17,378 research outputs found

    Unfermented Freeze-Dried Leaf Extract of Tongkat Ali (Eurycoma longifolia Jack.) Induced Cytotoxicity and Apoptosis in MDA-MB-231 and MCF-7 Breast Cancer Cell Lines

    Get PDF
    possible anticancer mechanism of action against breast cancer cell lines: non-hormone-dependent MDA-MB-231 and hormonedependent MCF-7. -e leaves of E. longifolia were processed into unfermented and fermented batches before drying using freeze and microwave-oven drying techniques. Obtained extracts were tested for cytotoxicity effect using MTT assay and phenolic determination using HPLC-DAD technique. -e most toxic sample was analyzed for its apoptotic cell quantification, cell cycle distribution, and the expression of caspases and apoptotic protein using flow cytometry technique. Fragmentation of DNA was tested using an agarose gel electrophoresis system. -e results determined that the unfermented freeze-dried leaf extract was the most toxic towards MDA-MB-231 and MCF-7 cells, in a dose-dependent manner. -is extract contains the highest phenolics of gallic acid, chlorogenic acid, ECG, and EGCG. -e DNA fragmentation was observed in both cell lines, where cell cycle was arrested at the G2/M phase in MCF-7 cells and S phase in MDA-MB-231 cells. -e number of apoptotic cells for MDA-MB-231 was increased when the treatment was prolonged from 24 h to 48 h but slightly decreased at 72 h, whereas apoptosis in MCF-7 cells occurred in a time-dependent manner. -ere were significant activities of cytochrome c, caspase-3, Bax, and Bcl-2 apoptotic protein in MDA-MB-231 cells, whereas MCF-7 cells showed significant activities for caspase-8, cytochrome c, Bax, p53, and Bcl-2 apoptotic protein. -ese results indicate the ability of unfermented freeze-dried leaf extract of E. longifolia to induce apoptosis cell death on MDA-MB-231 and MCF-7, as well as real evidence on sample preparation effect towards its cytotoxicity level

    Four-element ultrawideband textile cross array for dual-spatial and dual-polarization diversity

    Get PDF
    The emergence of miniaturized flexible electronics enables on-duty first responders to collect biometrical and environmental data through multiple on-body sensors, integrated into their clothing. However, gathering these life-saving data would be useless if they cannot set up reliable, preferable high-data-rate, wireless communication links between the sensors and a remote base station. Therefore, we have developed a four-element ultrawideband textile cross array that combines dual-spatial and dual-polarization diversity and is easily deployable in a first responder's garment. The impedance bandwidth of the array equals 1.43 GHz, while mutual coupling between its elements remains below -25 dB. For a maximal bit error rate of 1e-4, the array realizes a diversity gain of 24.81 dB. When applying adaptive subcarrier modulation, the mean throughput per orthogonal frequency division multiplexing (OFDM) subcarrier increases by an extra bit/symbol when comparing fourth- to second-order diversity

    Structural Antennas for 3cm Radar Onboard Multi-Rotor UAV

    Get PDF
    A series of 3cm amateur band radar antennas suitable for installation on a cinematic grade multi-rotor UAV were considered. A wideband open waveguide mouth antenna was developed that can be made from the existing arms of a multi-rotor UAV without any increase in weight for side-looking wall detection ranging radar. For downward looking radio altimeter, cutting slots in the arms to form slotted waveguide antennas was shown in simulation to be possible both in terms of covering the entire 3cm band from 10 to 10.5GHz and without overly weakening the arms as structural members

    Textile Diamond Dipole and Artificial Magnetic Conductor Performance under Bending, Wetness and Specific Absorption Rate Measurements

    Get PDF
    Textile diamond dipole and Artificial Magnetic Conductor (AMC) have been proposed and tested under wearable and body centric measurements. The proposed antenna and AMC sheet are entirely made of textiles for both the substrate and conducting parts, thus making it suitable for wearable communications. Directive radiation patterns with high gain are obtained with the proposed AMC sheet, hence minimizing the radiation towards the human body. In this study, wearable and body centric measurements are investigated which include bending, wetness and Specific Absorption Rate (SAR). Bending is found not to give significant effect to the antenna and AMC performance, as opposed to wetness that yields severe performance distortion. However, the original performance is retrieved once the antenna and AMC dried. Moreover, notable SAR reduction is achieved with the introduction of the AMC sheet, which is appropriate to reduce the radiation that penetrates into human flesh

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure
    • …
    corecore