicularRoute

nonFunctionalProperties
dc#description hasValue "SolidSurfacePathThroughAir concept definition"

endNonFunctionalProperties

Appendix

 266

concept PathForWheeledVehicles subConceptOf SolidSurfacePathThroughAir

nonFunctionalProperties
dc#description hasValue "PathForWheeledVehicles concept definition"

endNonFunctionalProperties

concept Railway subConceptOf PathForWheeledVehicles

nonFunctionalProperties
dc#description hasValue "Railway concept definition"

endNonFunctionalProperties

concept Subway subConceptOf Railway
nonFunctionalProperties

dc#description hasValue "Subway concept definition"
endNonFunctionalProperties

concept Roadway subConceptOf PathForWheeledVehicles

nonFunctionalProperties
dc#description hasValue "Roadway concept definition"

endNonFunctionalProperties

concept RoadLane subConceptOf PathForWheeledVehicles

nonFunctionalProperties
dc#description hasValue "RoadLane concept definition"

endNonFunctionalProperties

concept Driveway subConceptOf PathForWheeledVehicles
nonFunctionalProperties

dc#description hasValue "Driveway concept definition"
endNonFunctionalProperties

concept BicyclePath subConceptOf PathForWheeledVehicles

nonFunctionalProperties
dc#description hasValue "BicyclePath concept definition"

endNonFunctionalProperties

concept SkiSlope subConceptOf SolidSurfacePathThroughAir
nonFunctionalProperties

dc#description hasValue "SkiSlope concept definition"

endNonFunctionalProperties

concept SkiJump subConceptOf SkiSlope
nonFunctionalProperties

dc#description hasValue "SkiJump concept definition"
endNonFunctionalProperties

concept Footpath subConceptOf SolidSurfacePathThroughAir

nonFunctionalProperties
dc#description hasValue "Footpath concept definition"

endNonFunctionalProperties

concept Stairway subConceptOf Footpath
nonFunctionalProperties

dc#description hasValue "Stairway concept definition"

endNonFunctionalProperties

concept MovingWalkway subConceptOf Footpath
nonFunctionalProperties

dc#description hasValue "MovingWalkway concept definition"
endNonFunctionalProperties

concept MovingStairway subConceptOf MovingWalkway

nonFunctionalProperties
dc#description hasValue "MovingStairway concept definition"

endNonFunctionalProperties

concept Trail subConceptOf Footpath
nonFunctionalProperties

dc#description hasValue "Trail concept definition"

endNonFunctionalProperties

concept Sidewalk subConceptOf Footpath
nonFunctionalProperties

dc#description hasValue "Sidewalk concept definition"
endNonFunctionalProperties

concept GangPlank subConceptOf Footpath

nonFunctionalProperties

ACTAS

267

dc#description hasValue "GangPlank concept definition"

endNonFunctionalProperties

concept PathThroughAir subConceptOf VehicularRoute

nonFunctionalProperties
dc#description hasValue "PathThroughAir concept definition"

endNonFunctionalProperties

concept AirLane subConceptOf PathThroughAir
nonFunctionalProperties

dc#description hasValue "AirLane concept definition"
endNonFunctionalProperties

concept GlideSlope subConceptOf PathThroughAir

nonFunctionalProperties
dc#description hasValue "GlideSlope concept definition"

endNonFunctionalProperties

concept IndicativeRouteType

nonFunctionalProperties
dc#description hasValue "IndicativeRouteType concept definition"

endNonFunctionalProperties
value ofType _string

concept RouteSpecification

nonFunctionalProperties
dc#description hasValue "RouteSpecification concept definition"

endNonFunctionalProperties
hasSpecification ofType (1 *) RouteSpecificationType

concept RouteSpecificationType

nonFunctionalProperties
dc#description hasValue "RouteSpecificationType concept definition"

endNonFunctionalProperties
hasPoint ofType (1 *) GeoLocation

hasOrder ofType (1 1) nonNegativeInteger

concept RouteSpecification

nonFunctionalProperties
dc#description hasValue "RouteSpecification concept definition"

endNonFunctionalProperties
hasNthRoutePoint ofType (1 *) NthRoutePoint

concept NthRoutePoint

nonFunctionalProperties
dc#description hasValue "NthRoutePoint concept definition"

endNonFunctionalProperties
hasPoint ofType (1) GeoLocation
hsOrder ofType (1) nonNegativeInteger

concept Region subConceptOf LocativeEntity
nonFunctionalProperties

dc#description hasValue "Region concept definition"

endNonFunctionalProperties
hasName ofType (1) _string
hasSpecification ofType RegionSpecification

concept GeopoliticalPlace subConceptOf LocativeEntity
nonFunctionalProperties

dc#description hasValue "GeopoliticalPlace concept definition"
endNonFunctionalProperties

concept GeoLocation subConceptOf GeopoliticalPlace

nonFunctionalProperties
dc#description hasValue "GeoLocation concept definition"

endNonFunctionalProperties

concept GeographicalRegion subConceptOf {GeographicalPlace, Region}

nonFunctionalProperties
 dc#description hasValue "GeographicalRegion concept definition"
 endNonFunctionalProperties

 concept GeopoliticalRegion subConceptOf GeographicalRegion
 nonFunctionalProperties
 dc#description hasValue "GeopoliticalRegion concept definition"
 endNonFunctionalProperties

Appendix

 268

 concept HumanResidenceArea subConceptOf GeographicalRegion

 nonFunctionalProperties
 dc#description hasValue "HumanResidenceArea concept definition"
 endNonFunctionalProperties

 concept UrbanArea subConceptOf HumanResidenceArea
 nonFunctionalProperties
 dc#description hasValue "UrbanArea concept definition"

 endNonFunctionalProperties

 concept Neighborhood subConceptOf HumanResidenceArea
 nonFunctionalProperties

 dc#description hasValue "Neighborhood concept definition"
 endNonFunctionalProperties

 concept SuburbanArea subConceptOf HumanResidenceArea

 nonFunctionalProperties
 dc#description hasValue "SuburbanArea concept definition"
 endNonFunctionalProperties

 concept NationalTerritory subConceptOf GeopoliticalRegion
 nonFunctionalProperties
 dc#description hasValue "NationalTerritory concept definition"

 endNonFunctionalProperties

 concept SubnationalTerritory subConceptOf GeopoliticalRegion
 nonFunctionalProperties

 dc#description hasValue "SubnationalTerritory concept definition"
 endNonFunctionalProperties

 concept CityTerritory subConceptOf SubnationalTerritory

 nonFunctionalProperties
 dc#description hasValue "CityTerritory concept definition"
 endNonFunctionalProperties

 concept CapitolTerritory subConceptOf CityTerritory
 nonFunctionalProperties
 dc#description hasValue "CapitolTerritory concept definition"

 endNonFunctionalProperties

 concept PrimarySubnationalTerritory subConceptOf SubnationalTerritory
 nonFunctionalProperties

 dc#description hasValue "PrimarySubnationalTerritory concept definition; e.g. State, Provice"

 endNonFunctionalProperties

 concept SecondarySubnationalTerritory subConceptOf SubnationalTerritory
 nonFunctionalProperties
 dc#description hasValue "SecondarySubnationalTerritory concept definition; e.g. Country, Parish"

 endNonFunctionalProperties

 concept PostalCodeArea subConceptOf SubnationalTerritory

 nonFunctionalProperties
 dc#description hasValue "PostalCodeArea concept definition"
 endNonFunctionalProperties

 concept SchoolDistrictTerritory subConceptOf SubnationalTerritory
 nonFunctionalProperties
 dc#description hasValue "SchoolDistrictTerritory concept definition"
 endNonFunctionalProperties

 concept ControlledLand subConceptOf GeopoliticalRegion
 nonFunctionalProperties
 dc#description hasValue "ControlledLand concept definition"

 endNonFunctionalProperties

 concept ColonialTerritory subConceptOf ControlledLand

 nonFunctionalProperties
 dc#description hasValue "ColonialTerritory concept definition"
 endNonFunctionalProperties

 concept DominionTerritory subConceptOf ControlledLand
 nonFunctionalProperties
 dc#description hasValue "DominionTerritory concept definition"
 endNonFunctionalProperties

ACTAS

269

 concept OccupiedTerritory subConceptOf ControlledLand

 nonFunctionalProperties
 dc#description hasValue "OccupiedTerritory concept definition"
 endNonFunctionalProperties

 concept BodyOfLand subConceptOf GeographicalRegion
 nonFunctionalProperties
 dc#description hasValue "BodyOfLand concept definition"

 endNonFunctionalProperties

 concept Continent subConceptOf BodyOfLand
 nonFunctionalProperties

 dc#description hasValue "Continent concept definition"
 endNonFunctionalProperties

 concept Subcontinent subConceptOf BodyOfLand

 nonFunctionalProperties
 dc#description hasValue "Subcontinent concept definition"
 endNonFunctionalProperties

 concept Island subConceptOf BodyOfLand
 nonFunctionalProperties
 dc#description hasValue "Island concept definition"

 endNonFunctionalProperties

 concept Archipelago subConceptOf BodyOfLand
 nonFunctionalProperties

 dc#description hasValue "Archipelago concept definition"
 endNonFunctionalProperties

 concept LandTopographicalFeature subConceptOf GeographicalRegion

 nonFunctionalProperties
 dc#description hasValue "LandTopographicalFeature concept definition"
 endNonFunctionalProperties

 concept Peninsula subConceptOf LandTopographicalFeature
 nonFunctionalProperties
 dc#description hasValue "Peninsula concept definition"

 endNonFunctionalProperties

 concept Isthmus subConceptOf LandTopographicalFeature
 nonFunctionalProperties

 dc#description hasValue "Isthmus concept definition"
 endNonFunctionalProperties

 concept Plateau subConceptOf LandTopographicalFeature

 nonFunctionalProperties
 dc#description hasValue "Plateau concept definition"
 endNonFunctionalProperties

 concept MountainRange subConceptOf LandTopographicalFeature
 nonFunctionalProperties
 dc#description hasValue "MountainRange concept definition"

 endNonFunctionalProperties

 concept Desert subConceptOf LandEcologicalRegion

 nonFunctionalProperties
 dc#description hasValue "Desert concept definition"
 endNonFunctionalProperties

 concept Glacier subConceptOf LandEcologicalRegion
 nonFunctionalProperties
 dc#description hasValue "Glacier concept definition"
 endNonFunctionalProperties

 concept Wetland subConceptOf LandEcologicalRegion
 nonFunctionalProperties

 dc#description hasValue "Wetland concept definition"
 endNonFunctionalProperties

 concept LandEcologicalRegion subConceptOf GeographicalRegion

 nonFunctionalProperties
 dc#description hasValue "LandEcologicalRegion concept definition"
 endNonFunctionalProperties

 concept Forest subConceptOf LandEcologicalFeature

Appendix

 270

 nonFunctionalProperties

 dc#description hasValue "Forest concept definition"
 endNonFunctionalProperties

 concept RainForest subConceptOf Forest
 nonFunctionalProperties
 dc#description hasValue "RainForest concept definition"
 endNonFunctionalProperties

 concept Savannah subConceptOf LandEcologicalFeature
 nonFunctionalProperties
 dc#description hasValue "Savannah concept definition"

 endNonFunctionalProperties

 concept Steppe subConceptOf LandEcologicalFeature
 nonFunctionalProperties

 dc#description hasValue "Steppe concept definition"
 endNonFunctionalProperties

 concept BodyOfWater subConceptOf GeographicalRegion
 nonFunctionalProperties
 dc#description hasValue "BodyOfWater concept definition"
 endNonFunctionalProperties

 concept Ocean subConceptOf BodyOfWater
 nonFunctionalProperties
 dc#description hasValue "Ocean concept definition"

 endNonFunctionalProperties

 concept Lake subConceptOf BodyOfWater
 nonFunctionalProperties

 dc#description hasValue "Lake concept definition"
 endNonFunctionalProperties

 concept WaterStream subConceptOf BodyOfWater

 nonFunctionalProperties
 dc#description hasValue "WaterStream concept definition"
 endNonFunctionalProperties

 concept River subConceptOf WaterStream
 nonFunctionalProperties
 dc#description hasValue "River concept definition"

 endNonFunctionalProperties

 concept Creek subConceptOf WaterStream
 nonFunctionalProperties

 dc#description hasValue "Creek concept definition"
 endNonFunctionalProperties

 concept PartialBodyOfWater subConceptOf BodyOfWater

 nonFunctionalProperties
 dc#description hasValue "PartialBodyOfWater concept definition"
 endNonFunctionalProperties

 concept BayGulf subConceptOf PartialBodyOfWater
 nonFunctionalProperties
 dc#description hasValue "BayGulf concept definition"

 endNonFunctionalProperties

 concept Sea subConceptOf PartialBodyOfWater
 nonFunctionalProperties

 dc#description hasValue "Sea concept definition"
 endNonFunctionalProperties

 concept RegionSpecification

 nonFunctionalProperties
 dc#description hasValue "RegionSpecification concept definition"
 endNonFunctionalProperties

 hasSpecification ofType (3 *) NthBorderPoint
 numberOfBorderPoints ofType nonNegativeInteger

 concept NthBorderPoint

 nonFunctionalProperties
 dc#description hasValue "NthBorderPoint concept definition"
 endNonFunctionalProperties
 hasPoint ofType (1) GeoLocation

 hasOrder ofType (1) _integer

ACTAS

271

 concept Address subConceptOf LocativeEntity
 nonFunctionalProperties
 dc#description hasValue "Address concept definition"

 endNonFunctionalProperties
 hasCountry ofType (0 1) Country
 hasCountrySubdivision ofType (0 1) PrimarySubnationalTerritory
 hasCountrySubSubdivision ofType (0 1) SecondarySubnationalTerritory

 hasTown ofType (0 1) CityTerritory //includes village, town, ...
 hasSubTown ofType (0 *) GeopoliticalRegion
 hasTeritory ofType (0 1) ControlledLand
 hasPostcode ofType (0 1) _string

 hasAddressee ofType (0 1) Addressee
 inSupraNationalRegion ofType (0 1) GeographicalRegion

 concept PostBoxAddress subConceptOf Address

 nonFunctionalProperties
 dc#description hasValue "Postbox Address "
 endNonFunctionalProperties

 hasPostBoxNumber ofType _string

 concept StreetAddress subConceptOf {Address, GeographicalRegion}
 nonFunctionalProperties

 dc#description hasValue "Street Address"
 endNonFunctionalProperties
 hasStreetType ofType _string
 hasStreetName ofType _string

 hasStreetNumber ofType _string
 hasStreetDirectoryReference ofType StreetDirectoryReference
 hasProximity ofType Proximity
 carrierInstructions ofType _string

 concept InternalAddress subConceptOf StreetAddress
 nonFunctionalProperties
 dc#description hasValue "Address internal to a StreetAddress"

 endNonFunctionalProperties
 hasBuildingID ofType _string
 hasLevel ofType _string

 hasUnitID ofType _string
 hasRoomNumber ofType _string
 mailStop ofType _string
 internalRoutingInstructions ofType _string

 concept PostBoxType
 nonFunctionalProperties
 dc#description hasValue "PostBoxType concept definition"

 endNonFunctionalProperties
 value ofType _string

 relation spatiallyRelated (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean)

 relation near (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf spatiallyRelated

 relation adjacentTo (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf near

 relation touching (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf near

 relation inGeneric (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf spatiallyRelated

 relation inPartially (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf inGeneric

 relation inAmong (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf inGeneric

 relation inSurrounded (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf inGeneric

 relation inEmbedded (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf inSurrounded

 relation subRegions (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf inGeneric

 relation borderSubRegions (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf subRegions

 relation internalSubRegions (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf {subRegions,

inSurrounded}

 relation internalParts (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf inSurrounded

 relation aboveGeneric (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf spatiallyRelated

Appendix

 272

 relation aboveGenerally (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf aboveGeneric

 relation aboveHigerThan (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf aboveGeneric

 relation northOf (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf spatiallyRelated

 relation southOf (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf spatiallyRelated

 relation eastOf (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf spatiallyRelated

 relation westOf (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf spatiallyRelated

 relation facing (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf spatiallyRelated

 relation levelWith (ofType LocativeEntity, ofType LocativeEntity, impliesType _boolean) subRelationOf spatiallyRelated

 concept Addressee
 nonFunctionalProperties

 dc#description hasValue "Addressee concept definition"
 endNonFunctionalProperties
 hasDepartmentName ofType (0 1) _string
 hasName ofType (0 1) _string

 hasFunctionalTitle ofType (0 1) _string
 hasProfessionalTitle ofType (0 1) _string
 hasOrganizationName ofType (0 1) _string

 concept PhoneNumber subConceptOf LocativeEntity
 nonFunctionalProperties
 dc#description hasValue "PhoneNumber concept definition"
 endNonFunctionalProperties

 hasType ofType (1 1) PhoneLineType
 hasInteractionType ofType (1 1) PhoneNumberInteractionType
 tollFreeCallForCallersFromRegion ofType (0 1) Region
 hasCountryCode ofType (0 1) nonNegativeInteger

 hasNationalDirectDialPrefix ofType (0 1) nonNegativeInteger
 hasCityOrAreaCode ofType (0 1) nonNegativeInteger
 hasLocalNumber ofType (1 1) nonNegativeInteger

 hasInternationalPrefix ofType InternationalPrefixForRegion

 concept PhoneLineType
 nonFunctionalProperties

 dc#description hasValue "PhoneLineType concept definition"
 endNonFunctionalProperties

 instance MobileNumberType memberOf PhoneLineType

 instance CellNumberType memberOf PhoneLineType
 instance FixedLineNumberType memberOf PhoneLineType

 concept InternationalPrefixForRegion

 nonFunctionalProperties
 dc#description hasValue "InternationalPrefixForRegion concept definition"
 endNonFunctionalProperties

 hasInternationalDirectDialPrefix ofType (1 1) nonNegativeInteger
 forCallersFromRegion ofType (1 *) Region

 concept IPAddress subConceptOf LocativeEntity

 nonFunctionalProperties
 dc#description hasValue "IPAddress concept definition"
 endNonFunctionalProperties
 //todo - to be defined

 concept EthernetAddress subConceptOf LocativeEntity
 nonFunctionalProperties
 dc#description hasValue "EthernetAddress concept definition"

 endNonFunctionalProperties
 //todo - to be defined

 concept StreetDirectory
 nonFunctionalProperties
 dc#description hasValue "StreetDirectory concept definition"
 endNonFunctionalProperties

 hasEdition ofType (0 1) nonNegativeInteger
 hasProvider ofType (0 1) Provider
 hasISBNCode ofType (0 1) _string
 hasPublicationTitle ofType (1 1) _string

 hasPublicationDate ofType (0 1) temp#TemporalDate

ACTAS

273

 concept StreetDirectoryReference subConceptOf LocativeEntity
 nonFunctionalProperties
 dc#description hasValue "StreetDirectoryReference concept definition"

 endNonFunctionalProperties
 hasXPosition ofType (1 1) _string
 hasYPosition ofType (1 1) _string
 hasRegion ofType (0 *) Region

 hasMapNumber ofType (1 1) _string
 hasReference ofType (1 *) StreetDirectory

 concept nonNegativeInteger subConceptOf _integer

 nonFunctionalProperties
 dc#description hasValue "Non negative integer"
 dc#relation hasValue validNonNegativeInteger
 endNonFunctionalProperties

 axiom validNonNegativeInteger
 definedBy

 !- ?x memberOf _integer and lessThan(?x, 0).

B-4 NFP-Ontology for discount

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"

namespace { _"http://www.wsmo.org/ontologies/nfp/discountsNFPOntology#",
dc _"http://purl.org/dc/elements/1.1#",
xsd _"http://www.w3.org/2001/XMLSchema#",
wsml _"http://www.wsmo.org/wsml/wsml-syntax#",

ava _"http://www.wsmo.org/ontologies/nfp/availabilityNFPOntology#",
price _"http://www.wsmo.org/ontologies/nfp/priceNFPOntology#",
pay _"http://www.wsmo.org/ontologies/nfp/paymentNFPOntology#",
loc _"http://www.wsmo.org/ontologies/nfp/locativeNFPOntology#",

temp _"http://www.wsmo.org/ontologies/nfp/temporalNFPOntology#"
}

ontology _"http://www.wsmo.org/ontologies/nfp/discountsNFPOntology"
nonFunctionalProperties

dc#title hasValue "Discounts Ontology"
endNoFunctionalProperties

concept Discount

nonFunctionalProperties
dc#description hasValue "Discount concept definition"

endNonFunctionalProperties
hasCondition ofType Condition
hasAmount ofType DiscountAmount
hasResultingDiscountedPrice ofType ResultingDiscountPrice

hasAvailability ofType (1 *) ava#Availability

concept PayeeDiscount subConceptOf Discount
nonFunctionalProperties

dc#description hasValue "PayeeDiscount concept definition"
endNonFunctionalProperties

concept StudentDiscount subConceptOf PayeeDiscount
nonFunctionalProperties

dc#description hasValue "StudentDiscount concept definition"
endNonFunctionalProperties

applicableToSchoolStudents ofType (1 1) _boolean
applicableToFulltimeUniversityStudents ofType (1 1) _boolean

concept MembershipDiscount subConceptOf PayeeDiscount

nonFunctionalProperties
dc#description hasValue "MembershipDiscount concept definition"

endNonFunctionalProperties
isAvailableToHolders ofType Membership

concept ShareholderDiscount subConceptOf PayeeDiscount

nonFunctionalProperties

dc#description hasValue "ShareholderDiscount concept definition"
endNoFunctionalProperties
availableToShareholders ofType _iri //Provider
availableToShareholdersWithMinimumNumberOfUnits ofType (1 1) loc#nonNegativeInteger

concept AgeGroupDiscount subConceptOf PayeeDiscount

Appendix

 274

nonFunctionalProperties

dc#description hasValue "AgeGroupDiscount concept definition"
endNonFunctionalProperties
hasName ofType (0 1) _string

ageFromValue ofType (1 1) loc#nonNegativeInteger
ageToValue ofType (1 1) loc#nonNegativeInteger

concept DiscountAmount

nonFunctionalProperties
dc#description hasValue "DiscountAmount concept definition"

endNonFunctionalProperties
absoluteDiscount ofType (0 1) price#MonetaryAmount

percetDiscount ofType (0 1) price#Percentage
forService ofType (1 1) _iri //Service

concept ResultingDiscountedPrice subConceptOf price#Price

nonFunctionalProperties
dc#description hasValue "ResultingDiscountedPrice concept definition"

endNonFunctionalProperties

concept PaymentDiscount

nonFunctionalProperties
dc#description hasValue "PaymentDiscount concept definition"

endNonFunctionalProperties
hasMinimumPriceRequiredToReceiveDiscount ofType (0 1) price#AbsoutePrice

concept PaymentInstrumentTypeDiscount subConceptOf PaymentDiscount

nonFunctionalProperties
dc#description hasValue "PaymentInstrumentTypeDiscount concept definition"

endNonFunctionalProperties
offersPaymentInstrumentTypeDiscountFor ofType (1 1) pay#PaymentInstrumentType

concept PaymentLocationTypeDiscount subConceptOf PaymentDiscount

nonFunctionalProperties
dc#description hasValue "PaymentLocationTypeDiscount concept definition"

endNonFunctionalProperties
offersPaymentLocationTypeDiscountFor ofType (0 1) loc#LocativeEntityType

concept CouponPaymentDiscount subConceptOf PaymentDiscount

nonFunctionalProperties
dc#description hasValue "CouponPaymentDiscount concept definition"

endNonFunctionalProperties
hasValidityPeriod ofType (0 1) temp#TemporalEntity

isIssuedBy ofType (1 1) _iri //could be a person, organization or any kind of provider

concept EarlyPaymentDiscount subConceptOf PaymentDiscount
nonFunctionalProperties

dc#description hasValue "CouponPaymentDiscount concept definition"
endNonFunctionalProperties
hasEarlyPaymentOffset ofType temp#TemporalDuration
cutOffDate ofType (0 1) temp#TemporalDuration

ACTAS

275

BIBLIOGRAPHY

[AkkFar et al.2005] AKKIRAJU, RAMA; FARRELL, JOEL; MILLER, JOHN; NAGARAJAN,

MEENAKSHI; SCHMIDT, MARC-THOMAS; SHETH, AMIT; VERMA,
Kunal.Web Service Semantics - WSDL-S: W3C Member Submission,
W3C 07.11.2005 [http://www.w3.org/Submission/WSDL-S/]

(accessed 14. Apr. 2010).

[AkkGoo et al.2003] AKKIRAJU, R.; GOODWIN, R.; DOSHI, P.; ROEDER, S.; KAMBHAMPATI,

S.; KNOBLOCK, C. A Method for Semantically Enhancing the Service
Discovery Capabilities of UDDI. IIWeb. Proceedings of IJCAI-03
Workshop on Information Integration on 2003.

[AloCas et al.2004] ALONSO, G.; CASATI, F.; KUNO, H.; MACHIRAJU, V. Web Services:
Concepts, Architectures and Applications. Data-Centric Systems and

Applications; Springer: Berlin, Heidelberg, 2004 (ISBN 3-540-44008-
9).

[ama2009] amazon web services, Overview of Amazon Web Services; White

Paper, amazon, December 2009
[http://awsmedia.s3.amazonaws.com/AWS_Overview_Whitepaper_1

20809.pdf].

[AmiWol2005] AMIN, M.S.; WOLLENBERG, B.F. Toward a smart grid: power delivery
for the 21st century. Power and Energy Magazine, IEEE. Power and

Energy Magazine, IEEE 2005, 3 (5) pp. 34–41
[http://ieeexplore.ieee.org/ielx5/8014/32291/01507024.pdf?tp=&arnu

mber=1507024&isnumber=32291].

[AndCur et al.2003] ANDREWS, TONY; CURBERA, FRANCISCO; DHOLAKIA, HITESH;
GOLAND, YARON; KLEIN, JOHANNES; LEYMANN, FRANK; LIU, KEVIN;

ROLLER, DIETER; SMITH, DOUG; THATTE, SATISH; TRICKOVIC, IVANA;
WEERAWARANA, Sanjiva.BPEL V1-1: Business Process Execution

Language (BPEL4WS), BEA Systems; International Business
Machines Corporation; Microsoft Corporation; SAP AG; Siebel
Systems 06.05.2003

[http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel/ws-bpel.pdf] (accessed 02. Apr. 2009).

[AnSaRa2008] ANTONIO BROGI; SARA CORFINI; RAZVAN POPESCU. Semantics-based
composition-oriented discovery of Web services. ACM Trans. Internet
Technol. 2008, 8 (4) pp. 1–39 [doi:10.1145/1391949.1391953].

[ArdPro et al.2013] ARDITO, L.; PROCACCIANTI, G.; MENGA, G.; MORISIO, M. Smart Grid
Technologies in Europe: An Overview. Energies 2013, 6 (1) pp. 251–

281 [http://www.mdpi.com/1996-1073/6/1/251].

Bibliography

 276

[ArkAsk et al.2002] ARKIN, ASSAF; ASKARY, SID; JEKELI, WOLFGANG; KAWAGUCHI,

KOHSUKE; FORDIN, Scott.Web Service Choreography Interface
(WSCI) 1.0, W3C 09.08.2002 [http://www.w3.org/TR/wsci/]

(accessed 25. Nov. 2010).

[Ars2006] ARS TECHNICA.Tim Berners-Lee on Web 2.0: "nobody even knows
what it means" , Ars Technica 2006

[http://arstechnica.com/business/news/2006/09/7650.ars] (accessed
29. Mar. 2009).

[BahBur et al.1999] BAHR, K.; BURKHARDT, H.-J.; HOVESTADT, L.; REINEMA, R.
Integrating Virtual and Real Work Environments. In Proceedings of
IEEE Conference SoftCOM'99: Software in Telecommunications and

Computer Networks. Split, Rijeka, Croatia & Triest, Venice, Italy,
1999.

[BanBar et al.2002] BANERJI, ARINDAM; BARTOLINI, CLAUDIO; BERINGER, DOROTHEA;
CHOPELLA, VENKATESH; GOVINDARAJAN, KANNAN; KARP, ALAN;
KUNO, HARUMI; LEMON, MIKE; POGOSSIANTS, GREGORY; SHARMA,

SHAMIK; WILLIAMS, Scott.Web Services Conversation Language
(WSCL) 1.0: W3C Note 14 March 2002, W3C; Hewlett-Packard

Company 14.03.2002 [http://www.w3.org/TR/wscl10/] (accessed 30.
Aug. 2010).

[Bar2010] BARTONITZ, Martin Dr.BPM_Round-Trip-Engineering: Vision und

Wirklichkeit; Gesellschaft für Informatik, Regionalgruppe Düsseldorf,
13.01.2010, Saperion AG 2010 [http://www1.gi-

ev.de/regionalgruppen/duesseldorf/] (accessed 07. Mar. 2010).

[BatBer et al.2005] BATTLE, STEVE; BERNSTEIN, ABRAHAM; BOLEY, HAROLD; GROSOF,
BENJAMIN; GRUNINGER, MICHAEL; HULL, RICHARD; KIFER, MICHAEL;

MARTIN, DAVID; MCILRAITH, SHEILA; MCGUINNESS, DEBORAH; SU,
JIANWEN; TABET, Said.Semantic Web Services Framework (SWSF)

Overview: W3C Member Submission; 9 September 2005, W3C
15.09.2005 [http://www.w3.org/Submission/SWSF/] (accessed 22.
Jan. 2010).

[Bea1997] BEARMAN, Mirion.Tutorial on ODP Trading Function. 14.03.1997
[http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.6195]

(accessed 26. Aug. 2010).

[BecHar et al.2004] BECHHOFER, SEAN; HARMELEN, FRANK VAN; HENDLER, JIM;
HORROCKS, IAN; MCGUINNESS, DEBORAH L.; PATEL-SCHNEIDER,

PETER F.; STEIN, Lynn Andrea.OWL Web Ontology Language:
Reference, W3C Recommendation 10 February 2004, W3C 2004

[http://www.w3.org/TR/2004/REC-owl-ref-20040210/] (accessed 30.
Mar. 2009).

[BeeEya et al.2006] BEERI, C.; EYAL, A.; KAMENKOVICH, S.; MILO, T. Querying business

processes. In Proceedings of the 32nd international conference on
Very large data bases, pp 343–354. VLDB Endowment: Seoul, Korea,

2006.

ACTAS

277

[BeKlMe2000] BEIERLE, C.; KLOOS, R.; MEYER, G. A Pragmatic Type Concept for

Prolog Supporting Polymorphism, Subtyping, and Meta-
Programming. In ICLP’99 - International Conference on Logic

Programming: Workshop on Verification of Logic Programs. Las
Cruces, New Mexico, USA. Electronic Notes in Theoretical Computer
Science 30; Elsevier; MIT: Cambridge, Mass., 2000.

[BePoRi1999] BELLIFEMINE, F.; POGGI, A.; RIMASSA, G. JADE - A FIPA-compliant
agent framework. In 4th Intl. Conference and Exhibition on the

Practical Application of Intelligent Agents and Multi-Agents, pp 97–
108. London, UK, 1999.

[Ber2003] BERNERS-LEE, Tim.Web Services: Progam Integration across

Application and Organization boundaries, W3C 2003
[http://www.w3.org/DesignIssues/WebServices.html].

[Bet2008] BETHER, C. Software service composition in next generation
networking environments; Dissertation; TU-Berlin Berlin, 2008
[http://opus.kobv.de/tuberlin/volltexte/2008/2078/pdf/bether_carsten.p

df].

[BilSin2004] BILGIN, A.S.; SINGH, M.P. A DAML-Based Repository for QoS-

Aware Semantic Web Service Selection. In IEEE International
Conference on Web Services (ICWS'04): San Diego, California, 6-9
July 2004, p 368. IEEE Computer Society; IEEE Computer Society

Press: Los Alamitos, Calif., 2004
[http://portal.acm.org/citation.cfm?id=1009386.1010177&coll=Portal

&dl=GUIDE&CFID=59898292&CFTOKEN=52577230].

[Boh2009] BOHN, H. Web Service Composition for Embedded Systems: WS-
BPEL extension for DPWS; Univ., Diss.--Rostock, 2008., 1st ed.;

Sierke: Göttingen, 2009 (ISBN 9783868441086).

[BooHaa et al.2004] BOOTH, DAVID; HAAS, HUGO; MCCABE, FRANCIS; NEWCOMER, ERIC;

CHAMPION, MICHAEL; FERRIS, CHRIS; ORCHARD, David.Web Services
Architecture: W3C Working Group Note 11 February 2004, W3C
08.02.2004 [http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/]

(accessed 21. Mar. 2009).

[BroCan et al.2004] BROGI, A.; CANAL, C.; PIMENTEL, E.; VALLECILLO, A. Formalizing

Web Service Choreographies. Proceedings of the First International
Workshop on Web Services and Formal Methods (WSFM 2004).
2004, 105 pp. 73–94 [doi:10.1016/j.entcs.2004.05.007].

[BroGos2010] BROCK, M.; GOSCINSKI, A. Toward Ease of Discovery, Selection and
Use of Clusters within a Cloud. Cloud Computing, IEEE International

Conference on 2010 pp. 289–296
[http://doi.ieeecomputersociety.org/10.1109/CLOUD.2010.39].

Bibliography

 278

[BroUro et al.2009] BROMURI, S.; UROVI, V.; MORGE, M.; STATHIS, K.; TONI, F. A multi-

agent system for service discovery, selection and negotiation. In
Proceedings of The 8th International Conference on Autonomous

Agents and Multiagent Systems: AAMAS 2009. May 10-15, 2009.
Decker, K. S., Sichman, J. S., Simão, C., Castelfranchi, C., [Eds.]. 2;
International Foundation for Autonomous Agents and Multiagent

Systems: Budapest, Hungary, 2009, pp 1395–1396
[www.argugrid.eu/documentation/AAMASDemoBromuri.pdf].

[BruBus et al.2005] BRUIJN, JOS DE; BUSSLER, CHRISTOPH; DOMINGUE, JOHN; FENSEL,
DIETER; HEPP, MARTIN; KELLER, UWE; KIFER, MICHAEL; KÖNIG-RIES,
BRIGITTA; KOPECKÝ, JACEK; LARA, RUBÉN; LAUSEN, HOLGER; OREN,

EYAL; POLLERES, AXEL; ROMAN, DUMITRU; SCICLUNA, JAMES;
STOLLBERG, Michael.Web Service Modeling Ontology (WSMO): W3C

Member Submission, W3C 13.06.2005
[http://www.w3.org/Submission/WSMO/] (accessed 14. Apr. 2010).

[BrzRek et al.2010] BRZOSTOWSKI, K.; REKUĆ, W.; SOBECKI, J.; SZCZUROWSKI, L. Service

Discovery in the SOA System. In Intelligent Information and
Database Systems. Nguyen, N., Le, M., Swiatek, J., [Eds.], 5991, pp

29–38. Lecture Notes in Computer Science, LNCS Springer Berlin /
Heidelberg: 2010 [http://dx.doi.org/10.1007/978-3-642-12101-2_4].

[CabDom et al.2006] CABRAL, LILIANA; DOMINGUE, JOHN; GALIZIA, STEFANIA; GUGLIOTTA,

ALESSIO; TANASESCU, VLAD; PEDRINACI, CARLOS; NORTON,
Barry.IRS-III: A Broker for Semantic Web Services based

Applications, Knowledge Media Institute, The Open University,
Milton Keynes, UK 24.08.2006] (accessed 10. Jun. 2010).

[Cai2009] CAIRE, Giovanni.ADEProgramming-Tutorial-for-beginners. 2009

[http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial- for-
beginners.pdf] (accessed 13. Aug. 2010).

[Cai2010] CAIRE, Giovanni.WADE-User-Guide.doc, Telecom Italia, former
CSELT 07.07.2010 [http://jade.tilab.com/wade/doc/WADE-User-
Guide.pdf] (accessed 13. Aug. 2010).

[Car2009] CARLSSON, M. SICStus Prolog User's Manual, Release 4.0.7, Swedish
Institute of Computer Science Kista, Sweden, 18.04.2009.

[ÇelElç2008] ÇELIK, D.; ELÇI, A. Semantic QoS Model for Extended IOPE
Matching and Composition of Web Services. In 32nd annual IEEE
international computer software and applications, 2008: COMPSAC

'08, pp 993–998. IEEE Computer Society; IEEE: Piscataway, NJ,
2008 [http://dx.doi.org/10.1109/COMPSAC.2008.208].

[CEN2011] CEN, CENELEC AND ETSI.Framework for Smart Grid Architecture
Models (SGAM): M/490 Reference Architecture WG, CEN,
CENELEC and ETSI 2011

[http://www.pointview.com/data/files/1/473/2185.pdf] (accessed 25.
Feb. 2013).

ACTAS

279

[ChMeGh2010] CHAINBI, W.; MEZNI, H.; GHEDIRA, K. PECoDiM: An Agent Based

Framework for Autonomic Web Services. In 6th World Congress on
Services 2010: Proceedings : SERVICES-1 : 5-10 July 2010, Miami,

Florida, USA. proceedings ; [including workshop papers]. IEEE;
IEEE Computer Society: Piscataway, NJ, 2010, pp 543–550
[http://doi.ieeecomputersociety.org/10.1109/SERVICES.2010.94].

[ChrFer et al.2004] CHRISTENSEN, ERIK; FERGUSON, DONALD; FREY, JEFFREY; HADLEY,
MARC; KALER, CHRIS; LANGWORTHY, DAVID E.; LEYMANN, FRANK;

LOVERING, BRAD; LUCCO, STEVE; MILLET, STEVE; MUKHI, NIRMAL;
NOTTINGHAM, MARK; ORCHARD, DAVID; SHEWCHUK, JOHN;
SINDAMBIWE, EUGÈNE; STOREY, TONY; WEERAWARANA, SANJIVA;

WINKLER, Steve.Web Services Addressing (WS-Addressing).
05.08.2004 [http://www.w3.org/Submission/ws-addressing/]

(accessed 18. Sep. 2010).

[CuEhRo2002] CURBERA, F.; EHNEBUSKE, D.; ROGERS, D.Using WSDL in a UDDI
Registry: UDDI Best Practise (Version 1.07). May 2002

[http://www.uddi.org/pubs/wsdlbestpractices.pdf].

[DAI2008] DAI LABOR, TU BERLIN.JIAC V, DAI Labor, TU Berlin 2008

[http://jiac.de/?id=35] (accessed 10. Feb. 2011).

[Dal2002a] DALE, Jonathan.FIPA ACL Message Structure Specification:
FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS; Standard

SC00061G, FIPA 03.12.2002
[http://www.fipa.org/specs/fipa00061/SC00061G.pdf] (accessed 13.

Aug. 2010).

[Dal2002b] DALE, Jonathan.FIPA Quality of Service Ontology Specification,
Foundation for Intelligent Physical Agents, FIPA 2002

[http://www.fipa.org/specs/fipa00094/SC00094A.pdf] (accessed 29.
Aug. 2010).

[Dal2005] DALE, Jonathan.FIPA Specifications, FIPA 2005
[www.fipa.org/specifications/index.html] (accessed 10. Jun. 2012).

[Dal2011] DALE, Jonathan.Welcome to the Foundation for Intelligent Physical

Agents. 06.01.2011 [http://www.fipa.org/] (accessed 13. Jan. 2011).

[Dee2011] DEEPA.EventStudio System Designer 4.0: Sequence Diagram Based

Modeling; Multiple Scenario Modeling, EventHelix.com Inc. 2011
[http://eventhelix.com/EventStudio/EventStudio_System_Designer_B
rochure.PDF] (accessed 20. Sep. 2011).

[DeuKli2002] DEURSEN, A. VAN; KLINT, P. Domain-Specific Language Desing
Requires Feature Descriptions. Journal of Computing and Information

Technology - CIT 2002 (10) pp. 1–17
[http://hrcak.srce.hr/cit_ojs/index.php/CIT/article/viewFile/1465/1169
].

Bibliography

 280

[DicWoo2005] DICKINSON, IAN; WOOLDRIDGE, Michael.Agents are not (just) web

services : considering BDI agents and web services. 2005
[http://www.hpl.hp.com/techreports/2005/HPL-2005-123.pdf]

(accessed 27. Jan. 2010).

[DomCab et al.2004] DOMINGUE, J.; CABRAL, L.; HAKIMPOUR, F.; SELL, D.; MOTTA, E. IRS-
III: A Platform and Infrastructure for Creating WSMO-based

Semantic Web Services. In WIW 2004: WSMO Implementation
Workshop 2004. Frankfurt, September 29-30, 2004. Bussler, C.,

Fensel, D., Lausen, H., Oren, E., [Eds.]. Workshop Proceedings 113;
CEUR: 2004 [http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-113/paper3.pdf].

[DonHal et al.2004] DONG, X.; HALEVY, A.; MADHAVAN, J.; NEMES, E.; ZHANG, J.
Similarity Search for Web Services. In Proceedings of the Thirtieth

International Conference on Very Large Data Bases: Toronto,
Canada, August 31 - September 3, 2004. Nascimento, M. A., [Ed.].
VLDB Endowment; Morgan Kaufmann: St. Louis, Mo., 2004, pp

372–383 [http://portal.acm.org/citation.cfm?id=1316723#].

[ElfLay2002] ELFATATRY, P.; LAYZELL, A. Software as a service negotiation

perspective. Computer Software and Application Conference, 26-29
August. COMPSAC Proceedings 2002, 26 pp. 501–506.

[EroMou2013] EROL-KANTARCI, M.; MOUFTAH, H.T. Smart grid forensic science:

applications, challenges, and open issues. Communications Magazine,
IEEE 2013, 51 (1) pp. 68–74

[http://ieeexplore.ieee.org/ielx5/35/6400427/06400441.pdf?tp=&arnu
mber=6400441&isnumber=6400427].

[Eur2009] EUROPEAN FUTURE INTERNET PORTAL.Home: Future Internet,

European Future Internet Portal 2009 [http://future- internet.eu/]
(accessed 18. Mar. 2009).

[Eur2013] EUROPEAN COMMISSION.Single market for gas & electricity, European
Commission 2013
[http://ec.europa.eu/energy/gas_electricity/index_en.htm] (accessed

25. Feb. 2013).

[EvaFil2007] EVANS, J.; FILSFILS, C. Deploying IP and MPLS QoS for multiservice

networks: Theory and practice. The Morgan Kaufmann series in
networking; Morgan Kaufmann/Elsevier: Amsterdam, 2007 (ISBN
0123705495).

[FarLau2007a] FARRELL, JOEL; LAUSEN, Holger.Semantic Annotations for WSDL and
XML Schema: W3C Recommendation 28 August 2007. 27.08.2007

[http://www.w3.org/TR/sawsdl/] (accessed 24. Aug. 2010).

[FarLau2007b] FARRELL, JOEL; LAUSEN, Holger.Semantic Annotations for WSDL and
XML Schema (SAWSDL): W3C Recommendation 28 August 2007,

W3C 27.08.2007 [http://www.w3.org/TR/sawsdl/] (accessed 30. Aug.
2010).

ACTAS

281

[FeiJey2009] FEINGOLD, MAX; JEYARAMAN, Ram.WS-Coordination v1.2: OASIS

Standard; 2 February 2009, OASIS 2009 [http://docs.oasis-
open.org/ws-tx/wstx-wscoor-1.2-spec.html] (accessed 06. Dec. 2010).

[FeKeZa2008] FENSEL, D.; KERRIGAN, M.; ZAREMBA, M. Implementing Semantic
Web Services: The SESA Framework, 1st ed.; Springer; Springer-
Verlag Berlin Heidelberg: Berlin, Heidelberg, 2008 (ISBN

3540770194).

[FenBus2002] FENSEL, DIETER; BUSSLER, Christoph.The Web Service Modeling

Framework WSMF, Vrije Universiteit Amsterdam (VU); Oracle
Corporation 2002
[http://www.wsmo.org/papers/publications/wsmf.paper.pdf] (accessed

04. Nov. 2009).

[Fra2007] FRAUNHOFER IIS.JINI, Fraunhofer IIS 2007

[http://www.iis.fraunhofer.de/EN/bf/ec/dm/jini.jsp] (accessed 27.
Aug. 2010).

[FraDie et al.2005] FRANZ BAADER, DIEGO CALVANESE, DEBORAH L. MCGUINNESS,

DANIELE NARDI, PETER F. PATEL-SCHNEIDER, BAADER, F., Eds.: The
description logic handbook: Theory, implementation, and

applications; Cambridge University Press; Cambridge Univ. Press:
Cambridge, 2005,

[FuHao et al.2010] FU, J.; HAO, W.; TU, M.; MA, B.; BALDWIN, J.; BASTANI, F.B. Virtual

Services in Cloud Computing. In 6th World Congress on Services
2010: Proceedings : SERVICES-1 : 5-10 July 2010, Miami, Florida,

USA. proceedings ; [including workshop papers]. IEEE; IEEE
Computer Society: Piscataway, NJ, 2010, pp 467–472
[http://doi.ieeecomputersociety.org/10.1109/SERVICES.2010.125].

[FujSud2009] FUJII, K.; SUDA, T. Semantics-based context-aware dynamic service
composition. ACM Trans. Auton. Adapt. Syst. 2009, 4 (2) pp. 1–31

[http://doi.acm.org/10.1145/1516533.1516536].

[GaRuRu2010] GARCÍA, J.; RUIZ, D.; RUIZ-CORTÉS, A. A Model of User Preferences
for Semantic Services Discovery and Ranking. In The Semantic Web:

Research and Applications: 7th Extended Semantic Web Conference,
ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3, 2010 ;

proceedings, part II. Aroyo, L., Antoniou, G., Hyvönen, E., Teije, A.
ten, Stuckenschmidt, H., Cabral, L., Tudorache, T., [Eds.]. Lecture
notes in computer science 6089; Springer Berlin / Heidelberg;

Springer: Berlin, 2010, 6089, pp 1–14 [http://dx.doi.org/10.1007/978-
3-642-13489-0_1].

[Ger2006] GERSTBACH, Peter.ebXML vs. Web Services: Comparison of ebXML
and the Combination of SOAP/WSDL/UDDI/BPEL, Vienna
University of Technology 23.02.2006

[http://www.gerstbach.at/2006/ebxml-ws/ebxml-ws.pdf] (accessed 03.
Dec. 2010).

Bibliography

 282

[GraMax et al.2010] GRANDISON, T.; MAXIMILIEN, M.E.; THORPE, S.; ALBA, A. Towards a

Formal Definition of a Computing Cloud. In 6th World Congress on
Services 2010: Proceedings : SERVICES-1 : 5-10 July 2010, Miami,

Florida, USA. proceedings ; [including workshop papers]. IEEE;
IEEE Computer Society: Piscataway, NJ, 2010, pp 191–192
[http://doi.ieeecomputersociety.org/10.1109/SERVICES.2010.111].

[Gri2007] GRIMM, S. Discovery. Identifying Relevant Services In Semantic Web
Services: Concepts, Technologies, and Applications. Studer, R.,

Grimm, S., Abecker, A., [Eds.], pp 211–244. Springer-Verlag GmbH;
Springer: Berlin, Heidelberg, 2007.

[Gri2010] GRIMSHAW, David.JADE Administration Tutorial. 21.04.2010

[http://jade.tilab.com/doc/tutorials/JADEAdmin/jadeArchitecture.html
] (accessed 13. Aug. 2010).

[Gru2009] GRUBER, T. Ontology (Computer Science). definition In Encyclopedia
of database systems. Liu, L., Özsu, M. T., [Eds.]. Springer reference
Springer: New York, NY, 2009

[http://tomgruber.org/writing/ontology-definition-2007.htm].

[GrüMen2003] GRÜNINGER, M.; MENZEL, C. The Process Specification Language

(PSL). Theory and Applications. AI magazine 2003, 24 (4) pp. 63–74.

[GudHad et al.2007] GUDGIN, MARTIN; HADLEY, MARC; MENDELSOHN, NOAH; MOREAU,
JEAN-JACQUES; NIELSEN, HENRIK FRYSTYK; KARMARKAR, ANISH;

LAFON, Yves.SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition), W3C 27.04.2007 [http://www.w3.org/TR/soap12-

part1/] (accessed 29. Mar. 2009).

[GunSah et al.2012] GUNGOR, V.C.; SAHIN, D.; KOCAK, T.; ERGUT, S.; BUCCELLA, C.;
CECATI, C.; HANCKE, G.P. Smart Grid and Smart Homes: Key Players

and Pilot Projects. Industrial Electronics Magazine, IEEE 2012, 6 (4)
pp. 18–34

[http://ieeexplore.ieee.org/ielx5/4154573/6378501/06378528.pdf?tp=
&arnumber=6378528&isnumber=6378501].

[GurZei2005] GURGUIS, S.A.; ZEID, A. Towards autonomic web services: achieving

self-healing using web services. SIGSOFT Softw. Eng. Notes 2005, 30
pp. 1–5 [doi:10.1145/1082983.1083069].

[GuZaRo2009] GUAN, T.; ZALUSKA, E.; ROURE, D. de. An autonomic service
discovery mechanism to support pervasive devices accessing the
semantic grid. International Journal of Autonomic Computing 2009, 1

(1) pp. 34–49
[http://inderscience.metapress.com/link.asp?id=70744701427n3072].

[Hab2009] HABALA, O. Semantically-Aided Data-Aware Service Workflow
Composition. Lecture Notes in Computer Science (LNCS) 2009 (No.
5404 (2009)) pp. 317–328.

ACTAS

283

[HaMaKü2010] HASEEB, A.; MATSKIN, M.; KÜNGAS, P. Distributed Web Services

Discovery Middleware for Edges of Internet. Web Services, IEEE
International Conference on 2010, 0 pp. 680–682

[http://doi.ieeecomputersociety.org/10.1109/ICWS.2010.87].

[HaReMa2004] HAUSMANN, J.H.; REIKO HECKEL; MARC LOHMANN. Model-based
Discovery of Web Services. Web Services, IEEE International

Conference on 2004 pp. 324-324
[http://doi.ieeecomputersociety.org/10.1109/ICWS.2004.1314754].

[HarSur2004] HARTMANN, J.; SURE, Y. An Infrastructure for Scalable, Reliable
Semantic Portals. IEEE Intelligent Systems 2004, 19 (3) pp. 58–65
[http://portal.acm.org/citation.cfm?id=998482.998552&coll=Portal&d

l=GUIDE&CFID=59898292&CFTOKEN=52577230].

[Hou1996] HOUSTON, P. J.Intoduction to DCE an Encina: Whitepaper, Transarc

Corp. 1996
[http://www.transarc.com/afs/transarc.com/public/www/Public/ProdS
erv/Product/Whitepapers/].

[Hua2008] HUANG, X. Semantic Agent Support for Managed Open Information
Retrieval Services; Ph.D.-Thesis; Queen Mary, University of London

London, UK, 25. Jan. 2008
[http://www.elec.qmul.ac.uk/networks/documents/XuanHuang-
PhDThesisFinal_000.pdf].

[HuaZha et al.2010] HUANG, J.; ZHANG, Y.; YEN, I.-L.; CARSON, J.T.; SIOK, M.F.; BASTANI,
F.; ZHAO, Y.; DONG, J. Real-Time Service-Oriented Distributed

Governance. In 6th World Congress on Services 2010: Proceedings :
SERVICES-1 : 5-10 July 2010, Miami, Florida, USA. proceedings ;
[including workshop papers]. IEEE; IEEE Computer Society:

Piscataway, NJ, 2010, pp 479–484
[http://doi.ieeecomputersociety.org/10.1109/SERVICES.2010.100].

[Huh2006] HUHNS, M. A Research Agenda for Agent-Based Service-Oriented
Architectures. In Cooperative Information Agents X: 10th
International Workshop, CIA 2006, Edinburgh, UK, September 11-13,

2006, Proceedings. Klusch, M., Payne, T. R., Rovatsos, M., [Eds.].
Lecture Notes in Artificial Intelligence, LNAI 4149; Springer-Verlag

GmbH: Berlin Heidelberg, 2006, pp 8–22.

[HuhSte2000] HUHNS, M.N.; STEPHENS, L.M. Multiagent Systems and Societies of
Agents. In Multiagent Systems: A Modern Approach to Distributed

Artificial Intelligence. Weiss, G., [Ed.], pp 79–120. MIT Press:
Cambridge, Massachusetts, 2000.

[IBM2006] IBM.developerWorks Interviews: Tim Berners-Lee, IBM 2006
[http://www.ibm.com/developerworks/podcast/dwi/cm-
int082206txt.html] (accessed 29. Mar. 2009).

Bibliography

 284

[IBM2007a] IBM.WS-BPEL Extension for People, IBM 2007

[http://www.ibm.com/developerworks/webservices/library/specificatio
n/ws-bpel4people/] (accessed 07. Dec. 2010).

[IBM2007b] IBM CORPORATION.Business Process Execution Language for Web
Services version 1.1: BPEL4WS (BPEL), IBM Corporation 08 Feb
2007 [http://www.ibm.com/developerworks/library/specification/ws-

bpel/] (accessed 02. Apr. 2009).

[IBM2009] IBM.New to Web services, IBM 2009

[http://www.ibm.com/developerworks/webservices/newto/websvc.htm
l?S_TACT=105AGX28&S_CMP=DLMAIN] (accessed 24. Mar.
2009).

[IEC2007] IEC.H.323 (White Paper): On-Line Education: Tutorial, IEC 2007
[http://www.iec.org/online/tutorials/h323/index.asp] (accessed 29.

Mar. 2009).

[Int1995] ODP Trading Function, DIS 13235; Draft International Standard,
International Organisation for Standardization (ISO), International

Electrotechnical Commission (IEC), Juni 1995
[ftp://ftp.fhg.de/archive/gmd/div/documents/iso/RM-

ODP/…/trader.ps.gz].

[ISO2004] ISO.Process Specification Language (PSL): International Standard
18629 of the International Standards Organization (ISO),; ISO TC

184 (Industrial automation systems and integration), ISO 2004
[http://www.mel.nist.gov/psl/] (accessed 06. Dec. 2010).

[ISOITU1996] ISO; ITU.Open Distributed Processing - Reference Model: ISO/IEC
IS 10746 | ITU-T X.900, ISO; ITU 1996
[http://www.joaquin.net/ODP/index.html] (accessed 30. Mar. 2009).

[ITU1997] ITU.Information technology – Open Distributed Processing:
Reference Model: Overview; X901-X SERIES: DATA NETWORKS,

OPEN SYSTEM COMMUNICATIONS AND SECURITY, ITU 1997
[http://www.itu.int/itu-t/recommendations/rec.aspx?rec=X.901]
(accessed 10. Aug. 2011).

[ITUISO1997a] ITU; ISO. ODP Trading Function: Part 1 - 3 (Specification, Test
Cases, … using OSI Directory). ISO/IEC IS 13235-x, ITU-T Draft

Rec. X950-x, 1997,

[ITUISO1997b] ITU; ISO. Open Distributed Processing (ODP): (Interface Definition
Language and Type Repository Function). ISO/IEC (IS 14570 and

CD14769) ITU/T Draft Rec. X9nn, 1997,

[JacMud1996] JACOB, B.L.; MUDGE, T. The trading function in action. In

Proceedings of the 7th ACM SIGOPS European Workshop: Systems
Support for Worldwide Applications. Herbert, A., Tanenbaum, A. S.,
[Eds.], pp 241–247. ACM Press: Connemara, Ireland, 1996.

ACTAS

285

[JacZav1998] JACKSON, M.; ZAVE, P. Distributed Feature Composition - A Virtual

Architecture for Telecommunications Services. IEEE Transactions on
Software Engineering. Software Engineering, IEEE Transactions on

1998, 24 (10) pp. 831–847
[http://ieeexplore.ieee.org/ielx4/32/15729/00729683.pdf?tp=&arnumb
er=729683&isnumber=15729].

[Jin2010] JINI.ORG.Jini: Main Page, Jini.org 24.11.2010
[http://www.jini.org/wiki/Main_Page] (accessed 03. Dec. 2010).

[Joy2005] JOYNER, Ian.Open Distributed Processing (ODP): Unplugged!
06.12.2005
[http://homepages.tig.com.au/~ijoyner/ODPUnplugged.html]

(accessed 04. Apr. 2009).

[Kaa2003a] KAARTHIK.METEOR-S Web Service Discovery Infrastructure

(MWSDI), University of Georgia 2003
[http://lsdis.cs.uga.edu/proj/meteor/mwsdi.html] (accessed 08. Dec.
2010).

[Kaa2003b] KAARTHIK.METOER-S Web Service Composition Framework
(MWSCF), University of Georgia 2003

[http://lsdis.cs.uga.edu/proj/meteor/mwscf/mwscf.html] (accessed 08.
Dec. 2010).

[KaBuRi2004] KAVANTZAS, NICKOLAOS; BURDETT, DAVID; RITZINGER, Gregory.Web

Services Choreography Description Language Version 1.0: W3C
Working Draft 27 April 2004, W3C 27.04.2004

[http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/] (accessed
22. Jul. 2009).

[KavBur et al.2005] KAVANTZAS, NICKOLAOS; BURDETT, DAVID; RITZINGER, GREGORY;

FLETCHER, TONY; LAVON, YVES; BARRETO, Charlton.Web Services
Choreography Description Language Version 1.0: WS-CDL; W3C

Candidate Recommendation 9 November 2005, W3C 09.11.2005
[http://www.w3.org/TR/ws-cdl-10/] (accessed 03. Dec. 2010).

[KaWaHu2007] KANG, Z.; WANG, H.; HUNG, P.C. WS-CDL+ for web service

collaboration. Information Systems Frontiers 2007, 9 pp. 375–389
[http://portal.acm.org/citation.cfm?id=1285880.1285884&coll=Portal

&dl=GUIDE&CFID=59898292&CFTOKEN=52577230].

[KiBeSt2007] KIEFER, C.; BERNSTEIN, A.; STOCKER, M. The Fundamentals of
iSPARQL: A Virtual Triple Approach for Similarity-Based Semantic

Web Tasks. In The Semantic Web: 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference, ISWC 2007. ISWC

2007 + ASWC 2007, Busan, Korea, November 11 - 15, 2007 ;
proceedings. Aberer, K., [Ed.]. 4825; Springer; SpringerLink [host]:
Berlin, 2007, pp 295–309.

Bibliography

 286

[KiLaWu1995] KIFER, MICHAEL; LAUSEN, GEORG; WU, James.Logical Foundations

of Object Oriented and Frame Based Languages. 1995
[http://www.cs.umbc.edu/courses/771/papers/flogic.pdf] (accessed 08.

Dec. 2010).

[KlFrSy2006] KLUSCH, M.; FRIES, B.; SYCARA, K. Automated semantic web service
discovery with OWLS-MX. In International Conference on

Autonomous Agents: Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems. Hakodate,

Japan. ACM Press: New York, NY, USA, 2006, SESSION:
Ontologies and web services, pp 915–922
[http://portal.acm.org/citation.cfm?id=1160633.1160796&coll=Portal

&dl=GUIDE&CFID=59898292&CFTOKEN=52577230].

[KlHoSc2000] KLOOS, R.; HOFFMANN, M.; SCHROEDER, M. Intelligent Traders and

Aspects of Security in Co-Operative Rooms. In Deutsche-CSCW
Konferenz 2000: workshop: Agents and CSCW: A Fruitful Marriage?
Branki, C., Newman, J., Unland, R., [Eds.]. München, 2000.

[KlKaZi2009] KLUSCH, M.; KAPAHNKE, P.; ZINNIKUS, I. Hybrid Adaptive Web
Service Selection with SAWSDL-MX and WSDL-Analyzer. In The

semantic web: Research and applications ; 6. European Semantic Web
Conference, ESWC 2009, Heraklion, Crete, Greece, May 31 - June 4,
2009 ; proceedings. Aroyo, L., [Ed.], pp 550–564. 5554; Springer-

Verlag; Springer: Heraklion, Crete, Greece, 2009.

[KlReSc2001] KLOOS, R.; REINEMA, R.; SCHROEDER, M. UNITE - Modern

Teamwork with Adaptive Communications. In Software Technology
Outreach: E-Working: How to Improve Effectiveness. Canning, A.,
Stock, T., [Eds.]. London, 2001.

[KlReSc2002] KLOOS, R.; REINEMA, R.; SCHROEDER, M. Adaptive Traders for
Communication in Cooperative Rooms. International Journal of

Information Technology & Decision Making (IJITDM) September

2002, Volume 1 (3) pp. 401–421 [http://www.worldscinet.com/cgi-
bin/details.cgi?id=jsname:ijitdm&type=all].

[KlScRe2000] KLOOS, R.; SCHROEDER, M.; REINEMA, R. Intelligent Traders for
Communication in Coorperative Rooms. In Autonomous Agents 2000:

Workshop 8: Intelligent Agents for CSCW: Technology and Risks.
Petsch, M., Lees, B., [Eds.]. ACM Press: Barcelona, Spain, 2000.

[Klu2000a] KLUSCH, M. Intelligent Information Agents. In Proceedings of the

EASSS2000: 2. European Agent System Summer School. Klusch, M.,
[Ed.]. Saarbrücken, 2000.

[Klu2000b] KLUSCH, M., Ed.: Proceedings of the EASSS2000: 2. European Agent
System Summer School. Saarbrücken, 2000,

[Klu2008] KLUSCH, Matthias.OWL-S and SAWSDL Service Matchmakers: s3c-

2008. 19.11.2008 [http://www-ags.dfki.uni-sb.de/~klusch/s3/s3c-
2008.pdf] (accessed 18. Sep. 2011).

ACTAS

287

[KluFri et al.2009] KLUSCH, M.; FRIES, B.; KATIA SYCARA; SYCARA, K. OWLS-MX: A

hybrid Semantic Web service matchmaker for OWL-S services. Web
Semant 2009, 7 (2) pp. 121–133 [http://www-ags.dfki.uni-

sb.de/~klusch/papers/owlsmx-08-final.pdf].

[KluKau2009] KLUSCH, M.; KAUFER, F. WSMO-MX: A hybrid Semantic Web
service matchmaker. Web Intelligence and Agent Systems 2009, 7 (1)

pp. 23–42 [http://dx.doi.org/10.3233/WIA-2009-0153].

[KlUnBr2009] KLOOS, R.; UNLAND, R.; BRANKI, C. - ACTAS - Adaptive Composition

and Trading Based on Agents. In Proceedings of the Fifth
International Workshop on Modeling of Objects, Components and
Agents: MOCA‘09, Hamburg. Duvigneau, M., Moldt, D., [Eds.].

Bericht FBIUniHHab2006: Hamburg, 2009, pp 151–171.

[KlUnBr2010] KLOOS, R.; UNLAND, R.; BRANKI, C. Service Discovery with Semantic

Characteristics: ACTAS. In 2010 6th World Congress on Services:
Proceedings : SERVICES-1 : 5-10 July 2010, Miami, Florida, USA.
IEEE Computer Society: Los Alamitos, Calif, 2010, pp 551–558

[http://doi.ieeecomputersociety.org/10.1109/SERVICES.2010.106].

[KlUnBr2012] KLOOS, R.; UNLAND, R.; BRANKI, C. Liberation of smart grids

addressed through SOC: An application of the Service Discovery
framework ACTAS. In Industrial Informatics (INDIN), 2012 10th
IEEE International Conference on. IEEE; Piscataway, July 2012, pp

1056–1061.

[Kno2003] KNORR, Eric.2004: The Year of Web Services: CIO Insider, CIO 2003

[http://www.cio.com/article/32050/2004_The_Year_of_Web_Services
] (accessed 25. Jan. 2011).

[Ko2009] KO, R.K.L. A computer scientist's introductory guide to business

process management (BPM). Crossroads 2009, 15 (4) pp. 11–18
[doi:10.1145/1558897.1558901].

[Kos1999] KOSTKOVA, P. MAGNET: A Dynamic Resource Managment
Architecture; The City University, London, UK, Department of
Computing, thesis of dissertation; City University , London, July

1999.

[KosMar et al.2008] KOSAR, T.; MARTINEZ-LOPEZ, P.E.; BARRIENTOS, P.A.; MERNIK, M.;

KOSAR, T.; MARTINEZLOPEZ, P.; BARRIENTOS, P.; MERNIK,
M. A preliminary study on various implementation approaches of
domain-specific language. Information and Software Technology

2008, 50 (5) pp. 390–405.

[Kot1988] KOTLER, P. Marketing Management Analysis, Planning,

Implementation, and Control, 6th ed.; Prentices-Hall International:
1988,

[Kot2003] KOTLER, P. Marketing Management, 11th ed.; Prentices-Hall

International: Upper Saddle River, NJ, USA, 2003 (ISBN Ko).

Bibliography

 288

[KrKrKu2009] KREBS, M.; KREMPELS, K.-H.; KUCAY, M. A Unified Service

Discovery Architecture for Wireless Mesh Networks. In
NETWORKING 2008 Ad Hoc and Sensor Networks, Wireless

Networks, Next Generation Internet: 7th International IFIP-TC6
Networking Conference Singapore, May 5-9, 2008 Proceedings. Das,
A., Pung, H., Lee, F., Wong, L., Lee, F. B. S., Pung, H. K., Wong, L.

W. C., [Eds.], 4982, pp 865–876. Lecture notes in computer science
4982; Springer Berlin / Heidelberg; Springer-Verlag Berlin

Heidelberg: Berlin, Heidelberg, 2009 [http://dx.doi.org/10.1007/978-
3-540-79549-0_76].

[KumNan2005] KUMARAN, SANTHOSH; NANDI, Prabir.Dynamic e-Business Using

BPEL4WS, WS-Coordination, WS-Transaction, and Conversation
Support for Web Services: IBM Research to Conversation Support,

IBM Research 2005
[http://www.research.ibm.com/convsupport/papers/BPEL%20&%20C
onversations.htm].

[KünMat2006] KÜNGAS, P.; MATSKIN, M. Semantic Web Service Composition
Through a P2P-Based Multi-agent Environment. Agents and Peer-to-

Peer Computing (LNCS) 2006 (4118) pp. 106–119
[http://www.springerlink.com/content/e653072k2466g627/].

[KvaRon et al.2005] KVALØY, T.A.; RONGEN, E.; TIRADO-RAMOS, A.; SLOOT, P. Automatic

Composition and Selection of Semantic Web Services. In Advances in
Grid Computing - EGC 2005: European Grid Conference,

Amsterdam, The Netherlands, February 14-16, 2005, Revised Selected
Papers. Sloot, P. M. A., Hoekstra, A. G., Priol, T., Reinefeld, A.,
Bubak, M., Bubak, M., Hoekstra, A. G., Priol, T., Reinefeld, A., Sloot,

P. M. A., [Eds.], 3470, pp 184–192. Lecture Notes in Computer
Science, LNCS 3470; Springer Berlin / Heidelberg; Springer-Verlag

GmbH: Berlin Heidelberg, 2005
[http://dx.doi.org/10.1007/11508380_20].

[LaPaSt2003] LA, V.Q.; PATTERSON, P.G.; STYLES, C.W. Determinants of Export

Performance Across Service Types - A Conceptual Model. In School
of Marketing Working Paper, 5. University of New South Wales:

Sydney, Australia, 2003.

[LauLar et al.2007] LAUSEN, H.; LARA, R.; POLLERES, A.; BRUIJN, J.D.; ROMAN, D.
Semantic Annotation for Web Services. In Semantic Web Services:

Concepts, Technologies, and Applications. Studer, R., Grimm, S.,
Abecker, A., [Eds.]. Springer-Verlag GmbH; Springer: Berlin,

Heidelberg, 2007.

[LeKiKa2010] LE NGAN, D.; KIRCHBERG, M.; KANAGASABAI, R. Review of Semantic
Web Service Discovery Methods. Services, IEEE Congress on 2010

pp. 176–177
[http://doi.ieeecomputersociety.org/10.1109/SERVICES.2010.85].

ACTAS

289

[LiaRod2013] LIANG ZHOU; RODRIGUES, J.J.P.C. Service-oriented middleware for

smart grid: Principle, infrastructure, and application. Communications
Magazine, IEEE 2013, 51 (1) pp. 84–89

[http://ieeexplore.ieee.org/ielx5/35/6400427/06400443.pdf?tp=&arnu
mber=6400443&isnumber=6400427].

[LiGaSh2010] LIU, S.; GANG QUAN; SHANGPING REN. On-Line Scheduling of Real-

Time Services for Cloud Computing. Services, IEEE Congress on
2010 pp. 459–464

[http://doi.ieeecomputersociety.org/10.1109/SERVICES.2010.109].

[Lov1983] LOVELOCK, C.H. Classifying Services to Gain Strategic Marketing
Insights. In Journal of Marketing, 47 (3), pp 9–20. American

Marketing Association: 1983.

[Lov1988] LOVELOCK, C.H. Classifying Services to gain Strategic Marketing

Insights. In Managing Services: Marketing, operations and human
resources. Lovelock, C. H., [Ed.]. Prentice-Hall International;
Longham Higher Education: London; Englewood Cliffs, 1988.

[LutMic2007] LUTZ; MICHAEL. Ontology-Based Descriptions for Semantic
Discovery and Composition of Geoprocessing Services.

GeoInformatica 2007, 11 (1) pp. 1–36
[http://dx.doi.org/10.1007/s10707-006-7635-9].

[MahSpa2010] MAHBUB, K.; SPANOUDAKIS, G. Proactive SLA Negotiation for

Service Based Systems. Services, IEEE Congress on 2010 pp. 519–
526

[http://doi.ieeecomputersociety.org/10.1109/SERVICES.2010.15].

[ManMcI2003] MANDELL, D.J.; MCILRAITH, S.A. Adapting BPEL4WS for the
Semantic Web: The Bottom-Up Approach to Web Service

Interoperation. In The Semantic Web - ISWC 2003: Second
International Semantic Web Conference ; proceedings. Fensel, D.,

Sycara, K. P., Mylopoulos, J., [Eds.], pp 227–241. Lecture Notes in
Computer Science, LNCS 2870; Springer: Berlin, 2003.

[Mar2003] MARTIN OWEN AND JOG RAJ, Popkin Software.BPMN and Business

Process Management. 29.08.2003
[http://www.omg.org/bpmn/Documents/6AD5D16960.BPMN_and_B

PM.pdf] (accessed 29. Aug. 2010).

[Mar2007] MARCHESE, M. QoS over heterogeneous networks; Wiley: Chichester,
2007 (ISBN 9780470017524).

[MarBur et al.2008] MARTIN, DAVID; BURSTEIN, MARK; HOBBS, JERRY R.; LASSILA, ORA;
MCDERMOTT, DREW V.; MCILRAITH, SHEILA; NARAYANAN, SRINI;

PAOLUCCI, MASSIMO; PARSIA, BIJAN; PAYNE, TERRY; SIRIN, EVREN;
SRINIVASAN, NAVEEN; SYCARA, Katia.OWL-S 1.2 Release.
18.11.2008 [http://www.ai.sri.com/daml/services/owl-s/1.2/]

(accessed 18. Nov. 2009).

Bibliography

 290

[MarMer et al.2001] MARVIE, R.; MERLE, P.; GEIB, J.; LEBLANC, S. 3.3.8 TORBA: Trading

Contracts for CORBA. In 6th USENIX Conference on Object-
Oriented Technologies and Systems. The USENIX Association: San

Antonio, Texas, USA, 2001.

[MarPim2010] MARTÍN, J.A.; PIMENTEL, E. Feature-Based Discovery of Services with
Adaptable Behaviour. In 8th Ieee european conference on web

services, ECOWS'10: Ayia Napa, Cyprus, 1-3 December 2010. Brogi,
A., Pautasso, C., Papadopoulos, G. A., [Eds.]. IEEE Computer Society

Press: Los Alamitos CA, 2010.

[MedBou2005] MEDJAHED, B.; BOUGUETTAYA, A. A Dynamic Foundational
Architecture for Semantic Web Services. Distributed and Parallel

Databases 2005, 17 (2) pp. 179–206
[http://dx.doi.org/10.1007/s10619-004-0190-1].

[MicChi et al.2007] MICHAEL MRISSA; CHIRINE GHEDIRA; DJAMAL BENSLIMANE; ZAKARIA

MAAMAR; FLORIAN ROSENBERG; SCHAHRAM DUSTDAR. A context-
based mediation approach to compose semantic Web services. ACM

Trans. Internet Technol. 2007, 8 (1) pp. 23, Art. 4
[http://doi.acm.org/10.1145/1294148.1294152].

[ModKem2009] MODI, VIPUL; KEMP, Devon.OASIS Web Services Dynamic Discovery
(WS-Discovery) Version 1.1: OASIS Standard, OASIS 2009
[http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-

spec.html] (accessed 20. Feb. 2011).

[MüKoBr2006] MÜLLER, I.; KOWALCZYK, R.; BRAUN, P. Towards Agent-based

Coalition Formation for Service Composition, 2006
[http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4052901].

[NadGoo et al.2007] NADALIN, ANTHONY; GOODNER, MARC; GUDGIN, MARTIN; BARBIR,

ABBIE; GRANQVIST, Hans.WS-Trust 1.3: OASIS Standard; OASIS Web
Service Secure Exchange TC, OASIS 24.03.2007 [http://docs.oasis-

open.org/ws-sx/ws-trust/v1.3/ws-trust.html] (accessed 19. Feb. 2011).

[NIS2010] NIST (NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY).Cloud
Computing: Nist Defintion of Cloud Computing (v15); Forum and

Workshop, 20.05.2010, NIST (National Institute of Standards and
Technology) 27.08.2010 [http://csrc.nist.gov/groups/SNS/cloud-

computing/] (accessed 26. Jan. 2011).

[NoSaZa2007] NOMANE OULD AHMED M'BARECK; SAMIR TATA; ZAKARIA MAAMAR.
Towards An Approach for Enhancing Web Services Discovery. In 16th

IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2007: WETICE 2007 ;

18 - 20 June 2007, Paris, France ; proceedings. Reddy, S. M., [Ed.].
IEEE: Piscataway, NJ, 2007, 0, pp 357–364
[http://doi.ieeecomputersociety.org/10.1109/WETICE.2007.180].

ACTAS

291

[O’EdHo2005] O’SULLIVAN, JUSTIN; EDMOND, DAVID; HOFSTEDE, Arthur H. M.

ter.Formal description of non-functional service properties,
Queensland University of Technology 2005

[http://www.wsmo.org/papers/OSullivanTR2005.pdf] (accessed 24.
Jul. 2011).

[OAS2003] OASIS.Cover Pages: Business Process Modeling Language (BPML),

OASIS 29.08.2003 [http://xml.coverpages.org/bpml.html] (accessed
02. Apr. 2009).

[OAS2005] OASIS.OASIS - Committees - OASIS UDDI Specifications TC:
Version 3, OASIS 2005 [http://www.oasis-open.org/committees/uddi-
spec/doc/tcspecs.htm#uddiv3] (accessed 29. Mar. 2009).

[OAS2006a] OASIS.ebXML - Enabling A Global Electronic Market, OASIS 2006
[http://www.ebxml.org/] (accessed 03. Dec. 2010).

[OAS2006b] OASIS.OASIS Web Services Security (WSS) TC: WS-Security 1.1,
OASIS 28.11.2006 [http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss] (accessed 18.

Sep. 2010).

[OAS2006c] OASIS.OASIS Web Services Security (WSS) TC, OASIS 2006

[http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss] (accessed 07.
Dec. 2010).

[OAS2009a] OASIS.OASIS Web Services Atomic Transaction Specification: (WS-
AtomicTransaction); February 2 2009, OASIS 2009

[http://docs.oasis-open.org/ws-tx/wsat/2006/06] (accessed 06. Dec.
2010).

[OAS2009b] OASIS.OASIS Web Services Business Activity Specification: (WS-

BusinessActivity); February 2 2009, OASIS 2009 [http://docs.oasis-
open.org/ws-tx/wsba/2006/06] (accessed 06. Dec. 2010).

[OAS2009c] OASIS.OASIS Web Services Transaction (WS-TX) TC, OASIS 2009
[http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-
tx] (accessed 06. Dec. 2010).

[OAS2010] OASIS.EBXML | Online Community for Electronic Business Using
XML (ebXML) Standards, OASIS 2010 [http://ebxml.xml.org/]

(accessed 03. Dec. 2010).

[OAS2011] OASIS.Web Services Interoperability (WS-I): Activities and
announcements, OASIS 14.01.2011 [http://www.oasis-ws- i.org/]

(accessed 01. Feb. 2011).

[OAUDxm2008] OASIS; UDDI CONSORTIUM; XML-ORG.OWL-S/UDDI Matchmaker |

UDDI, OASIS; UDDI Consortium; xml-org 12.12.2008
[http://uddi.xml.org/news/owl-suddi-matchmaker] (accessed 13. Dec.
2008).

Bibliography

 292

[ODP 2004] TU-BERLIN/CIS.Reference Model of Open Distributed Processing -

RM-ODP: A short introduction, TU-Berlin/CIS 07.04.2004
[http://cis.cs.tu-

berlin.de/Forschung/Projekte/neweconomy/lernmodule/interoperabilit
aet_rmodp/Output/html/a00.html] (accessed 30. Mar. 2009).

[O'EdHo2002] O'SULLIVAN, J.; EDMOND, D.; HOFSTEDE A.H.M. ter. What’s in a

service?: Towards accurate description of non-functional service
properties. Service Description: A survey ot the general nature of

services. Distributed and Parallel Databases (DAPD) 2002, 12 (2/3)
pp. 117–133.

[OMG2008] OMG.CORBA 3.1, OMG 2008

[http://www.omg.org/spec/CORBA/3.1/] (accessed 29. Mar. 2009).

[OraSUN2005] ORACLE CORPORATION; SUN MICROSYSTEMS.Jini(TM) Technology

Starter Kit Current Releases, Oracle Corporation; SUN microsystems
2005 [https://starterkit.dev.java.net/downloads/index.html] (accessed
27. Aug. 2010).

[Org2004] UDDI Executive Overview, Enabling Service-Oriented Architecture;
White Paper, Organization for the Advancement of Structured

Information Standards, www.oasis-open.org, October 2004
[http://uddi.xml.org/files/uddi-exec-wp.pdf].

[Org2010] ORGANIC COMPUTING INITIATIVE.Organic Computing, Organic

Computing Initiative 2010 [http://www.organic-computing.de/]
(accessed 26. Jan. 2011).

[OSG2012] OSG.GS OSG 001 - V1.1.1 - Open Smart Grid Protocol (OSGP),
ETSI Industry Specification Group (ISG) 2012
[http://www.etsi.org/deliver/etsi_gs/OSG/001_099/001/01.01.01_60/g

s_osg001v010101p.pdf] (accessed 25. Feb. 2013).

[PaDaDi2010] PAGANELLI, F.; DAVID PARLANTI; DINO GIULI. Message-Based Service

Brokering and Dynamic Composition in the SAI Middleware.
Services Computing, IEEE International Conference on 2010, 0 pp.
474–481 [http://doi.ieeecomputersociety.org/10.1109/SCC.2010.87].

[PanTsa2009] PANTAZOGLOU, MICHAEL; TSALGATIDOU, Aphrodite.The Unified
Service Query Language: USQL; Technical Report, National and

Kapodistrian University of Athens, Greece 19.07.2009
[http://www.s3lab.com/usql-tr.pdf] (accessed 31. Aug. 2010).

[Pao2003] PAOLUCCI, M. The DAML-S Virtual Machine. Lecture notes in

computer science 2003 (2870) pp. 290–305.

ACTAS

293

[PaoKaw et al.2002] PAOLUCCI, M.; KAWAMURA, T.; PAYNE, T.; SYCARA, K. Semantic

Matching of Web Services Capabilities. In The Semantic Web -- ISWC
2002: First International Semantic Web Conference Sardinia, Italy,

June 9-12, 2002 Proceedings. Proceedings. Horrocks, I., Hendler, J.,
[Eds.]. 2342; Springer; Springer-Verlag Berlin Heidelberg: Berlin,
Heidelberg, 2002, 2342, pp 333–347 [http://dx.doi.org/10.1007/3-540-

48005-6_26].

[Pee2005] PEER, Joachim.Semantic Service Markup with SESMA, MCM Institute

University of St. Gallen 2005] (accessed 30. Aug. 2010).

[PeNiHu2009] PENG, H.; NIU, W.; HUANG, R. Similarity Based Semantic Web
Service Match. In Web Information Systems and Mining: International

conference, WISM 2009, Shanghai, China, November 7 - 8, 2009 ;
proceedings. Liu, W., Luo, X., Wang, F., Lei, J., Wang, F. L., [Eds.],

5854, pp 252–260. Lecture notes in computer science 5854; Springer
Berlin / Heidelberg; Springer: Berlin, 2009
[http://dx.doi.org/10.1007/978-3-642-05250-7_27].

[PisBer et al.2004] PISTORE, M.; BERTOLI, P.; CUSENZA, E.; MARCONI, A.; TRAVERSO,
P.WS-GEN: A Tool for the Automated Composition of Semantic Web

Services: IWCS 2004, University of Trento; ITC-IRST 2004
[http://iswc2004.semanticweb.org/demos/26/paper.pdf] (accessed 05.
Apr. 2009).

[PoToTu2007] POGGI, AGOSTINO; TOMAIUOLO, MICHELE; TURCI, Paola.An Agent-
Based Service Oriented Architecture. 04.09.2007

[http://woa07.disi.unige.it/papers/PoggiSOA.pdf] (accessed 27. Jan.
2010).

[Pre2007] PREIST, C. Goals and Vision. Combining Web Services with Semantic

Web Technology In Semantic Web Services: Concepts, Technologies,
and Applications. Studer, R., Grimm, S., Abecker, A., [Eds.], pp 159–

178. Springer-Verlag GmbH; Springer: Berlin, Heidelberg, 2007.

[PreByd et al.2001] PREIST, C.; BYDE, A.; BARTOLINI, C.; PICCINELLI, G. Towards Agent-
Based Service Composition through Negotiation in Multiple Auctions.

In Proceedings of the AISB'01: Symposium on Information Agents for
Electronic Commerce. Schroeder, M., Stathis, K., [Eds.], pp 7–16.

AISB´01, Agents & Cognition University of York: Heslington, York,
England, 2001.

[PudMar et al.1995] PUDER, A.; MARKWITZ, S.; GUDERMANN, F.; GEIHS, K. AI-based

Trading in Open Distributed Environments. In International
Conference on Open Distributed Processing (ICODP'95). Chapman

and Hall: 1995.

Bibliography

 294

[RaKuMa2004] RAO, J.; KUNGAS, P.; MATSKIN, M. Logic-based Web Services

Composition: from Service Description to Process Model. In IEEE
International Conference on Web Services (ICWS'04): San Diego,

California, 6-9 July 2004, pp 446–453. IEEE Computer Society; IEEE
Computer Society Press: Los Alamitos, Calif., 2004
[http://dx.doi.org/10.1109/ICWS.2004.71].

[RamHol et al.2009] RAMBOLD, M.; HOLGER KASINGER; FLORIAN LAUTENBACHER;
BERNHARD BAUER. Towards Autonomic Service Discovery. In 2009

IEEE International Conference on Services Computing (SCC 2009):
Bangalore, India, 21 - 25 September 2009 ; [together with the 2009
IEEE International Conference on Web Services (ICWS 2009), SCC

2009 forms the IEEE Congress on Services (Services 2009)]. IEEE:
Piscataway, NJ, 2009, pp 192–201

[http://doi.ieeecomputersociety.org/10.1109/SCC.2009.59].

[ReiBah et al.2000] REINEMA, R.; BAHR, K.; BURKHARDT, H.-J.; HOVESTADT, L.
Cooperative Rooms -- Symbiosis of Real and Virtual Worlds. In

Proceedings of 8th International Conference on Telecommunication
Systems, Modelling and Analysis. Nashville, Texas, 2000.

[SaeJaf2005] SAEED, M.; JAFFAR-UR-REHMANN, M. Enhancement of software
engineering by shifting from software product to software service.
Information and Communication Technology, First International

Conference 27.-28. August. ICICT Proceedings 2005 pp. 302–308.

[SaNaMa2005] SATTANATHAN, S.; NARENDRA, N. C.; MAAMAR, Z.ConWeSc -

Context-based Semantic Web Services Composition; ICSOC, 05,
National Institute of Technology Karnataka Surathkal, India; IBM
Software Labs India Bangalore, India; Zayed University, U.A.E,

zakaria 2005 [http://www-
rocq.inria.fr/who/Sattanathan.Subramanian/Sattanathan_ICSoC2005.p

df] (accessed 05. Apr. 2009).

[SaNaMa2006] SATTANATHAN, S.; NARENDRA, N.C.; MAAMAR, Z. Ontologies for
Specifying and Reconciling Contexts of Web Services. Proceedings of

the First International Workshop on Context for Web Services (CWS
2005). Electronic Notes in Theoretical Computer Science 2006, 146

(1) pp. 43–57 [http://www.sciencedirect.com/science/article/B75H1-
4J1J59V-5/2/9fea708d3de87d9c32631e9b5aea9d95].

[Ser2009] SERVICE WEB 3.0.Service Web 3.0, Service Web 3.0 2009

[http://www.serviceweb30.eu] (accessed 18. Mar. 2009).

[ShaRan et al.2003] SHAIKHALI, A.; RANA, O.F.; AL-ALI, R.; WALKER, D.W. UDDIe: An

Extended Registry for Web Services. 2003,

ACTAS

295

[ShiAda et al.2010] SHIH-HSI LIU; ADAM CARDENAS; XANG XIONG; MARJAN MERNIK;

BARRETT R. BRYANT; JEFF GRAY; LIU, S.-H.; CARDENAS, A.; XIONG,
X.; MERNIK, M.; et al. A SOA Approach for Domain-Specific

Language Implementation; Services, IEEE Congress on In 6th World
Congress on Services 2010: Proceedings : SERVICES-1 : 5-10 July
2010, Miami, Florida, USA. proceedings ; [including workshop

papers]. IEEE; IEEE Computer Society: Piscataway, NJ, 2010, pp
535–542

[http://doi.ieeecomputersociety.org/10.1109/SERVICES.2010.119].

[SinHuh et al.2005] SINGH, M.P.; HUHNS, M.N.; SINGH, M.P.; HUHNS, M.N. Service-
oriented computing: Semantics, processes, agents; Wiley: Chichester,

2005 (ISBN 0470091487).

[SpaZis2010] SPANOUDAKIS, G.; ZISMAN, A. Discovering Services during Service-

Based System Design Using UML. IEEE Transactions on Software
Engineering 2010, 36 pp. 371–389
[http://doi.ieeecomputersociety.org/10.1109/TSE.2009.88].

[SplBra et al.2009] SPLUNTER, S. VAN; BRAZIER, F.M.T.; PADGET, J.A.; RANA, O.F.
Dynamic Service Reconfiguration and Enactment using an Open

Matching Architecture. In Proceedings of the 1st International
Conference on Agents and Artificial Intelligence: Porto, Portugal,
January 19 - 21, 2009. Filipe, J., [Ed.], pp 533–539. INSTICC Press:

Setúbal, 2009 [http://opus.bath.ac.uk/16178/].

[StAlJo2008] STEFAN DIETZE; ALESSIO GUGLIOTTA; JOHN DOMINGUE. Towards

context-aware semantic web service discovery through conceptual
situation spaces. In Proceedings of the 2008 international workshop
on Context enabled source and service selection, integration and

adaptation: organized with the 17th International World Wide Web
Conference (WWW 2008), pp 1–8. ACM Press: Beijing, China, 2008

[http://doi.acm.org/10.1145/1361482.1361488].

[SteSha1994] STERLING, L.; SHAPIRO, E.Y. The Art of Prolog: Advanced
Programming Techniques, 2nd; MIT Press: Cambridge (USA),

London, 1994 (ISBN 0-262-69163-9).

[StGrAb2007] STUDER, R., GRIMM, S., ABECKER, A., Eds.: Semantic Web Services:

Concepts, Technologies, and Applications; Springer-Verlag GmbH;
Springer: Berlin, Heidelberg, 2007,

[Syc2010] SYCARA, K. Ontologies and Agents: NATO Advanced Study Institute

on Software Agents, Sep 16-23, 2010.

[SycWid et al.2002] SYCARA, K.; WIDOFF, S.; KLUSCH, M.; LU, J. Larks: Dynamic

Matchmaking Among Heterogeneous Software Agents in Cyberspace.
Autonomous Agents and Multi-Agent Systems 2002, 5 (2) pp. 173–203
[http://dx.doi.org/10.1023/A:1014897210525].

Bibliography

 296

[TalWor2008] TALIS; WORD TRANSCRIPT.Transcript: Sir Tim Berners-Lee Talks with

Talis about the Semantic Web, Talis; Word Transcript 20.02.2008
[http://talis-podcasts.s3.amazonaws.com/twt20080207_TimBL.html]

(accessed 29. Mar. 2009).

[ThiKon et al.2009] THIELE, A.; KONNERTH, T.; KAISER, S.; KEISER, J.; HIRSCH, B.
Applying JIAC V to Real World Problems: The MAMS Case. In

Multiagent system technologies: 7th German conference, MATES
2009, Hamburg, Germany, September 9 - 11, 2009 ; proceedings.

Braubach, L., Hoek, W. van der, Petta, P., Pokahr, A., van der Hoek,
W., [Eds.]. 5774; Springer: Berlin, 2009, 5774, pp 268–277
[http://dx.doi.org/10.1007/978-3-642-04143-3_29].

[ToDePe2009] TOSI, D.; DENARO, G.; PEZZE, M. Towards autonomic service oriented
applications. International Journal of Autonomic Computing 2009, 1

(1) pp. 58–80 [10.1504/IJAC.2009.024500].

[TomFox2006] TOMA, IOAN; FOXVOG, Douglas.Non-Functional Properties in Web
Services: WSMO Deliverable, D28.4 v0.1; WSMO Working Draft -

October 25, 2006, DERI 2006
[http://www.wsmo.org/TR/d28/d28.4/v0.1] (accessed 24. Jul. 2011).

[TrPrCo2003] TRASTOUR, D.; PREIST, C.; COLEMAN, D. Using Semantic Web
Technology to Enhance Current Business-to-Business Integration
Approaches. In Proceedings: 16 - 19 September 2003, Brisbane,

Queensland, Australia. IEEE Computer Society: Los Alamitos, Calif.,
2003, p 222

[http://portal.acm.org/citation.cfm?id=942793.943143&coll=Portal&d
l=GUIDE&CFID=59898292&CFTOKEN=52577230].

[TsaSha et al.2010] TSAI, W.-T.; SHAO, Q.; SUN, X.; ELSTON, J.; ELSTON, J. Real-Time

Service-Oriented Cloud Computing. In 6th World Congress on
Services 2010: Proceedings : SERVICES-1 : 5-10 July 2010, Miami,

Florida, USA. proceedings ; [including workshop papers]. IEEE;
IEEE Computer Society: Piscataway, NJ, 2010, pp 473–478
[http://doi.ieeecomputersociety.org/10.1109/SERVICES.2010.127].

[Vas1998] VASUDEVAN, V. A Reference Model for Trader-Based Distributed
System Architectures, Object Services and Consulting Inc., 1998

[http://www.objs.com/survey/trader-reference-model.html].

[Vas2007] VASILIEV, Y. SOA and WS-BPEL: Composing Service-Oriented
Architecture Solutions with PHP and Open-Source ActiveBPEL;

Packt Publishing: 2007 (ISBN 184719270X).

[VedOrc et al.2007] VEDAMUTHU, ASIR S.; ORCHARD, DAVID; HIRSCH, FREDERICK;

HONDO, MARYANN; YENDLURI, PRASAD; BOUBEZ, TOUFIC;
YALҪINALP, Ümit.Web Services Policy 1.5 - Framework: W3C
Recommendation; 04 September 2007 [http://www.w3.org/TR/ws-

policy/] (accessed 18. Feb. 2011).

ACTAS

297

[VerGom et al.2005] VERMA, KUNAL; GOMADAM, KARTHIK; SHETH, AMIT P.; MILLER,

JOHN A.; WU, Zixin.LSDIS : METEOR-S: Applying Semantics in
Annotation, Quality of Service, Discovery, Composition, Execution;

Introduction, LSDIS lab, University of Georgia 2005
[http://lsdis.cs.uga.edu/projects/meteor-s/] (accessed 30. Aug. 2010).

[VetLen2005] VETERE, G.; LENZERINI, M. Models for semantic interoperability in

service-oriented architectures. IBM Syst. J. 2005, 44 pp. 887–903
[http://portal.acm.org/citation.cfm?id=1126970.1126983&coll=Portal

&dl=GUIDE&CFID=59898292&CFTOKEN=52577230].

[VoBeIa1995] VOGEL, A.; BEITZ, A.; IANELLA, R. Discovery and Access of Services
in Globally Distributed Systems. DSTC Symposium; DSTC Pty. Ltd.:

Brisbane, Australia, 1995,

[W3C2004] W3C.WS Choreography Model Overview: W3C Working Draft 24

March 2004, W3C 24.03.2004 [http://www.w3.org/TR/ws-chor-
model/] (accessed 03. Dec. 2010).

[W3C2006] W3C.Web and Service Oriented Architectures (1): Slideshow.

06.10.2006 [http://www.w3.org/2006/Talks/1011-plh-soa/#(1)]
(accessed 21. Mar. 2009).

[W3C2009a] W3C OWL WORKING GROUP.OWL 2 Web Ontology Language
Document Overview: W3C Recommendation 27 October 2009, W3C
OWL Working Group 27.10.2009 [http://www.w3.org/TR/owl2-

overview/] (accessed 10. Aug. 2010).

[W3C2009b] W3C.W3C Semantic Web Activity, W3C 24.03.2009

[http://www.w3.org/2001/sw/] (accessed 29. Mar. 2009).

[WalArn2001] WALDO, J.; ARNOLD, K. The Jini specifications, 2. ed.; The Jini
technology series; Addison-Wesley: Boston, Mass., 2001 (ISBN

0201726173).

[WanTsa et al.2010] WANG, M.-F.; TSAI, M.-F.; TANG, C.-H.; HU, J.-Y. Service Mining for

Composite Service Discovery. In Advances in Intelligent Information
and Database Systems. Nguyen, N., Katarzyniak, R., Chen, S.-M.,
[Eds.], 283, pp 125–131. Studies in Computational Intelligence

Springer Berlin / Heidelberg: 2010 [http://dx.doi.org/10.1007/978-3-
642-12090-9_11].

[WaZhSu2004] WANG, H.; ZHANG, Y.-Q.; SUNDERRAMAN, R. Soft Semantic Web
services agent. In Fuzzy Information, NAFIPS ‘04: IEEE annual
meeting of the North American Fuzzy Information Processing Society,

Banff, Alberta, Canada ;. fuzzy sets in the heart of the Canadian
Rockies ; June 27 - 30, 2004. Dick, S., [Ed.]. IEEE Operations Center:

Piscataway, NJ, 2004, 1, pp 126–129
[doi:10.1109/NAFIPS.2004.1336263].

Bibliography

 298

[WeeWar2010] WEERASINGHE, T.; WARREN, I. Odin: Context-Aware Middleware for

Mobile Services. In 6th World Congress on Services 2010:
Proceedings : SERVICES-1 : 5-10 July 2010, Miami, Florida, USA.

proceedings ; [including workshop papers]. IEEE; IEEE Computer
Society: Piscataway, NJ, 2010, pp 661–666
[http://ieeexplore.ieee.org/ielx5/5575322/5575460/05575528.pdf?tp=

&arnumber=5575528&isnumber=5575460].

[WeiBel2002] WEIBEL, N.; BELOTTI, R. Web Services Technologies. SOAP vs. Jini;

Term Project; Swiss Federal Institute of Technology, 28. Jul. 2002
[http://www.rudibelotti.com/doc/projects/webservices/webservices.pd
f].

[Woo2000] WOOLDRIDGE, M. Intelligent Agents. In Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence. Weiss, G.,

[Ed.], pp 27–78. MIT Press: Cambridge, Massachusetts, 2000.

[WuRan et al.2007] WU, ZIXIN; RANABAHU, AJITH; GOMADAM, KARTHIK; SHETH, AMIT P.;
MILLER, John A.Automatic Semantic Web Services Composition,

LSDIS lab, University of Georgia 2007
[http://www.cs.uga.edu/~jam/papers/zLSDISpapers/zixin.doc]

(accessed 12. May. 2009).

[Xia2007] XIAO, Q. A Language for Reliable Service Composition. Lecture
Notes in Computer Science (LNCS) 2007 (No. 4362 (2007)) pp. 554–

565 [http://dx.doi.org/10.1007/978-3-540-69507-3_48].

[Xia2008] XIAO, X. Technical, commercial and regulatory challenges of QoS:

An Internet service model perspective. The Morgan Kaufmann series
in networking; Elsevier/Morgan Kaufmann: Amsterdam, 2008 (ISBN
0123736935).

[YeChe2006] YE, L.; CHEN, J. Automatic Composition of Semantic Web Services - A
Theorem Proof Approach. In The Semantic Web (ASWC 2006): First

Asian Semantic Web Conference, Beijing, China, September 3-7,
2006, Proceedings. Mizoguchi, R., Shi, Z., Giunchiglia, F., [Eds.].
Lecture Notes in Computer Science, LNCS 4185; Springer; Springer-

Verlag GmbH: Berlin Heidelberg, 2006, pp 481–487
[http://dx.doi.org/10.1007/11836025_46].

ACTAS

299

DEFINITIONS

Definition 1. Classic Definition of Service (Manual Service)...................................... 8

Definition 2. Electronic service (e-service) .. 10
Definition 3. Web Service .. 11
Definition 4. (Semantic) Characteristic (Char)... 81

Definition 5. Semantic Description (SemDescr) of Char ... 82
Definition 6. Property Class (PC) ... 85

Definition 7. Kinds of Property Classes ... 87
Definition 8. Service Template (ST) .. 90
Definition 9. Service Offer Export Record (SOER) ... 91

Definition 10. Option-Slots .. 94
Definition 11. Principal Compatibility for services and Service Ports......................... 97

Definition 12. Comparable Service Properties ... 97
Definition 13. Compatible sets of Option-Slots .. 97
Definition 14. Value Constraint (Va-Co) ... 100

Definition 15. Reference of a Service Property .. 101
Definition 16. Merge Constraint (Me-Co) in S-Model... 102

Definition 17. View on Merge Property Object ... 104
Definition 18. Exchange Constraint (Ex-Co) in S-Model .. 105
Definition 19. Service Request (SRe)... 113

Definition 20. Trading Request (TRe) .. 114
Definition 21. Property Object and its Predicates in C-Model 123

Definition 22. Service Offer (SO) .. 129
Definition 23. Actor Service Offer (ASO) ... 131
Definition 24. Composite Service Structure (CompSt) .. 134

Definition 25. Composite Service Structure (CompSt-plus) 135
Definition 26. Value Constraint (Va-Co) in C-Model.. 142

Definition 27. Graph, Path Length, and depth of Service Composition..................... 145
Definition 28. Merge Constraint (Me-Co) in C-Model .. 156
Definition 29. Clause of Exchange Constraint (Ex-Co) in C-Model.......................... 159

Examples

 300

EXAMPLES

 A Communication Service .. 10 Example 1

 A Virtual Project Office (VPO) .. 20 Example 2
 Supply Chain - EAI ... 28 Example 3
 Booking of a Travel... 28 Example 4

 Addressing of Trading Phase through Semantic Characteristic 84 Example 5
 A Semantic Characteristic for the Deployment Phase 84 Example 6

 Principal Char Property Class ... 86 Example 7
 Service Administrator and Service Description .. 89 Example 8
 Service Template for Technical Service ... 93 Example 9

 Principal Compatibility with Comparable Properties 98 Example 10
 Value Constraints .. 101 Example 11

 Idea of Merge Constraint... 102 Example 12
 Merge Constraints (Me-Co) .. 102 Example 13
 View on Merge Property Object ... 104 Example 14

 Translation Exchange Constraint .. 107 Example 15
 Alternative Client Requests... 113 Example 16

 Telecommunication with Gateway.. 141 Example 17
 Telecommunication with Gateway (continuation1) 151 Example 18
 Telecommunication with Gateway (continuation2) 167 Example 19

 Audio-Video-Communication with Translation 195 Example 20
 Distributed Feature Composition .. 201 Example 21

 The SESA support of B2B integration .. 209 Example 22
 Weather Forecast Scenario .. 212 Example 23
 Wind Turbine Scenario ... 218 Example 24

 Consumer Scenario ... 218 Example 25
 Billing Scenario (Advanced Service) .. 218 Example 26

 Wind Turbine Scenario – continued.. 221 Example 27
 Consumer Scenario – continued.. 221 Example 28
 Billing Scenario (Advanced Service) –continued 222 Example 29

 Wind Turbine Scenario – continued.. 227 Example 30
 Consumer Scenario – continued.. 228 Example 31

 Billing Scenario (Advanced Service) – continued 229 Example 32
 Consumer Scenario – concluded ... 230 Example 33
 Billing Scenario (Advanced Service) – concluded 231 Example 34

ACTAS

301

INDEX

(Distributed) Informat ion Systems...................... 18

(structural) functional matching 53

ABox 38

abstract processes ... 31

abstract roles ... 39

Abstract Service ... 9, 27

Abstract Service Description................................ 39

actor 130

Actor Service Offer..73, 130

Actor Service Template.................................74, 118

actors 73

Alternative Client Requests 114, 132

Application Logic Layer 19

Application Ontologies ... 37

Application Server ... 21

ASO 73, 130

AST 74, 118

Asynchronous RPC.. 21

Atomic Serv ice ... 8, 27

Attribute Constraint80, 123

Attribute Constraints.. 123

Automatic Serv ice Composition.......................... 14

Autonomic Serv ice-Oriented Computing . 1, 7, 50

Autonomic SOC ... 50

Autonomous Software Agent 21

B2B 8, 30, 111

B2C 8, 111

Basic Service ... 8

behavioural functional matching 53

BPEL 31

BPEL4D... 31

BPEL4People .. 31

BPEL4WS ... 31

BPMs 30

BPTX 31

Business Process Execution Language............... 31

Business Process Execution Language for Web

Services .. 31

Business Process Management Systems 30

business processes..................................... 26, 28, 29

Business Service ... 8

Business-to-Business Service Composition 8

Business-to-Customer Service Composition 8

Capability Description... 36

CCh 81

Char Property ... 77, 82, 87

Char Property Class ... 87

choreography.. 13, 28, 32

Client Port .. 137

client-server relationship... 8

Cloud Computing ... 33

Cloud Housing .. 34

CoA 63, 69

Common Object Request Broker Architecture . 20

Compatibility Characteristic69, 76, 81

Component Service ..8, 27

Composite (Serv ice) Structure 132

Composite Service ..8, 27

Composite Structure.................................... 118, 132

Composition Agent ... 63, 69

CompSt 118, 132

CompSt-p lus .. 135

concept 37

concept definition ... 38

concept inclusion .. 38

concept inverse inclusion 38

Conceptual Situation Spaces 60

Concrete Serv ice .. 9, 27, 39

conversation... 28

Conversation Policies .. 32

Conversation Support for Web Services 32

coordination ... 9

CORBA 20

CP 32

CSS 60

CS-WS 32

DAML 44

DAML-S .. 44

DARPA 44

data mining .. 58

DCE 21

Defence Advanced Research Projects Agency.. 44

Description Logics ... 38

DFC 198

DIS 18

Distributed Computing Environment 21

Distributed Feature Composition....................... 201

Distributed Object Computing 10, 20

distribution model... 12

DL 38

DOC 10, 20

Domain Ontologies .. 37

Domain-Specific Language 198

DSL 198

EAI 18

ebXML 30, 32

Electronic Business using XML 32

Enterprise Application Integration 18, 27

e-service ... 10

ETSI 216

European Telecommunications Standards Institute

 ... 216

Exchange Constraint 81, 85

Exchange Property Class....................................... 87

executable processes .. 31

extended life cycle of services.............................. 14

FA 63

Facility Agent.. 63

Index

 302

FDL 198

feature 201

Feature Description Language 198

feature interaction... 201

FIPA 22

First-Order Logic.. 37

FOL 37

foundational ontology.. 37

GCh 81

General Characteristic 77, 81, 82

Grid Computing.. 35

group agent .. 22

Hoare logic .. 42

Hoare triple .. 42

horizontal facilities... 21

horizontal p rotocols ... 26

Hybrid Cloud .. 34

Hybrid Service Discovery..................................... 52

IaaS 34

IN Port 95, 137

Infrastructure-as-a-Service 34

integration challenge.. 10

interpretation ... 38

inverse role .. 40

IOPE 42

JADE 22

JIAC 22

JINI 19

leasing 19

life cycle of services .. 65

local choreography...28, 32

Lock-in-Effect... 34

Manual Service ... 7

MAS 22

Mediation... 37

Merge Constraint..................................... 77, 85, 101

Merge Property Class87, 101

Merged Ports ... 133

merged Service Ports ... 133

Message Broker .. 21

message queuing .. 21

Message-Oriented Middleware 21

MOM 21

MQ 21

Multi Port... 187

Multi-Agent System... 22

multip licity constraints of properties 40

multi-valued property .. 40

nfp 8

non-directed... 8

non-functional properties .. 8

Object Broker.. 20

Object Monitor ... 20

Obligatory properties ... 40

ODP 10, 19

ontological repository .. 76

ontology36

Open Distributed Processing10, 19

Open Port ..118, 132, 136

Open Smart Grid Protocol 216

Open Systems Interconnection Reference Model

 ... 216

orchestration ... 9, 13, 29

OSGP 216

OSI 216

OUT Port ... 95, 137

OWL-C 59

OWL-S 44

PA 63

PaaS 34

peer-to-peer network .. 35

peer-to-peer relationship.. 8

Peer-to-Peer-Network .. 15

Personal Agent .. 63

Platform-as-a-Service .. 34

PLWAP algorithm .. 58

policy assertion ... 35

Presentation Layer .. 19

principally compatible ... 76

private business processes..................................... 29

Private Cloud... 34

process oriented .. 13

Process Specification Language........................... 31

Property Class ... 78

Property Discovery... 14

Property Provision .. 14

Provider Discovery... 14

PSL 31

public business processes 29

Public Cloud .. 34

QoS 13

Quality-of-Service .. 13

range-covering of a property 40

RCh 81, 110

ReA 63, 69

Remote Procedure Calling 19

Request Agent .. 63, 69

Request Characteristic69, 77, 81

Request Characteristics 110

Request Mode.. 130

Request Port 94, 95, 97, 110

Resource Management Layer 19

REST 25

RM 130

RP 97

RPC 19

SaaS 34

SAI 59

semantic challenge ... 10

Semantic Web Serv ices Framework 45

Semantically Enabled Service-Oriented

Architectures ... 56

Server Port ... 137

service 7, 8, 19

Service 120

Service Application Integration 59

Service Broker... 15

Service Call ... 14

Service Candidate ... 63

service capability .. 3

Service Client ..8, 65

Service Composition .. 27

Service Composition on process level 28

Service Consumption ... 14

ACTAS

303

Service Coordination ... 27

Service Definit ion .. 14

Service Delivery ... 14

Service Deployment... 15

Service Design .. 14

Service Discovery .. 14

Service Grounding ... 15

Service Level Agreement................................14, 63

service life cycle ... 14

Service Matching.. 15

Service Negotiation.. 15

Service Offer ... 65

Service Port ... 97

Service Property ...79, 89

Service Provider ... 8, 65

Service Ranking ... 15

Service Request65, 110, 117

Service Requester... 8, 65

Service Trading .. 14

service-oriented .. 13

Service-oriented Architecture 18

Service-Oriented Architecture 7

Service-oriented Architecture Protocol 24

Service-Oriented Computing............................ 7, 10

SESA 56

SGMA 216

Simple Object Access Protocol............................ 24

single process orchestration.................................. 32

single-valued property ... 40

SLA 14, 63

smart grid ... 214

Smart Grid Architecture Model 216

SO 120

SOA 7, 18

SOAP 24

SOC 7, 10

software paradigm.. 12

Software-as-a-Serv ice ... 34

SRe 110, 117

SWSF 45

SWSL 45

SWSO 45

Task Ontologies.. 37

TBox 38

Technical Service ... 8

Top-level Ontology.. 37

TrA 63

Trader Agent... 63, 111

Trading Request... 111, 117

transaction logic .. 46

Translation Offer .. 193

TRe 111, 117

UBR 36

UDDI 25

UDDI Business Registry 36

Universal Description, Discovery and Integration25

upper ontology .. 37

Va-Co 100

Value Constraint80, 85, 100, 142

value variety of properties 40

vertical facilities.. 21

vertical protocols .. 26

WAP trees .. 58

Web 2.0 7

Web 3.0 7

Web Service ... 7, 11, 24

Web Service choreography Interface 32

Web Services choreography Description Language

 ... 32

Web Services Conversation Language 32

Web Services Description Language 25

WfMs 30

Workflow Management Systems......................... 30

working zones ... 20

WS 7, 24

WS-Addressing ... 27

WS-BPEL .. 31

WS-CDL .. 32

WS-choreography... 32

WSCI 32

WSCL 32

WS-Coord ination.. 26

WSDL 25

WS-I 35, 84

WS-Interoperability... 35, 84

WS-Policy .. 35

WS-Security .. 27

WS-Transaction .. 26

WS-Trust.. 27

WS-TX 26

XML Protocol ... 24

XMLP 24

XML-RPC.. 25

