52 research outputs found

    5-Abelian cubes are avoidable on binary alphabets

    Get PDF
    A k-abelian cube is a word uvw, where the factors u, v, and w are either pairwise equal, or have the same multiplicities for every one of their factors of length at most k. Previously it has been shown that k-abelian cubes are avoidable over a binary alphabet for k &gt;= 8. Here it is proved that this holds for k &gt;= 5.</p

    Ten Conferences WORDS: Open Problems and Conjectures

    Full text link
    In connection to the development of the field of Combinatorics on Words, we present a list of open problems and conjectures that were stated during the ten last meetings WORDS. We wish to continually update the present document by adding informations concerning advances in problems solving

    Avoiding 2-binomial squares and cubes

    Full text link
    Two finite words u,vu,v are 2-binomially equivalent if, for all words xx of length at most 2, the number of occurrences of xx as a (scattered) subword of uu is equal to the number of occurrences of xx in vv. This notion is a refinement of the usual abelian equivalence. A 2-binomial square is a word uvuv where uu and vv are 2-binomially equivalent. In this paper, considering pure morphic words, we prove that 2-binomial squares (resp. cubes) are avoidable over a 3-letter (resp. 2-letter) alphabet. The sizes of the alphabets are optimal

    On a generalization of Abelian equivalence and complexity of infinite words

    Full text link
    In this paper we introduce and study a family of complexity functions of infinite words indexed by k \in \ints ^+ \cup {+\infty}. Let k \in \ints ^+ \cup {+\infty} and AA be a finite non-empty set. Two finite words uu and vv in AA^* are said to be kk-Abelian equivalent if for all xAx\in A^* of length less than or equal to k,k, the number of occurrences of xx in uu is equal to the number of occurrences of xx in v.v. This defines a family of equivalence relations k\thicksim_k on A,A^*, bridging the gap between the usual notion of Abelian equivalence (when k=1k=1) and equality (when k=+).k=+\infty). We show that the number of kk-Abelian equivalence classes of words of length nn grows polynomially, although the degree is exponential in k.k. Given an infinite word \omega \in A^\nats, we consider the associated complexity function \mathcal {P}^{(k)}_\omega :\nats \rightarrow \nats which counts the number of kk-Abelian equivalence classes of factors of ω\omega of length n.n. We show that the complexity function P(k)\mathcal {P}^{(k)} is intimately linked with periodicity. More precisely we define an auxiliary function q^k: \nats \rightarrow \nats and show that if Pω(k)(n)<qk(n)\mathcal {P}^{(k)}_{\omega}(n)<q^k(n) for some k \in \ints ^+ \cup {+\infty} and n0,n\geq 0, the ω\omega is ultimately periodic. Moreover if ω\omega is aperiodic, then Pω(k)(n)=qk(n)\mathcal {P}^{(k)}_{\omega}(n)=q^k(n) if and only if ω\omega is Sturmian. We also study kk-Abelian complexity in connection with repetitions in words. Using Szemer\'edi's theorem, we show that if ω\omega has bounded kk-Abelian complexity, then for every D\subset \nats with positive upper density and for every positive integer N,N, there exists a kk-Abelian NN power occurring in ω\omega at some position $j\in D.

    Conferences WORDS, years 1997-2017: Open Problems and Conjectures

    Get PDF
    International audienceIn connection with the development of the field of Combinatorics on Words, we present a list of open problems and conjectures which were stated in the context of the eleven international meetings WORDS, which held from 1997 to 2017

    Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable

    Get PDF
    We show that every binary pattern of length greater than 14 is abelian-2-avoidable. The best known upper bound on the length of abelian-2-unavoidable binary pattern was 118, and the best known lower bound is 7. We designed an algorithm to decide, under some reasonable assumptions, if a morphic word avoids a pattern in the abelian sense. This algorithm is then used to show that some binary patterns are abelian-2-avoidable. We finally use this list of abelian-2-avoidable pattern to show our result. We also discuss the avoidability of binary patterns on 3 and 4 letters

    Avoidability of long kk-abelian repetitions

    Full text link
    We study the avoidability of long kk-abelian-squares and kk-abelian-cubes on binary and ternary alphabets. For k=1k=1, these are M\"akel\"a's questions. We show that one cannot avoid abelian-cubes of abelian period at least 22 in infinite binary words, and therefore answering negatively one question from M\"akel\"a. Then we show that one can avoid 33-abelian-squares of period at least 33 in infinite binary words and 22-abelian-squares of period at least 2 in infinite ternary words. Finally we study the minimum number of distinct kk-abelian-squares that must appear in an infinite binary word

    Combinatorics on Words. New Aspects on Avoidability, Defect Effect, Equations and Palindromes

    Get PDF
    In this thesis we examine four well-known and traditional concepts of combinatorics on words. However the contexts in which these topics are treated are not the traditional ones. More precisely, the question of avoidability is asked, for example, in terms of k-abelian squares. Two words are said to be k-abelian equivalent if they have the same number of occurrences of each factor up to length k. Consequently, k-abelian equivalence can be seen as a sharpening of abelian equivalence. This fairly new concept is discussed broader than the other topics of this thesis. The second main subject concerns the defect property. The defect theorem is a well-known result for words. We will analyze the property, for example, among the sets of 2-dimensional words, i.e., polyominoes composed of labelled unit squares. From the defect effect we move to equations. We will use a special way to define a product operation for words and then solve a few basic equations over constructed partial semigroup. We will also consider the satisfiability question and the compactness property with respect to this kind of equations. The final topic of the thesis deals with palindromes. Some finite words, including all binary words, are uniquely determined up to word isomorphism by the position and length of some of its palindromic factors. The famous Thue-Morse word has the property that for each positive integer n, there exists a factor which cannot be generated by fewer than n palindromes. We prove that in general, every non ultimately periodic word contains a factor which cannot be generated by fewer than 3 palindromes, and we obtain a classification of those binary words each of whose factors are generated by at most 3 palindromes. Surprisingly these words are related to another much studied set of words, Sturmian words.Siirretty Doriast
    corecore