2,489 research outputs found

    ELVIS: Entertainment-led video summaries

    Get PDF
    © ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Multimedia Computing, Communications, and Applications, 6(3): Article no. 17 (2010) http://doi.acm.org/10.1145/1823746.1823751Video summaries present the user with a condensed and succinct representation of the content of a video stream. Usually this is achieved by attaching degrees of importance to low-level image, audio and text features. However, video content elicits strong and measurable physiological responses in the user, which are potentially rich indicators of what video content is memorable to or emotionally engaging for an individual user. This article proposes a technique that exploits such physiological responses to a given video stream by a given user to produce Entertainment-Led VIdeo Summaries (ELVIS). ELVIS is made up of five analysis phases which correspond to the analyses of five physiological response measures: electro-dermal response (EDR), heart rate (HR), blood volume pulse (BVP), respiration rate (RR), and respiration amplitude (RA). Through these analyses, the temporal locations of the most entertaining video subsegments, as they occur within the video stream as a whole, are automatically identified. The effectiveness of the ELVIS technique is verified through a statistical analysis of data collected during a set of user trials. Our results show that ELVIS is more consistent than RANDOM, EDR, HR, BVP, RR and RA selections in identifying the most entertaining video subsegments for content in the comedy, horror/comedy, and horror genres. Subjective user reports also reveal that ELVIS video summaries are comparatively easy to understand, enjoyable, and informative

    Maize Germplasm Conservation in Southern California's Urban Gardens: Introduced Diversity Beyond ex situ and in situ Management.

    Get PDF
    Contemporary germplasm conservation studies largely focus on ex situ and in situ management of diversity within centers of genetic diversity. Transnational migrants who transport and introduce landraces to new locations may catalyze a third type of conservation that combines both approaches. Resulting populations may support reduced diversity as a result of evolutionary forces such as genetic drift, selection, and gene flow, yet they may also be more diverse as a result of multiple introductions, selective breeding and cross pollination among multiple introduced varietals. In this study, we measured the amount and structure of maize molecular genetic diversity in samples collected from home gardens and community gardens maintained by immigrant farmers in Southern California. We used the same markers to measure the genetic diversity and structure of commercially available maize varieties and compared our data to previously reported genetic diversity statistics of Mesoamerican landraces. Our results reveal that transnational dispersal creates an opportunity for the maintenance of maize genetic diversity beyond its recognized centers of diversity

    VERITAS and Multiwavelength Observations of the BL Lacertae Object 1ES 1741+196

    Full text link
    We present results from multiwavelength observations of the BL Lacertae object 1ES 1741+196, including results in the very-high-energy γ\gamma-ray regime using the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is well-modelled by a power law with a spectral index of 2.7±0.7stat±0.2syst2.7\pm0.7_{\mathrm{stat}}\pm0.2_{\mathrm{syst}}. The integral flux above 180 GeV is (3.9±0.8stat±1.0syst)×108(3.9\pm0.8_{\mathrm{stat}}\pm1.0_{\mathrm{syst}})\times 10^{-8} m2^{-2} s1^{-1}, corresponding to 1.6% of the Crab Nebula flux on average. The multiwavelength spectral energy distribution of the source suggests that 1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The observations analysed in this paper extend over a period of six years, during which time no strong flares were observed in any band. This analysis is therefore one of the few characterizations of a blazar in a non-flaring state.Comment: 8 pages, 5 figures. Accepted for publication in MNRA

    Genome-wide identification of microsatellites in white clover (Trifolium repens L.) using FIASCO and phpSSRMiner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allotetraploid white clover (<it>Trifolium repens </it>L.) is an important forage legume widely cultivated in most temperate regions. Only a small number of microsatellite markers are publicly available and can be utilized in white clover breeding programs. The objectives of this study were to develop an integrated approach for microsatellite development and to evaluate the approach for the development of new SSR markers for white clover.</p> <p>Results</p> <p>Genomic libraries containing simple sequence repeat (SSR) sequences were constructed using a modified Fast Isolation by AFLP of Sequences COntaining repeats (FIASCO) procedure and phpSSRMiner was used to develop the microsatellite markers. SSR motifs were isolated using two biotin-labeled probes, (CA)<sub>17 </sub>and (ATG)<sub>12</sub>. The sequences of 6,816 clones were assembled into 1,698 contigs, 32% of which represented novel sequences based on BLASTN searches. Approximately 32%, 28%, and 16% of these SSRs contained hexa-, tri-, and di-nucleotide repeats, respectively. The most frequent motifs were the CA and ATG complementary repeats and the associated compound sequences. Primer pairs were designed for 859 SSR loci based on sequences from these genomic libraries and from GenBank white clover nucleotide sequences. A total of 191 SSR primers developed from the two libraries were tested for polymorphism in individual clones from the parental genotypes GA43 ('Durana'), 'SRVR' and six F<sub>1 </sub>progeny from a mapping population. Ninety two percent produced amplicons and 66% of these were polymorphic.</p> <p>Conclusion</p> <p>The combined approach of identifying SSR-enriched fragments by FIASCO coupled with the primer design and <it>in silico </it>amplification using phpSSRMiner represents an efficient and low cost pipeline for the large-scale development of microsatellite markers in plants.</p> <p>The approach described here could be readily adapted and utilized in other non-related species with none or limited genomic resources.</p

    Architectural mismatch tolerance

    Get PDF
    The integrity of complex software systems built from existing components is becoming more dependent on the integrity of the mechanisms used to interconnect these components and, in particular, on the ability of these mechanisms to cope with architectural mismatches that might exist between components. There is a need to detect and handle (i.e. to tolerate) architectural mismatches during runtime because in the majority of practical situations it is impossible to localize and correct all such mismatches during development time. When developing complex software systems, the problem is not only to identify the appropriate components, but also to make sure that these components are interconnected in a way that allows mismatches to be tolerated. The resulting architectural solution should be a system based on the existing components, which are independent in their nature, but are able to interact in well-understood ways. To find such a solution we apply general principles of fault tolerance to dealing with arch itectural mismatche

    Unraveling the Secrets of Rice Wild Species

    Get PDF

    Sequencing of 15 622 Gene-bearing BACs Clarifies the Gene-dense Regions of the Barley Genome

    Get PDF
    Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley–Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant

    Checklist and bibliography of the Trogidae (Coleoptera: Scarabaeoidea)

    Get PDF
    Presented is a checklist of the world Trogidae (Coleoptera: Scarabaeoidea) including synonyms, geographic distributions, type repositories where known, lists of valid species by genera and subgenera, citations of all papers containing original descriptions, and a supplemental literature section containing works on various other aspects of the family. The Literature Cited and Supplemental Literature sections combine to form a comprehensive bibliography

    High-Resolution Genotyping of Wild Barley Introgression Lines and Fine-Mapping of the Threshability Locus thresh-1 Using the Illumina GoldenGate Assay

    Get PDF
    Genetically well-characterized mapping populations are a key tool for rapid and precise localization of quantitative trait loci (QTL) and subsequent identification of the underlying genes. In this study, a set of 73 introgression lines (S42ILs) originating from a cross between the spring barley cultivar Scarlett (Hordeum vulgare ssp. vulgare) and the wild barley accession ISR42-8 (H. v. ssp. spontaneum) was subjected to high-resolution genotyping with an Illumina 1536-SNP array. The array enabled a precise localization of the wild barley introgressions in the elite barley background. Based on 636 informative SNPs, the S42IL set represents 87.3% of the wild barley genome, where each line contains on average 3.3% of the donor genome. Furthermore, segregating high-resolution mapping populations (S42IL-HRs) were developed for 70 S42ILs in order to facilitate QTL fine-mapping and cloning. As a case study, we used the developed genetic resources to rapidly identify and fine-map the novel locus thresh-1 on chromosome 1H that controls grain threshability. Here, the recessive wild barley allele confers a difficult to thresh phenotype, suggesting that thresh-1 played an important role during barley domestication. Using a S42IL-HR population, thresh-1 was fine-mapped within a 4.3cM interval that was predicted to contain candidate genes involved in regulation of plant cell wall composition. The set of wild barley introgression lines and derived high-resolution populations are ideal tools to speed up the process of mapping and further dissecting QTL, which ultimately clears the way for isolating the genes behind QTL effects
    corecore