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Abstract

In this thesis we examine four well-known and traditional concepts of com-
binatorics on words. However the contexts in which these topics are treated
are not the traditional ones. More precisely, the question of avoidability is
asked, for example, in terms of k-abelian squares. Two words are said to be
k-abelian equivalent if they have the same number of occurrences of each
factor up to length k. Consequently, k-abelian equivalence can be seen as
a sharpening of abelian equivalence. This fairly new concept is discussed
broader than the other topics of this thesis.

The second main subject concerns the defect property. The defect theo-
rem is a well-known result for words. We will analyze the property, for ex-
ample, among the sets of 2-dimensional words, i.e., polyominoes composed
of labelled unit squares.

From the defect effect we move to equations. We will use a special
way to define a product operation for words and then solve a few basic
equations over constructed partial semigroup. We will also consider the
satisfiability question and the compactness property with respect to this
kind of equations.

The final topic of the thesis deals with palindromes. Some finite words,
including all binary words, are uniquely determined up to word isomorphism
by the position and length of some of its palindromic factors. The famous
Thue-Morse word has the property that for each positive integer n, there
exists a factor which cannot be generated by fewer than n palindromes. We
prove that in general, every non ultimately periodic word contains a factor
which cannot be generated by fewer than 3 palindromes, and we obtain a
classification of those binary words each of whose factors are generated by at
most 3 palindromes. Surprisingly these words are related to another much
studied set of words, Sturmian words.
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Tiivistelmä

Tässä väitöskirjassa tutkitaan neljää perinteistä ja tunnettua sanojen kom-
binatoriikan kysymystä. Lähestymistavat kysymyksiin eivät kuitenkaan ole
perinteisiä. Esimerkiksi toistojen välttämistä sanoissa tarkastellaan käyttäen
k-Abelin ekvivalenssin käsitettä. Sanat ovat k-Abelin ekvivalentteja, jos
niillä on sama lukumäärä jokaista korkeintaan k kirjaimen pituista tekijää.
Perinteisen Abelin ekvivalenssin voidaankin ajatella olevan k-Abelin ekvi-
valenssin erikoistapaus. Uudehkoa k-Abelin ekvivalenssin käsitettä tarkastel-
laan muita väitöskirjan aiheita laajemmin.

Toinen pääaiheista on defektiominaisuus. Sanojen defektiominaisuus on
hyvin tunnettu asia, mutta tässä työssä defektiominaisuuden olemassaoloa
tarkastellaan muun muassa kaksiulotteisten sanojen joukoissa. Kaksiulot-
teiset sanat ovat leimatuista yksikköneliöistä muodostettuja monikulmioita.

Defektiominaisuuden jälkeen käsitellään yhtälöitä. Näitä varten määri-
tellään sanojen tulo-operaatio tavallisesta poikkeavalla tavalla ja samalla
muodostetaan myös joukko uudenlaisia osittaisia puoliryhmiä. Näissä puo-
liryhmissä ratkotaan sanojen perusyhtälöitä ja tarkastellaan toteutuvuus- ja
kompaktisuuskysymyksiä.

Viimeinen väitöskirjan aihe koskee palindromeja. Osa äärellisistä sa-
noista, kuten esimerkiksi kaikki kaksikirjaimiset sanat, voidaan määrittää
sanaisomorfiaa vaille yksikäsitteisesti kunkin sanan palindromitekijöiden si-
jaintien ja pituuksien perusteella. Voidaan osoittaa, että tunnetulla Thuen-
Morsen sanalla on kaikilla luvun n arvoilla sellainen tekijä, jota ei voida
määrittää käyttämättä vähintään n palindromia. Voidaan myös todistaa,
että jokainen ääretön sana, joka ei ole lopultakaan jaksollinen, sisältää te-
kijän, jota ei voida määrittää käyttämättä vähintään kolmea palindromia.
Toisaalta sellaiset äärettömät kaksikirjaimiset sanat, jotka eivät ole lopul-
takaan jaksollisia ja joiden jokaisen tekijän määrittämiseen riittää kolme
palindromitekijää, pystytään karakterisoimaan. Nämä sanat ovat yllättäen
yhteydessä paljon tutkittuihin Sturmin sanoihin.
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Chapter 1

Introduction

In this chapter we present an introduction to combinatorics on words, an
area of discrete mathematics and the subject of this thesis. In the first
section we describe the development of this area and consider some connec-
tions to other fields of mathematics and to other branches of sciences. The
next Section 1.2 presents an outline of the structure of this thesis and in
the last section of this chapter we give the basic definitions and notions of
combinatorics on words relevant to the thesis.

1.1 Background

Combinatorics on words is a fairly new area of discrete mathematics which
began in the beginning of the 20’th century. Among the first publications
were the Axel Thue’s avoidability results which were published in 1906 and
1912, [91, 92]. In those papers Thue showed, for example, the existence of an
infinite binary cube-free word and an infinite ternary square-free word. In
other words, the existence of an infinite word over a binary (resp. ternary)
alphabet which does not contain an occurrence of three (resp. two) consecu-
tive equal blocks. Besides the fact that avoidability questions have been one
of the first questions considered in combinatorics on words, the theory of
avoidability is also one of the most widely studied topics in the area. Nowa-
days, the results of Thue are well-known but it has not always been the
same. Many of the Thue’s results have been rediscovered during the 20’th
century like, for example, in the paper by Morse and Hedlund 1944 [80].

Research in combinatorics on words has been active and systematic since
the 1950’s, much later than the beginning of the study of the area. For ex-
ample, M.-P. Schützenberger studied the area in connection to information
theory and computing, see [8], and P. S. Novikov with S. Adian used com-
binatorics on words to give a solution to the Burnside problem for groups,
see [2]. One important year for this area of discrete mathematics is 1983,
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the year in which the first book of the field was published. It was the book
Combinatorics on words by M. Lothaire [68], which was a presentation of
the research done so far. Lothaire has also tried to gather the results of
newer studies into two other volumes, Algebraic combinatorics on words
[69] in 2002 and Applied combinatorics on words [70] in 2005. The last one
concentrates on algorithmical questions.

As the names of the Lothaire’s latter books suggest, combinatorics on
words has many connections to other areas of mathematics. The connec-
tions to automata theory and formal languages are clear because in both
fields one operates with words. A set of binary infinite words, so called
Sturmian words, have several equivalent definitions and these provide an
interesting link between combinatorics, number theory and dynamical sys-
tems. Also several algebraic based questions have been reformulated and
solved in terms of words. If the words of finite length over a fixed alphabet
are considered then the set of these words with the concatenation opera-
tion form an algebraic structure, a semi-group. If the empty word, a word
without any letters, is added to this set of words as a neutral element, then
this set becomes a monoid. In fact, they represent free semi-groups and free
monoids over the given alphabet. This means that the elements of these sets
can be uniquely factorized by the letters of the alphabet. Combinatorics on
words has not only connections to different branches of mathematics but
also to other sciences. In computer science the information that computers
process is considered to be sequences of two different symbols, 0 and 1, that
is binary words. Another example of combining theory of words with an
other science is the connection to biology and DNA sequencing. [69, 70]

1.2 Structure of the thesis

In this thesis we consider several of the well-known notions and questions
on combinatorics on words. We study repetitions and words that avoid rep-
etitions, defect property, word equations, palindromes and to some minor
extent, Sturmian words. For each of these subjects we have a somewhat
new approach. To examine repetitions and avoidability we define a set of
new equivalence classes, k-abelian equivalences. Questions on these newly
defined equivalence classes, on repetitions and on avoidance constitute the
major part of this thesis reflecting the important role k-abelian equivalence
has played in research for this thesis and my postgraduate studies. The
defect effect will be considered on the sets of 2-dimensional words instead of
the sets of usual 1-dimensional words. Word equations will be defined over
a partial semigroup of words with a new kind of product, so called overlap-
ping product. There also exist a few common questions on the number of
palindromes, for example, we may ask how many palindromes or different
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palindromes a word has. Instead, in this thesis we are interested in words
that can be determined up to word isomorphism by their palindromic fac-
tors. This means that if we know the palindromic factors we can construct
the initial word. In this context we discover a new connection between palin-
dromes and Sturmian words and, in fact, a connection to a broader class of
words which we call double Sturmian words.

Next we introduce the content of this thesis in more details and also
give an overview of the settings of more traditional versions of the problems
we are interested in. As mentioned, the theory of avoidability is among the
oldest and most studied topics in combinatorics on words. The first results,
squares are avoidable over a ternary alphabet and cubes are avoidable over
a binary alphabet, were obtained by Thue [91, 92]. Avoidability over an
alphabet means that there exists such an infinite word over the alphabet
which does not contain a factor of the given form, for example, a square.
Thue’s results covered the cases in which the words are regarded as ordered
sequences of letters. This means that two words are the same if and only if
they have the same number of each letter and in the exactly same order.

Since late 1960’s commutative variants of similar avoidability problems
have been studied. Commutation is achieved if the order of letters in a
word is set to be irrelevant. Then two words are considered to be equivalent
if they have the same number of each letter. This equivalence relation is
called abelian equivalence. For example, the words aab and aba are abelian
equivalent and thus the word aababa is an abelian square. An infinite word
avoids abelian squares (resp. cubes) if it dos not contain two (resp. three)
consecutive abelian equivalent factors. The first non-trivial results were
obtained by Evdokimov [34] who showed that abelian squares can be avoided
in an infinite word over a 25-letter alphabet. The size of the alphabet was
reduced to five by Pleasant [85], until the optimal value, four, was found
by Keränen [62] in 1992. The optimal value for the size of the alphabet in
which abelian cubes are avoidable was proved already earlier by Dekking
[27]. He showed that abelian cubes are avoidable over a ternary alphabet.

We consider here new variants of the avoidability problems by defining
repetitions via new equivalence relations. These equivalences lie properly
in between equality and commutative abelian equality. Thus the original
results on avoiding repetitions and abelian repetitions give the background
for these new avoidability problems. In abelian equivalence the number of
each letter is determinative but in these new equivalences, called k-abelian
equivalences where k is a natural number, the number of occurrences of
each factor of length k is significant. We require that the words in the
same k-abelian equivalence class have the same number of each factor of
length k and the same prefix and suffix of length k − 1. Because of the
latter requirement two k-abelian equivalent words are abelian equivalent,
too. In addition, now this equivalence relation also satisfies the definition of
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a congruence. This means that concatenation is well defined on the level of
equivalence classes. Chapter 2 is devoted to the study of this notion of k-
abelian equivalence. The main target is avoidability questions but we begin
with results on characterizations of these classes and on the numbers and
sizes of the classes.

Most of the avoidability results on words and on abelian words are ob-
tained by constructing a desired infinite word by iterating a suitable mor-
phism. A morphism is a mapping h that satisfies the condition h(xy) =
h(x)h(y). If the morphism is prefix preserving, that is there exists a let-
ter a such that hi(a) is always a prefix of hi+1(a), then the morphism can
be iterated infinitely many times and the iteration produces a well defined
unique word as the limit of this procedure. A well-known example of this
kind of an infinite word is the Fibonacci word. It is obtained by iterating
a morphism f(0) = 01, f(1) = 0 infinitely many times starting at 0. The
Fibonacci word begins with 0100101001001010. In Chapter 2 we show, for
example, that surprisingly it is not possible to generate an infinite ternary
word by iterating one morphism so that the word would avoid k-abelian
squares for any k ≥ 1.

The Fibonacci word is also an example of a Sturmian words. These
infinite binary words may be characterized in many ways and one possibility
is to count the number of different factors of the word. If the word has
exactly n+ 1 different factors of length n, for each natural number n, then
the word is a Sturmian word. A characterization can also be given in terms
of k-abelian complexity function. By Karhumäki, Saarela and Zamboni,
[59], we can use the number of k-abelian equivalence classes of the factors of
the word to characterize the Sturmian words. This will be stated in the end
of Chapter 2, as well as a few other general results on k-abelian equivalence.
We will also come back to Sturmian words in the last chapter of the thesis
which deals with connections between Sturmian words and palindromes.

An other question that is studied to a large extent in combinatorics on
words is periodicity of words. A period of a word w = w1 · · ·wm is such a
natural number p ≤ m that w is a factor of (w1 · · ·wp)

m. Clearly, each finite
word has at least one period, namely the length of the word. In periodicity
questions for infinite words it is asked whether there exists a finite word v
such that the given infinite word w is of the form w = vω, where vω means
that the word v is repeated infinitely many times. If a word w is ultimately
periodic then there exist finite words u and v such that w = uvω. The words
that are not ultimately periodic are called aperiodic.

A well-known result of Fine and Wilf [36] deals with periods of words.
It says that if a word w has periods p and q such that the greatest common
divisor (gcd) of p and q is d and the length of the word is at least p+ q − d
then the word w has a period d, too. In addition, there are words of length
p+q−d−1 that have periods p and q but not the period d. The corresponding
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bounds for k-abelian periods can also be considered as in [57]. On the other
hand, the theorem of Fine and Wilf can also be stated as: two words u
and v are powers of the same word if and only if uω and vω has a common
prefix of length at least |u| + |v| − gcd(|u|, |v|). Another simple condition
for two words to be powers of a same word is commutation. If two words x
and y commute, i.e., xy = yx then there exists a word z such that x = zi

and y = zj for some natural numbers i and j. In fact, the commutation
is the simplest case of the so called defect theorem which is considered in
Chapter 3.

In general, the defect theorem says that if a set of n words satisfies a
non-trivial relation then there exists a set of n−1 words such that each word
of the bigger set can be obtained by concatenating some of the words of the
smaller set. A natural question is to consider whether there exist different
structures, not just sets of words, for which the defect theorem would also
hold. This question is considered, for example, in the paper by Harju and
Karhumäki, [49]. We can also again consider k-abelian equivalence but this
time with respect to defect effect. This question is shortly studied in Chapter
3 but the main subject of the chapter is to study the defect theorem in the
context of two-dimensional words.

A word w = a1a2 · · · an where a′is are letters can be considered to be a
one-dimensional word where each point (i, 0) ∈ N×{0} has a label ai for all
1 ≤ i ≤ n. For a two-dimensional word we consider also points of the form
(i, j) ∈ N × N, where both i and j may be greater than 0. In other words,
we analyze different polyominoes constructed from labelled unit squares. In
general, the defect theorem does not hold for two-dimensional words but
there exist small restricted sets of polyominoes for which the defect theorem
holds. The defect theorem for these two-dimensional words has been studied
earlier by, for example, Harju and Karhumäki in [49] and Moczurad in [79].

The defect is at times useful in solving word equations. A word equation
consists of unknowns which are elements of some finite alphabet X and
possibly some constants which are letters from the original alphabet Σ. For
example, xab = byb is a word equation where Σ = {a, b} and X = {x, y}.
A solution to a word equation is a morphism from the set (X ∪ Σ)∗ to the
set Σ∗ which maps both sides of the equation to the same word, and for
letters in Σ the morphism is an identity mapping. A solution to the given
equation xab = byb is a morphism which maps x to a word bα and y to
a word αa, where α ∈ Σ∗. Another simple word equation is the already
mentioned commutation rule xy = yx. This is an example of an equation
that does not contain any constants.

In Chapter 4 we discuss a few basic word equations and their solutions
not only in a way introduced above, but also with a different definition of
the word product. This so called overlapping product is motivated by bio-
operations, see e.g. [83]. We show how these word equations in the partial
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semigroup with overlapping products can be transformed into problems on
ordinary word equations. In addition, we show that the satisfiability problem
is solvable also for these new kind of word equations. In the satisfiability
problem it is asked whether the existence of a solution for a given equation is
decidable. It was shown by Makanin in [72] that for ordinary word equations
the existence of a solution is decidable. In the end of this 4th chapter we once
again give a few simple remarks of k-abelian equivalence, now in connection
with solving equations.

In the last chapter we need again the result of Fine and Wilf and the no-
tion of Sturmian words. The central notion for this chapter is a palindrome.
A palindrome is a word which can be read in both directions, from left to
right and from right to left, ending up to the same word. For example,
abaabaaba is a palindrome. The main subject is to study a new connection
between Sturmian words and palindromes. It is known, for example, that
the number of different palindromic factors of a finite Sturmian word of
length n is n+ 1 and on the other hand, for an infinite Sturmian word the
number of palindromic factors of length m is 1 for even values of m and 2
for odd values of m, see e.g. [31, 32].

We will approach words and their palindromic factors in a bit different
way. We examine words that can be generated up to isomorphism by giving
the lengths and positions of their palindromic factors. For example, the
word abaabaaba is uniquely determined up to word isomorphism by the
fact that it is a palindromic word of 9 letters and the prefix of length 6 is
also a palindrome. Of course, the word aaaaaaaaa would also satisfy the
conditions but in abaabaaba the letters are chosen as freely as possible. It is
easy to show that each binary word can be defined by palindromes. On the
other hand, we will show that all the binary words that are aperiodic and
can be generated from the information of its three palindromic factors are
related to Sturmian words.

Because the content of the thesis is diverse and each chapter to some
extent has its own independent topic, each chapter is ended with a short
conclusion section. In summary, the thesis is organized as follows: Chapter
2 introduces k-abelian equivalences and avoidability questions, Chapter 3
deals with the defect theorem, Chapter 4 concentrates on equations over
special partial semigroups of words and the last Chapter 5 studies palin-
dromes and Sturmian words.

1.3 Basic definitions and notions

In this section we introduce basic notions and definitions of combinatorics
on words needed for this thesis. Some additional concepts are given in later
chapters but the following notions are used throughout the thesis. For a
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more comprehensive presentation of basic notions see, e.g. [68, 20]. Let Σ
be a finite set called the alphabet and the elements of the alphabet are called
letters. A word is a sequence of letters and it can be finite or infinite. In fact,
infinite words can be one-way infinite or two-way infinite, meaning that the
word either has a starting point and is infinite in one direction or that it is
infinite in both directions without any specific starting point. In this thesis
we concentrate on finite and one-way infinite words. The finite words are
of the form w = a1a2a3 · · · an and infinite ones of the form w = a1a2a3 . . .
where ai ∈ Σ. The word that does not contain any letters is called the empty
word and denoted by ϵ.

The set of all finite non-empty words over Σ is denoted by Σ+. As
mentioned it can be viewed as a free semigroup with respect to the product
operation defined by concatenation. The empty word is an identity element
and if it is added to Σ+ then a freely generated monoid denoted by Σ∗ is
obtained. The generators for Σ∗ are the letters in Σ. The set of one-way
infinite words over the alphabet Σ is denoted by Σω. The mentioned product
operation for words is the same as concatenation and because it is associative
it is usually not indicated with any sign. For example, the product of words
aab and abb is aababb. If the word w is of the form w = xy, where y ̸= ϵ,
then wy−1 = xyy−1 = x means that the word y is deleted from the end of
the word w. This deletion is a partial operation.

A finite word w ∈ Σ+ has a factor v if the word can be written as
w = u1vu2 so that u1, u2 ∈ Σ∗, and if at least one of them is not empty
then v is a proper factor. For an infinite word w and a finite factor v the
corresponding u2 is infinite. A factor v of the word w is a prefix if u1 = ϵ
and a suffix if u2 = ϵ. A factor is a proper prefix or a proper suffix if
it is a proper factor and a prefix or a suffix respectively. The set of all
factors of a word w is denoted by F (w) and the set of all prefixes (resp.
suffixes) is pref(w) (resp. suf(w)). The number of letters in a finite word
w is called the length of the word and denoted by |w|. The number of
occurrences of a factor v in a word w is denoted by |w|v. A prefix (resp.
suffix) of length n of a word w is denoted by prefn(w) (resp. sufn(w)) and
if n > |w| then prefn(w) = sufn(w) = w. The set of factors of length n is
Fn(w) = F (w) ∩ Σn, where Σn denotes all the words of length n over the
alphabet Σ.

We say that a word w is a square if it equals to vv = v2 for some v ∈ Σ+.
Other terms used to describe this kind of words are a repetition of order 2
and the second power of v. A word v3 is a cube or equivalently a repetition
of order 3 or the third power of v. Respectively, in general, vn is a repetition
of order n or the nth power of v. The powers can be defined for fractional
numbers but we concentrate on powers that are natural numbers. Fractional
powers are not so straightforward to determine in the perspectives in which
we study the powers. If a word has a repetition of order n as a factor then
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the word is said to contain a repetition of order n or, for example, a square
in case n = 2. On the other hand, if a word does not contain a repetition of
order n then it is said to avoid this repetition. We also use terms square-free
and cube-free to denote words that avoid squares and cubes, respectively.

In general, we can define a pattern and ask whether a given word avoids
the pattern. A pattern is a word over an alphabet containing variables. For
example, let α and β be variables then the pattern associated with squares is
just αα and another example of a pattern is αβαβα. This latter example is
related to the notion of overlap. For example, a word w1abcabcaw2 contains
an overlap because the first shown occurrence of the factor abca overlaps
with the second one. So the factors that have a prefix also as a suffix may
overlap. Now in the given example w1abcabcaw2 a corresponds to α and bc
corresponds to β. We say that if a word avoids the pattern αβαβα then the
word is overlap-free.

If there exists an infinite word over an alphabet Σ which avoids, for
example, squares then it is said that the alphabet avoids squares and that
squares are avoidable over the alphabet Σ. In avoidability questions it is
usually asked what is the smallest size of the alphabet that avoids a given
pattern, if such exists. There exist many variations of avoidability questions.
For example, abelian squares are defined to be words w that can be written
in form w = uv where u and v are abelian equivalent, i.e., they have the
same number of each letter. In other words abelian equivalent words have
the same letters but possibly in different order, i.e., they are anagrams.
For instance, abbabbaa is an abelian square. Abelian cubes and abelian nth
powers are defined analogously. Now it is natural to examine words that
avoid abelian nth powers.

Let w be a finite word of length n, i.e. w = a1a2 · · · an. A period of the
word is an integer p for which 1 ≤ p ≤ n and ai = ai+p for all 1 ≤ i ≤ n− p.
Every finite word w has at least one period since at least the length of the
word is a period. The least period of the word is called the period of the
word. A finite word can always be written in the form w = un for some
u ∈ Σ+ and a natural number n. If n = 1 is the only possibility then the
word is called primitive. If an infinite word w can be written in the form
w = uω for some u ∈ Σ+ then it is a periodic word, and an ultimately periodic
word can be written in the form w = uvω for some u ∈ Σ∗ and v ∈ Σ+. If a
word is not ultimately periodic, then it is called aperiodic.

A mapping h from a free monoid A∗ into a free monoid B∗ is called
a morphism if it satisfies the condition h(xy) = h(x)h(y) for all x, y ∈
A∗. In combinatorics on words we often use morphisms h : Σ∗ → Σ∗. To
define how h maps the words of Σ∗ it is enough to give the images of the
letters. A morphism h is called uniform if the images of the letters have the
same length, i.e., |h(a)| = |h(b)| for each a, b ∈ Σ. A prefix preserving (or
prolongable) morphism is a morphism h : Σ∗ → Σ∗ for which there exists
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a letter a ∈ Σ and a word α ∈ Σ∗ such that h(a) = aα and hn(α) ̸= ϵ
for every n ≥ 0. This means that hi(a) is always a prefix of hi+1(a). So
the word h∞(a) is well defined as a limit of iterating h(a) infinitely many
times. We call an infinite word a pure morphic word if it is obtained by
iterating a prefix preserving morphism. A morphic word is obtained from a
pure morphic word by taking an image of it by a morphism or equivalently
under a coding, see [4]. Two well-known morphisms are f and t from the
set of binary words into itself defined as follows:

f :

{
0 → 01
1 → 0

and t :

{
0 → 01
1 → 10

The infinite word f∞(0) which is the unique fixed-point of f is called the
Fibonacci word and the fixed-point of t starting at 0, i.e., the infinite word
t∞(0) is called the Thue-Morse word.

We say that two words u and v commute if uv = vu. If u = qi and
v = qj then they clearly commute because uv = qi+j = vu. In fact, this
property characterizes the words that commute, see e.g. [68]. Another basic
property of words is conjugation. Words u and v are conjugates if there
exist words p and q such that u = pq and v = qp. In other words u and
v are conjugates if they satisfy uz = zv for some z ∈ Σ∗. In fact, now
z = (pq)ip for some i ≥ 0 in terms of p and q, see e.g. [68]. The words
that are conjugates of each other constitute a conjugacy class. This set can
be composed from the words that are obtained from each other by a cyclic
permutation c : Σ∗ → Σ∗, where c(aw) = wa for a ∈ Σ and w ∈ Σ∗. For
example, {aabc, abca, bcaa, caab} is clearly a conjugacy class.

The expressions uv = vu and uz = zv are also examples of word equa-
tions. In these equations there are no constants and the equations involve
only variables of the alphabet X. If the equation has constants then the
alphabet for the equation is a union of an alphabet of variables and a dis-
joint alphabet of constants Σ. A solution to an equation u = v, where
u, v ∈ (X ∪ Σ)+, is a morphism e : (X ∪ Σ)∗ → Σ∗ such that e(u) = e(v)
and e(a) = a for all a ∈ Σ. For example, a solution to the commutation
equation uv = vu is a morphism that maps u to qi and v to qj for some
i, j ≥ 0 and q ∈ Σ∗.

The Fibonacci word defined above is an example of a Sturmian word.
As mentioned, if an infinite word w has exactly n + 1 different factors of
length n for each natural number n, i.e., the factor complexity ρw(n) of the
word is n+ 1, then the word is a Sturmian word. It is clear that Sturmian
words are binary words having two different factors of length one, that is
the letters of the alphabet. There exist many equivalent definitions for
Sturmian words, see e.g. [69]. For example, if w is an infinite binary word
over an alphabet {0, 1} then w is Sturmian if and only if w is balanced and
aperiodic. Here a balanced word means a binary word over {0, 1} for which
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|x|1 − |y|1 ∈ {−1, 0, 1} for each factors x and y of the same length. In other
words, in a balanced word the number of letter 1 in each factor of length n
is either i or i+ 1, for some 0 ≤ i ≤ n− 1.

The lexicographic order, denoted by <l, is defined as follows. First, let
the letters of alphabet Σ be ordered, i.e., Σ is a finite ordered set. Let
x, y ∈ Σ+ be two words and let u be the longest common prefix of x and
y. Now we have x <l y if x = u and y = uby′ or if x = uax′ and y = uby′,
for x′, y′ ∈ Σ∗ and a, b ∈ Σ with a <l b. This corresponds to the usual
dictionary order. One special class of words is Lyndon words. A Lyndon
word is a primitive word which is minimal in its conjugacy class with respect
to the lexicographic order. As an example, we give a few shortest Lyndon
words over an alphabet {0, 1} with 0 <l 1: ϵ, 0, 1, 01, 001, 011, 0001, . . . We
will need this concept of Lyndon words in the last chapter where we discuss
Sturmian words.

As a last notion we mention a graph which is, in fact, a concept of graph
theory but it may be used as a tool also in combinatorics on words. A graph
is an ordered pair G = (V,E), where V is the set of vertices and E is the
set of edges. An edge is a pair of vertices so it can be seen that an edge
connects two vertices. If the edges are directed, i.e., they are ordered pairs
then the graph is a directed graph. In a directed graph each edge has a
starting vertex, a tail, and an ending vertex, a head. An undirected graph
which is connected but does not contain any cycles is called a tree. This
means that from each vertex of a tree there exists exactly one connection
via edges to any other vertex of the tree.
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Chapter 2

Avoidability with respect to
k-abelian equivalence

In this chapter we discuss about avoidability questions and the main concept
is a k-abelian equivalence. The k-abelian equivalence lies properly between
usual equality and abelian equality. By increasing the natural number k for
k-abelian equivalence we can move from abelian equality to the direction
of equality step by step. Avoidability problems are widely studied in the
contexts of usual word power-freeness and abelian power-freeness. So it is
natural to study these same questions also for k-abelian power-freeness.

First we introduce this fairly new concept of k-abelian equality and give
some basic properties of it as an equivalence class. Then we concentrate
on k-abelian repetitions and k-abelian avoidability. The background of this
study mostly lies on works of the avoidability by, for example, Thue [91, 92],
Evdokimov [34], Pleasant [85], Dekking [27] and Keränen [62]. The content
of this chapter relies on papers [51, 48, 50, 49, 52, 45]. We also summarize
a few other results related to k-abelian equivalence and the references for
these are given separately.

2.1 Definitions

The crucial notion of this whole chapter is a k-abelian equivalence of words.
Two equivalent words in a usual sense are the words that are exactly the
same. Two abelian equivalent words have the same letters but possibly in
different order. The main idea behind the k-abelian equivalence is that we
generalize the concept of abelian equality to concern factors of length k not
just letters. This means that informally, two k-abelian equivalent words
have the same number of occurrences of factors of length k. Again we allow
the factors to be in different order. Let us now give the precise definition
for k-abelian equivalent words.
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Definition 1. Let k ≥ 1 be a natural number. Words u and v in Σn for
n ≥ k − 1 are k-abelian equivalent if

1. prefk−1 (u) = prefk−1 (v) and sufk−1 (u) = sufk−1 (v), and

2. for all w ∈ Σk, the number of occurrences of w in u and v coincide,
i.e. |u|w = |v|w.

Words of length at most k are k-abelian equivalent if and only if they are
equivalent.

For the k-abelian equivalence we use a symbol ≡k and for the abelian equiv-
alence ≡a. Notice that ≡1 is the same equivalence relation as ≡a. The first
condition about prefixes and suffixes is needed for to make the k-abelian
equivalence a sharpening of the abelian equality. This means that if words
are k-abelian equivalent for some k then they are also abelian equivalent,
i.e., u = v ⇒ u ≡k v ⇒ u ≡a v. It can also be seen that the equality is a
kind of limit of the k-abelian equivalences, i.e., u = v ⇔ (u ≡k v ∀ k ≥ 1).
On the other hand, the second condition would be enough to make this no-
tion an equivalence relation but together with the first condition k-abelian
equivalence is a congruence, too. We remind that a congruence is such an
equivalence relation R that if u1Ru2 and v1Rv2 then u1v1Ru2v2 for all ele-
ments u1, u2, v1 and v2. Now Σ∗/ ≡k is a quotient monoid, whose elements
are the k-abelian equivalence classes. In most of the problems we consider in
this thesis we do not use the properties of a congruence because we deal with
combinatorial questions. However, in algebra the congruence and quotient
structures are important concepts.

In fact, instead of condition 1 it would be enough to require the words
to have either a common prefix of length k − 1 or a common suffix of the
same length. As is easy to see, two words with a common prefix and the
same factors of length k have also a common suffix, and vice versa. Before
we give another formulation of the definition of k-abelian equivalent words
we give an example illustrating this concept of the k-abelian equivalence.

Example 2. Consider the words aba and bab. They are not 2-abelian equiv-
alent though they have the same factors of length 2. Clearly they are not
abelian equivalent either. Instead, the words abaab and aabab are 2-abelian
equivalent as well as abelian equivalent.

Definition 3. Let k ≥ 1 be a natural number. Words u and v in Σ+ are k-
abelian equivalent if for each n = 1, . . . , k and for every w ∈ Σn the number
of occurrences of w in u and v coincide, i.e. |u|w = |v|w.

In fact, for words that have at least k letters Definition 3 can be simplified
into the following form:
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Definition 4. Let k ≥ 1 be a natural number. Words u and v in Σ+ are
k-abelian equivalent if for every w ∈ Σk−1 ∪ Σk the number of occurrences
of w in u and v coincide, i.e. |u|w = |v|w.

We will show that the definitions 1 and 4 yields the same equivalence and
then it is clear that Definition 3 is valid, too. We begin with the fact that
all the factors of length k of a word w contains exactly two factors of length
k− 1, one as a prefix and one as a suffix. So if we know the prefk−1(w) and
sufk−1(w) it is enough to count the numbers of different factors of length
k to count the numbers of different factors of length k − 1. That is, the
condition of Definition 4 follows directly from Definition 1. In addition,
|u|w = |v|w for all w ∈ Σk is required in both definitions 1 and 4. To prove
the rest we assume on the contrary that for words u, v ∈ Σ+ |u|w = |v|w for
every w ∈ Σk−1 ∪ Σk but prefk−1(u) = x ̸= prefk−1(v). The analyzis for
suffixes would be similar. Let |u|x = r so |v|x = r by the assumption and∑

a∈Σ(|u|ax) = r − 1. Now from prefk−1(v) ̸= x and |v|x = r it follows that∑
a∈Σ(|u|ax) = r giving a contradiction.

Notions like k-abelian repetitions can be now naturally defined. For
instance, w = uv is a k-abelian square if and only if u ≡k v. If a word does
not contain a factor which is a k-abelian square then it avoids k-abelian
squares and it is a k-abelian square-free word. If there exists an infinite
k-abelian square-free word over an alphabet Σ then k-abelian squares are
said to be avoidable over the alphabet Σ.

From Definition 3 we can easily conclude the next lemma.

Lemma 5. If two words are k-abelian equivalent then they are k′-abelian
equivalent for each 1 ≤ k′ ≤ k.

Proof. Follows from the definitions of k-abelian equivalence straightforwardly:
If words u and v are k-abelian equivalent they have the same number
of occurrences of each factor of length at most k thus u and v are also
(k − 1)-abelian equivalent. Inductively, they are k′-abelian equivalent for
each 1 ≤ k′ ≤ k.

Corollary 6. If an infinite word w contains a k-abelian repetition of order
m then w contains a k′-abelian repetition of order m for each 1 ≤ k′ ≤ k.

We remark that for abelian equivalence the notion of the Parikh vec-
tor is important. The Parikh vector p is a function from the set of words
over m-letter alphabet {a1, a2, . . . , am} to the set of m-dimensional vectors
over natural numbers, where p(w) = (|w|a1 , |w|a2 , . . . , |w|am) for a finite
word w. The Parikh vector counts the number of each letter in w, so two
words are abelian equivalent if and only if they have the same Parikh vec-
tor. Generalized Parikh mappings has been studied by Karhumäki in [54]
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and a k-generalized Parikh vector is related to k-abelian equivalence. A k-
generalized Parikh vector counts the number of occurrences of each factor
of length k in a word w. So if two words are k-abelian equivalent then they
have the same k-generalized Parikh vector. The work by Karhumäki [54]
can be seen as the first introduction to the k-abelian equivalence. In the
paper the idea is to use k-generalized Parikh vectors as approximations for
the undecidable Post Correspondence Problem (PCP) [86] and to obtain the
decidability of these modificated PCP’s with respect to k-generalized Parikh
vectors.

2.2 Equivalence classes

In this section we concentrate on the properties of k-abelian equivalence
classes. We give characterizations of the equivalence classes of 2-abelian
and 3-abelian words over a binary alphabet. We count the number of the
equivalence classes of 2-abelian words over a binary alphabet and also exam-
ine the size of each such an equivalence class. We approximate the number
of the equivalence classes for binary 3-abelian words and compare it with the
general evaluation of the number of k-abelian equivalence classes obtained
in [59].

First we give characterizations for the equivalence classes of 2- and 3-
abelian words over a binary alphabet by which we mean that we define a
representative for each equivalence class.

Lemma 7. Over a binary alphabet Σ = {a, b} the representative of a 2-
abelian equivalence class can be given in the form:

aakbl(ab)man or bbkal(ba)mbn,

where k, l,m ≥ 0 and n ∈ {0, 1}. Characterization is unambiguous if
l + m ≥ n, and l = 1 only if k = 0.

Proof. Let w be a word over the binary alphabet Σ. It belongs to some
2-abelian equivalence class and the words that are in the same class have
the same number of each factor of length 2 and the first and the last letters
are the same. There exist four possibilities for the pair of the first and the
last letter, namely (a, a), (a, b), (b, a) and (b, b). All these pairs are clearly
obtained by the forms given in lemma. If the word w begins and ends with
the same letter x then for y ̸= x |w|xy = |w|yx and otherwise if the word
begins with x and ends with y then |w|xy = |w|yx + 1. Thus if the first and
the last letters are given then the 2-abelian equivalence class of the word
depends only on the number of factors aa, bb and either ab or ba. Thus each
2-abelian equivalence class has a representative of the given form.
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To prove the unambiguousness we assume that l +m ≥ n and l can be
1 only if k = 0. We consider only the classes beginning with a because the
case where the words begin with b is symmetric. In the first case let the
word contain only a’s. The representation is clearly unambiguous because
l = m = n = 0 and k + 1 is the number of a’s. Now let us assume that a
word contains both a’s and b’s. If l ≥ 2 then representative of the 2-abelian
class has also only one representation in the given form. Otherwise, if l < 2
the words in the equivalence class do not contain the factor bb. Now if l = 0
then m has to equal to the number of b’s and the number of factors aa has to
equal to k+1. If l = 1 then k = 0 and the word does not have any factors aa.
The number of b’s is now m+ l and the representative is unambiguous.

Next we give the characterization for the equivalence classes of 3-abelian
words over a binary alphabet. Without any additional restrictions to the
parameters the characterization is again not unambiguous in a few cases.

Lemma 8. Over a binary alphabet Σ = {a, b} the representative of a 3-
abelian equivalence class of words of length at least 2 can be given as a word
xy where x ∈ {x1, x2, x3, x4} = X and y ∈ {y1, y2} = Y . The forms of the
elements of the sets X and Y are given below:

x1 = aaakbl(aabb)m

x2 = bbbkal(aabb)m

x3 = abbkal(aabb)m

x4 = baakbl(aabb)m

and
y1 = (aab)g(ab)hbiaj

y2 = (abb)g(ab)hbiaj

where k, l,m, g, h ≥ 0 , i ∈ {0, 1} and j ∈ {0, . . . , 2− i}.

Proof. The four options for x in X cover all the possible prefixes of length
2 the representative may have, namely aa, ab, ba and bb. The same four
factors are obtained as a suffix of y ∈ Y by choosing i and j properly. In the
proof of Lemma 7 it was shown that the 2-abelian equivalence class depends
on the number of factors aa, bb and either ab or ba if the prefix and suffix
are known. Similarly, for 3-abelian equivalence class the number of factors
aaa, bbb and the number of 3-letter factors containing aa or bb are significant.
Clearly, the total number of letters is necessary, too. Here parameters k and
l are chosen according to the numbers of factors aaa and bbb. Then m and
g are chosen according to the number of factors of length 3 containing aa
or bb and then the rest of the factors are of the form aba or bab which are
covered by choosing appropriate values for h, i and j.

We remark that if, for instance, k > 1 and l > 2 then all the possible
combinations in Lemma 8 give a representative for a different 3-abelian
equivalence class. This observation will be used when counting the number
of different 3-abelian equivalence classes. Before that we count the number of
the equivalence classes of 2-abelian words over a binary alphabet Σ = {a, b}.
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Example 9. If the length of a binary word is one then there exist two equiv-
alence classes a and b. If the length is two then there exist four equivalence
classes aa, ab, ba and bb.

Theorem 10. The number of 2-abelian equivalence classes consisting of
words of length n over a binary alphabet is n2 − n+ 2 and thus the number
is in Θ(n2).

Proof. As mentioned in Example 9 for n ∈ {1, 2} the claim holds. Consider
next the words of length n > 2 and containing k times the letter a and hence
letter b occurs n− k times.

We have a correspondence between the number of different letters and
the number of the equivalence classes. If the word contains only a’s or
b’s then the only classes are an or bn, respectively. If the word has one
occurrence of a (resp. b) and the rest are b’s (resp. a’s) then there exist
classes abn−1, babn−2 and bn−1a (resp. ban−1, aban−2 and an−1b). Otherwise
there exist at least two occurrences of both letters. Then all the possible
equivalence classes can be obtained by constituting the representatives like
in Lemma 7. There exist min(k,n−k) classes of words of the forms a . . . b and
b . . . a, min(k−1,n−k) classes of words of the form a . . . a and min(k,n−k−1)
classes of words of the form b . . . b. As a summary we have the following
correspondence:

number of a’s number of classes
k ∈ {0, n} ⇒ 1
k ∈ {1, n− 1} ⇒ 3
1 < k < n− 1 ⇒ 2min(k,n− k)+min(k − 1,n− k)+min(k,n− k − 1)

From these we obtain the number of the equivalence classes of words with
length n > 2:{

8 +
∑n−2

k=2(4min(k, n− k)− 1), if 2 - n
6 + 2n+

∑n
2 −1

k=2 (4min(k, n− k)− 1) +
∑n−2

k=n
2 +1(4min(k, n− k)− 1), if 2|n

By counting the given sums we get the stated number.

From the characterization of the equivalence classes of binary 3-abelian
words in Lemma 8 we can conclude that the number of the equivalence
classes in this case is Ω(n4).

Theorem 11. The number of 3-abelian equivalence classes consisting of
words of length n over a binary alphabet is in Ω(n4).

Proof. We have five independent variables, k, l,m, g and h in the character-
ization of 3-abelian equivalence classes. As mentioned if we restrict k > 1
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and l > 2, each combination of these five values gives a different equivalence
class. By fixing the length of the words to be n we obtain a relation

k + l + 4m+ 3g + 2h+ α = n,

where α ∈ {2, 3, 4} depending on i and j. We may restrict to analyze words
long enough and to subsets of the equivalence classes without affecting the
order of result. Hence the equation can be modified to the form:

12k′ + 12l′ + 4(3m′) + 3(4g′) + 2(6h′) = 12n′.

Now we may count the number of solutions of equation
∑5

i=1 xi = N , where
xi > 0 for all i ∈ {1, . . . , 5} and N is fixed. The number of solutions is
in Θ(N4) which implies that the number of 3-abelian equivalence classes of
words of length n is in Ω(n4).

Contrary to the 2-abelian case the exact formula for the number of the
3-abelian equivalence classes is not a polynomial, which can be noted by
checking few instances of n. In general, in a fixed but arbitrary alphabet
the number of k-abelian equivalence classes of words of length n grows poly-
nomially in n but the degree of the polynomial increases exponentially in
k. For example, over a binary alphabet the number of 4-abelian equivalence
classes consisting of words of length n is already Θ(n8). In fact, over a binary
alphabet the number of k-abelian equivalence classes of words of length n is
Θ(n2

k−1
) which can be concluded from the following result proved in [59].

Theorem 12 ([59]). Let k ≥ 1 and m ≥ 2 be fixed numbers and let Σ be
an m-letter alphabet. The number of k-abelian equivalence classes of Σn is
Θ(nm

k−mk−1
).

The proof of this theorem generalizes the idea of the proof of Theorem
11 and it is based on counting the number of different functions related on
words. The values of these functions depends on the number of factors of
length k in the word. We will not give the entire proof but we will introduce
some notions and one lemma that are used in the proof. We will use these
same tools later in this chapter.

Let s1, s2 ∈ Σk−1 and let

S(s1, s2, n) = Σn ∩ s1Σ∗ ∩ Σ∗s2

be the set of words of length n that start with s1 and end with s2. For every
word u ∈ S(s1, s2, n) we can define a function

fu : Σk → {0, . . . , n− k + 1}, fu(t) = |u|t.

If u, v ∈ S(s1, s2, n), then u ∼k v if and only if fu = fv.
On the other hand, if a function f : Σk → N0 is given, then a directed

multigraph Gf can be defined as follows:
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• The set of vertices is Σk−1.

• If t = s1a = bs2, where a, b ∈ Σ, then there are f(t) edges from s1 to
s2.

If f = fu, then this multigraph is related to the Rauzy graph of u. In a Rauzy
graph of order n the set of vertices is a set of words of length n such that for
each word x1x2 · · ·xn in the set there also exist words y0x1x2 · · ·xn−1 and
x2x3 · · ·xnyn+1 in the set for some letters y0 and yn+1. A Rauzy graph is a
directed graph and there exists an edge (x, y) from x to y if x = x1x2 · · ·xn
and y = x2x3 · · ·xnyn+1.

In the following lemma deg− denotes the indegree, i.e., the number of
incoming edges and deg+ the outdegree, i.e., the number of outgoing edges
of a vertex in Gf .

Lemma 13 ([59]). For a function f : Σk → N0 and words s1, s2 ∈ Σk−1,
the following are equivalent:

(i) there is a number n and a word u ∈ S(s1, s2, n) such that f = fu,

(ii) there is an Eulerian path from s1 to s2 in Gf ,

(iii) the underlying graph of Gf is connected, except possibly for some iso-
lated vertices, and deg−(s) = deg+(s) for every vertex s, except that if
s1 ̸= s2, then deg−(s1) = deg+(s1)− 1 and deg−(s2) = deg+(s2) + 1,

(iv) the underlying graph of Gf is connected, except possibly for some iso-
lated vertices, and ∑

a∈Σ
f(as) =

∑
a∈Σ

f(sa) + cs

for all s ∈ Σk−1, where

cs =


−1, if s = s1 ̸= s2,

1, if s = s2 ̸= s1,

0, otherwise.

Proof. (i) ⇔ (ii): u = a1 . . . an ∈ S(s1, s2, n) and f = fu if and only if

s1 = a1 . . . ak−1 → a2 . . . ak → · · · → an−k+2 . . . an = s2

is an Eulerian path in Gf .
(ii) ⇔ (iii): This is well known.
(iii) ⇔ (iv): (iv) is just a reformulation of (iii) in terms of the function f .
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Up to this point we have considered the number of different k-abelian
equivalence classes but we can also examine the sizes of these equivalence
classes. Here is an example of the number of binary words in a 2-abelian
equivalence class depending on the number of different factors. The results
were originally published in [51], but there were a few misprints so these are
discussed more closely here.

Example 14. We count first the number of binary words that begin with
a, end with b and belong to one 2-abelian equivalence class. As mentioned
in the proof of Lemma 7 the number of factors ab and ba are dependent on
each other. So let the number of factors aa, ab, ba and bb be k, l, (l−1) and
m, respectively. Then the equivalence class contains

(
k+l−1

k

)(
l+m−1

m

)
such

words. The binomial coefficient
(
k+l−1

k

)
refers to the number of choices for

the positions of factors aa. There are l factors of ab so there are l positions
with respect to these ab factors and the number of factors aa to place into
these l positions is k. Similarly,

(
l+m−1

m

)
refers to the number of choices for

the positions of factors bb.

Next we consider binary words that begin and end with the same latter a.
Let the number of factors aa, ab, ba and bb be k, l, l andm, respectively. Now
there are

(
k+l
k

)(
l+m−1

m

)
words in this 2-abelian equivalence class. Because the

word begins and ends with a there are k + 1 positions on which the factors
aa can be placed. Results for 2-abelian equivalence classes containing words
beginning with b are similar and these cases cover all the possible 2-abelian
words over binary alphabet.

Example 15. Consider 2-abelian words over a binary alphabet {a, b}. The
following 2-abelian equivalence classes are such that they contain the short-
est words so that the size of the class is more than one: {aaba, abaa} and
{babb, bbab}. For words of length 5 there exist 2-abelian equivalence classes
that has 3 elements: {aaaba, aabaa, abaaa} and {babbb, bbabb, bbbab}. With
the formulas given in the previous Example 14 we can count as an example
the cases for which k = 3, l = 2 and m = 1. Let us first consider the num-
ber of words a · · · b with the given values of k, l and m. Now the length of
the words is 8 and there exist 8 words in the class, namely a4bab2, a3ba2b2,
a2ba3b2, aba4b2, a4b2ab, a3b2a2b, a2b2a3b and ab2a4b. The words of the form
a · · · a with the same values of k, l and m contain 9 letters and then there
exist already 20 words in the class.

2.3 Avoidability questions

In this section we study the avoidability questions with respect to k-abelian
equivalence. We ask what are the sizes of the smallest alphabets in which
k-abelian squares and cubes can be avoided. These questions are natural
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problems with respect to earlier studies. Because k-abelian equivalence lies
properly between equality and abelian equality we can first concentrate on
the known results for avoiding squares, cubes, abelian squares and abelian
cubes. Squares are avoidable over ternary alphabets, see e.g. [68], but
the maximal length of a ternary word avoiding abelian squares can be eas-
ily checked to be seven. It is known, although that is not easy to prove,
that there exists an infinite word over a 4-letter alphabet avoiding abelian
squares, see [62]. These results indicate that for k-abelian squares the avoid-
ability is obtained either in a alphabet of size three or four.

It is also known that cubes are avoidable over a binary alphabet, for
example the infinite word of Thue-Morse accomplishes this property, see
[68]. On the other hand, it is easy to see that abelian cubes are not avoidable
over a binary alphabet. Dekking has shown that abelian cubes are avoidable
over a ternary alphabet, see [27]. So k-abelian cubes can be avoided over
an alphabet of size two or three. The problem could also be considered in
other way round. Dekking has also proved that repetitions of fourth order
are avoidable over a binary alphabet, see [27]. Thus the order of k-abelian
repetition that can be avoided over a binary alphabet is either three or four.

The next Table 2.1 summarizes the given results and tells the limits for
our k-abelian avoidability problems. We may suppose that k > 1 because
≡1 means the abelian equivalence ≡a.

Avoidability of squares Avoidability of cubes

type of rep. type of rep.
size of the alph. = ≡k ≡a size of the alph. = ≡k ≡a

2 − − − 2 + ? −
3 + ? − 3 + + +

4 + + +

Table 2.1: Avoidability of different types of repetitions in infinite words.

For convenience, we appoint our general main problems of this chapter
so that we may refer to those later.

Problem 1. Does there exist an infinite ternary word that would avoid k-
abelian squares for some k ≥ 2?

Problem 2. Does there exist an infinite binary word that would avoid k-
abelian cubes for some k ≥ 2?

If the answer for one of these questions is positive, then the natural
additional question is what is the smallest value of k for which the property
holds. We start to study these main problems from the case k = 2 and we
will notice that the problems are not trivial, even in this case.
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To examine the existence of an infinite ternary word that would avoid 2-
abelian squares we executed a computer program. The program was written
down by Java and it can be easily obtained by simplifying the script for
producing ternary 3-abelian square-free words. This is given in Appendix
B. Some remarks of the code are explained in the end of Section 2.3.2 in
which other computational results are presented, too. The basic idea of the
code is to generate in a lexicographic order longer and longer words avoiding
2-abelian squares. Once the program has generated a word that contains a
2-abelian square it traces back to the next 2-abelian square-free word in a
lexicographic order and continues the search of a longer such word.

The result we obtained was that the maximal length of a 2-abelian
square-free word is 537 letters and each of the longer words over the ternary
alphabet contains a 2-abelian square. This word is unique up to the permu-
tations of the alphabet and it is given in Example 17. With the earlier results
mentioned above this shows that the alphabet to avoid 2-abelian squares
have to contain at least four letters, and as mentioned that is enough. So
the behaviour of avoidance of 2-abelian squares is similar to the avoidance
of abelian squares.

Theorem 16. The size of the smallest alphabet in which 2-abelian squares
can be avoided is 4.

Example 17. The word of length 537 over a ternary alphabet Σ = {a, b, c}
that avoids 2-abelian squares:

abcbabcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbabcacbcabcba
bcabacbabcbacbcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacab
acbcabacabcacbcabcbacbcacbacabacbabcbacbcacbabcacbcabcbabcabacbabcbacb
cacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacabacbcabacabcacb
cabcbabcabacabcacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbca
cbabcacbcabcbabcabacabcacbcabcbacbcacbacabacbcabacabcacbcabcbabcabacab
cacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbcacbabcacbcabcba
bcabacabcacbacabacbabcbacabcbabcabacabcacbabcba.

The result of our computer program was verified by an independent
computer program by Aleksi Saarela. The original program was also tested
to recognize 2-abelian squares in words that were manually given to it and
known to contain a 2-abelian square.

Although, the most of the earlier results on avoiding repetitions and
abelian repetitions are obtained by iterating a suitable morphism and show-
ing that the generated word does not contain the repetition, the next exam-
ple shows that the method of iterating a morphism might not give answers
to problems on k-abelian repetitions.
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Example 18. In each of the following cases a 2-abelian cube is found fairly
early from the beginning. The infinite words that are obtained by iterating
a morphism are known to avoid some repetitions. Most of the words in this
example can be found in [4] and for the rest of the words the references are
given separately.

• Infinite overlap-free Thue-Morse word (by iterating the morphism:

0 → 01, 1 → 10): 01
︷ ︸︸ ︷
101001

︷ ︸︸ ︷
100101

︷ ︸︸ ︷
101001 011...

• Cube-free infinite word (by iterating the morphism: 0 → 001, 1 →
011): 001001

︷ ︸︸ ︷
011001

︷ ︸︸ ︷
001011

︷ ︸︸ ︷
001011 011...

• Morphism 0 → 001011, 1 → 001101, 2 → 011001 maps ternary
cube-free words to binary cube-free words, see [10], but 001011 ≡a,2

001101 ≡a,2 011001, thus images of all words mapped with this mor-
phism contains 2-abelian cubes.

• A binary overlap-free word w can also be gained in form w = c0c1c2 . . .,
where cn means the number of zeros (mod 2) in the binary expansion
of n. Again, a 2-abelian cube of length 6 begins as early as from the

fifth letter: w = 0010
︷ ︸︸ ︷
011010

︷ ︸︸ ︷
010110

︷ ︸︸ ︷
011010 011...

• A binary sequence called Kolakoski sequence is cube-free, see [15] and

[66], but not 2-abelian cube-free: 122
︷ ︸︸ ︷
112122

︷ ︸︸ ︷
122112

︷ ︸︸ ︷
112212 112... (It is

an open question whether the Kolakoski sequence is a morphic word.)

In the next theorems 21 and 22 we bring out some properties that the
infinite words generated by iterating a morphism have. These also support
the view that iterating a single morphism may not be a strong enough tool to
produce infinite words avoiding k-abelian repetitions. To prove the theorems
we give first two lemmas, the latter being just an extension of the former.
For the clarity, we prove this special case first. In these lemmas a 1-free
morphism means a morphism that maps each letter to a word that has
length at least two.

Lemma 19. Let h be a 1-free morphism over an alphabet Σ and let w be a
word over Σ. Let n = min {|h(a)| : a ∈ Σ}, i.e. n ≥ 2. If w has 2-abelian
equivalent factors u and v then the word h(w) has (n+1)-abelian equivalent
factors h(u) and h(v).

Proof. Clearly, h(u) and h(v) are factors of h(w). Let pref1(u) = pref1(v) =
x and suf1(u) = suf1(v) = y for some x, y ∈ Σ. Now h(x) is a prefix of h(u)
and h(v) and similarly h(y) is a suffix of h(u) and h(v) where |h(x)|, |h(y)| ≥
n. Thus the first condition of Definition 1 of k-abelian equivalent words
holds.
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Each factor of length (n + 1) in h(u) (or h(v)) is contained in a factor
h(st) where st is a factor of u (or v) and s, t ∈ Σ. This follows from the
choice of n. In fact, a factor of length (n + 1) may be already contained
in to an image of a single letter. In any case, words u and v are 2-abelian
equivalent words and thus abelian equivalent, too. So words u and v have
the same number of each letter and the same number of each factor of length
two, respectively. Thus the words h(u) and h(v) have the same number of
factors h(s) for each s ∈ Σ and h(st) for each s, t ∈ Σ. From this we can
conclude that the words h(u) and h(v) have the same number of occurrences
of each factor of length (n+1). Now the second condition of Definition 1 of
k-abelian equivalent words is also satisfied which completes the proof.

Now we generalize the previous lemma by taking k-abelian factors as a
starting point.

Lemma 20. Let h be a 1-free morphism over an alphabet Σ and let w be a
word over Σ. Let n = min {|h(a)| : a ∈ Σ}, i.e. n ≥ 2. If w has k-abelian
equivalent factors u and v then the word h(w) has ((k − 1)n + 1)-abelian
equivalent factors h(u) and h(v).

Proof. The idea of the proof is the same as in the proof of Lemma 19. Now
prefk−1(u) = prefk−1(v) and sufk−1(u) = sufk−1(v) ensuring h(u) and h(v)
to have a common prefix (resp. suffix) of length at least (k − 1)n.

Correspondingly, each factor of length ((k− 1)n+1) in h(u) (or h(v)) is
contained in a factor h(p) where p is a factor of u (or v) and |p| ≤ k. Because
the words u and v are k-abelian equivalent the numbers of each factor of
length at most k coincide in these words. From these it follows that h(u)
and h(v) have the same number of each factor of length ((k− 1)n+ 1), and
thus the words are ((k − 1)n+ 1)-abelian equivalent.

In the following theorems we assume h to be a prefix preserving mor-
phism over an alphabet Σ and a ∈ Σ to be such that h∞(a) is well defined.
Instead of requiring that min {|h(a)| : a ∈ Σ} > 1 we require the following
property:

∀a ∈ Σ ∃n > 0 : |hn(a)| > 1. (2.1)

Theorem 21. The following two conditions are equivalent:

1. The infinite word h∞(a) contains k-abelian repetition of order m for
some k ≥ 2.

2. The infinite word h∞(a) contains k-abelian repetition of order m for
each k ≥ 1.
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Proof. It is clear that the Condition 1 follows from 2 straightforwardly.
Let us prove that the first condition implies the second one. First of all,

if (2.1) holds we can choose n′ > 0 such that µ = min
{
|hn′

(a)| : a ∈ Σ
}
> 1

and let ĥ denote the morphism hn
′
. If a ∈ Σ is a letter for which h is

prolongable then ĥ∞(a) = h∞(a). Now we may apply Lemma 20 to the
morphism ĥ.

Let w = u1u2 · · ·um be a factor of h∞(a) such that words ui are k-abelian
equivalent words with each other, then the same holds for ĥ∞(a). Now
ĥ∞(a) = h∞(a) also contains the factor ĥ(w) = ĥ(u1)ĥ(u2) · · · ĥ(um). From
Lemma 20 we know that words ĥ(ui) are ((k − 1)µ + 1)-abelian equivalent
words with each other, and thus h∞(a) contains a ((k − 1)µ + 1)-abelian
repetition of order m. Now we can inductively apply Lemma 20 for the case
h∞(a) having a ((k − 1)µ + 1)-abelian repetition of order m. It gives us
that h∞(a) has a ((k − 1)µ2 + 1)-abelian repetition of order m. Finally, we
can conclude that h∞(a) has a ((k− 1)µi +1)-abelian repetition of order m
for each i ∈ N. In addition, from Lemma 5 we know that h∞(a) contains
k′-abelian repetition of order m for each 1 ≤ k′ ≤ (k − 1)ni + 1, too. Thus
the infinite word h∞(a) contains k-abelian repetition of order m for each
k ≥ 1.

We can also formalize the previous Theorem 21 in the context of k-
abelian avoidability.

Theorem 22. The following two conditions are equivalent:

1. The infinite word h∞(a) is k-abelian m-free for some k ≥ 1.

2. The infinite word h∞(a) is k-abelian m-free for each k ≥ 2.

Proof. Follows from Theorem 21.

Next we mention a few consequences of the above. We remark that h
was chosen to be a prefix preserving morphism so that h∞(a) is well defined
and ∀a ∈ Σ ∃n > 0 : |hn(a)| > 1. Let H be the set of morphisms satisfying
these conditions.

Remark 23. If each infinite binary word contained 2-abelian cube then
from Theorem 21 would follow that for each h ∈ H over binary alphabet
h∞(a) would contain k-abelian cube for all k ≥ 1. This means that if there
exists a binary morphism h ∈ H such that h∞(a) is k-abelian cube-free
for some k ≥ 2 then there exists an infinite 2-abelian cube-free word over
binary alphabet. The same result can be concluded straightforwardly from
Theorem 22. On the other hand, there exists a 2-uniform prefix preserving
morphism over two letter alphabet generating a cube-free binary word, for
example Thue-Morse word. However, Thue-Morse word contains 2-abelian
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cube as shown in Example 18, and thus from Theorem 21 it follows that this
word is not k-abelian cube-free for any k ≥ 1.

Remark 24. We will show later in Theorem 38 that we can construct, for
example, an infinite binary 8-abelian cube-free word as a morphic image of
an infinite word generated by iterating a uniform morphism. It is easy to see
that this word contains 2-abelian cube as a factor, which implies by Theorem
22 that the word cannot be obtained by iterating a binary morphism h ∈ H.
This also shows how we can use our theorems for deciding whether some
infinite word can be obtained by iterating a single morphism h ∈ H.

Now we can combine the results of Theorem 21 and Theorem 16 to once
again point out the difficulties we have with words generated by iterating a
morphism.

Remark 25. Theorem 16 shows that each infinite word over three letter
alphabet contains a 2-abelian square. From Theorem 21 it follows that for
each h ∈ H over ternary alphabet h∞(a) contains k-abelian square for all
k ≥ 1. This means that k-abelian square-free word over ternary alphabet
cannot be generated by iterating a morphism h ∈ H over ternary alphabet
for any k ≥ 1. Later in the next subsection 2.3.1 we will show that, in
fact, k-abelian squares are not avoidable over any pure morphic word for
any k ≥ 1. On the other hand, there exists a 13-uniform prefix preserving
morphism over three letter alphabet generating a square-free ternary word,
see [65] but as mentioned this word can not be k-abelian square-free for any
k ≥ 1.

2.3.1 Unavoidability of k-abelian squares in ternary pure
morphic words

In this section we concentrate on k-abelian square-freeness and continue dis-
cussing pure morphic words. The question whether pure morphic words can
avoid k-abelian squares over ternary alphabets is challenging and reasonable.
For example, Thue already showed that there exists an infinite pure mor-
phic square-free word over ternary alphabet, see [92]. In addition, we have
a strong evidence that an infinite ternary 3-abelian square-free word would
exist. Our discoveries of the numerical evidence are presented in Section
2.3.2 which concentrates on our computational results.

Actually, in a recent manuscript by Michaël Rao [87] the existence of an
infinite ternary 3-abelian square-free word is managed to be proved. This
word is obtained as a morphic image of a pure morphic word. So the word
is morphic but not pure morphic, as discussed later. Although, iterated
morphisms constitute a common tool in avoidability questions, there also
exist patterns in the ordinary word case that can be avoided in binary words
but not in words produced by only iterating a morphism, as introduced next.
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Cassaigne has given a classification of binary patterns with respect to
avoidability in binary words, in binary pure morphic words and in ternary
pure morphic words, [18]. The patterns α2β2α, αβα2β and αβα2βα are such
that they can be avoided over a binary alphabet, but not in infinite binary
pure morphic words. Similarly, we will show that 3-abelian squares can be
avoided over a ternary alphabet but not in infinite ternary pure morphic
words. A related well-known example is given by the famous (cube-free)
Kolakoski word: it is not pure morphic [23], but it is unknown whether
it is morphic. Indeed, it is not known whether its subword complexity is
quadratic, as would be in the case of a morphic word.

On the other hand, Currie has conjectured (see [24] and [69, Problem
3.1.5, p. 132]), that if a pattern p is avoidable on alphabet Σ, then there
exist an alphabet Σ′, two morphisms f : Σ′∗ → Σ∗ and g : Σ′∗ → Σ′∗ and
a letter a ∈ Σ′ such that the infinite word f(g∞(a)) avoids p. That is, p is
avoidable over morphic words. Based on our results and intuition we do not
dare to make a related conjecture for k-abelian repetitions, even in the case
where the pattern is an integer power.

Our proof of the following theorem showing that an infinite ternary k-
abelian square-free word cannot be obtained by iterating a single morphism
is divided into two parts. First we will prove the result for 3-abelian squares.
In the second part we will generalize the result for every k. A starting point
for this theorem is the result of Theorem 16, that is each infinite ternary
word contains a 2-abelian square. For binary words and 2-abelian cubes we
do not have a similar result. So we cannot use the same idea for proving
that an infinite binary k-abelian cube-free word could not be obtained by
iterating a single morphism. Indeed, this is an open question.

Theorem 26. Every ternary infinite pure morphic word contains a k-abelian
square for any k ≥ 1.

The proof for the case k = 3

We start by stating few lemmas which cover some special cases. Combining
these results we are able to conclude our avoidability result for 3-abelian
squares. Let h be such a prefix preserving morphism over Σ = {a, b, c} that
it is prolongable for a and let h∞(a) = w. If w is k-abelian square-free
then at least one letter has to map to a letter as a consequence of Theorem
21. On the other hand, by Lemma 28 we will show that at most one letter
may map to a letter. We continue by remarking that an infinite ternary
k-abelian square-free word, in fact a word avoiding ordinary word squares,
has to contain each possible factor of length two except aa, bb and cc.

Lemma 27. Each word of length ≥ 14 over an alphabet {a, b, c} contains a
square if some of the factors ab, ac, ba, bc, ca or cb do not belong to the
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set of the factors of w, i.e., to the set F (w).

Proof. Assume that ab /∈ F (w). The other cases are symmetric. It is easy
to check that bcbacbcacbaca is the longest word avoiding ab and squares.

By using Lemma 27 we may prove the following:

Lemma 28. Let h be a morphism

h :


a 7→ aα

b 7→ x

c 7→ y

, where α ∈ Σ+ and x, y ∈ Σ.

Now h∞(a) = w contains a square.

Proof. If h(b) = a then h(ba) = aaα and by Lemma 27 ba as well as h(ba)
are factors of w. Similarly, the case h(c) = a gives a square.

If h(b) = b = h(c) then the image of the factor bc gives a square h(bc) = bb
and by Lemma 27 bc, h(bc) ∈ F (w). The case h(b) = c = h(c) is similar.

Now there are two cases left. First, if h(b) = c and h(c) = b then h2(b) =
b and h2(c) = c so without loss of generality it is enough to consider the case
h(b) = b and h(c) = c. If a−1h(a) = α ∈ {b, c}+ then a−1h∞(a) ∈ {b, c}ω
and the binary infinite word cannot be square-free. Thus we have to check
the case in which h(a) = aα1aα2, where α1 ∈ {b, c}+ and α2 ∈ {a, b, c}∗.
Now

a
h7→ aα1aα2

h7→ aα1aα2α1aα1aα2h(α2),

because h(α1) = α1 and thus h2(a) contains a square α1aα1a. This com-
pletes the proof.

Thus, if there exists a morphism h over a three letter alphabet Σ that
generates an infinite k-abelian square-free word it maps exactly one letter to
a letter and, in fact, it has to map the letter into itself. Otherwise |h2(a)| > 1
for all a ∈ Σ. Without loss of generality, we may assume that h(b) = b. By
Lemma 27 we may assume that the word contains the images of all the
factors of length two except aa, bb and cc. This way we can again restrict
the form of the morphism.

Lemma 29. If h is a prefix preserving morphism over the alphabet Σ =
{a, b, c} that generates an infinite k-abelian square-free word, it has to have
one of the following forms:

h :


a 7→ aαa
b 7→ b
c 7→ cγc

or h :


a 7→ aαc
b 7→ b
c 7→ aγc

, where α, γ ∈ Σ+.
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Proof. We already have that

h :


a 7→ aα′

b 7→ b

c 7→ γ′
, where α′, γ′ ∈ Σ+ and |γ′| ≥ 2.

We note that if a word avoids k-abelian squares it also avoids usual word
squares. Thus h(ab) = aα′b from which it follows that b cannot be a suffix
of α′. From h(cb) = γ′b and h(ca) = γ′aα′ it follows that c has to be a suffix
of γ′. In addition, b cannot be a prefix of γ′ because h(bc) = bγ′. Now we
have that h(a) = aαa or h(a) = aαc and h(c) = aγc or h(c) = cγc, where
α, γ ∈ Σ∗. By considering h(ac) we conclude that

h :


a 7→ aαa
b 7→ b
c 7→ cγc

or h :


a 7→ aαc
b 7→ b
c 7→ aγc

, where α, γ ∈ Σ∗.

If α = ϵ (for γ similarly) then h(a) = aa or h(a) = ac and both cases
lead to a square. In the latter case ca 7→ aγcac 7→ ach(γ)aγcacaγc. Thus
neither α nor γ can be the empty word which completes the proof.

Next we restrict to consider k-abelian square-freeness with k = 3.

Lemma 30. Consider the morphism

h :


a 7→ aαc
b 7→ b
c 7→ aγc

, where α, γ ∈ Σ+.

Now h∞(a) has a 3-abelian square.

Proof. Let h∞(a) = w and let us assume that it is square-free (otherwise
h∞(a) contains 3-abelian squares). As mentioned, each infinite ternary word
contains a 2-abelian square, especially u1u2 ∈ F (w) where u1 and u2 are 2-
abelian equivalent. We have that u1 ̸= u2 and thus |u1| > 3.

Each factor of length three of the word h(u1) (resp., for h(u2)) is a factor
of h(x1x2x3), where x1x2x3 is a factor of u1 and x1, x2, x3 ∈ Σ. In fact, the
only case where the image of two consecutive letters is not enough is the
case where x2 = b and we take the factor suf1(h(x1))h(x2)pref1(h(x3)) = cba.
Thus the factors of length three of the word h(u1) are determined by the
factors of length two of the word u1 and the number of factors x1bx3 in u1
where x1, x3 ∈ {a, c}. Because u1 and u2 are 2-abelian equivalent now the
words h(u1) and h(u2) have the same occurrences of the factors of length
three.
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In addition, if pref1(u1) = b then pref2(h(u1)) = ba because bb cannot
be a prefix of u1 and in other cases |h(pref1(u1))| ≥ 3. Because pref1(u1) =
pref1(u2) we have that pref2(h(u1)) = pref2(h(u2)) and correspondingly,
suf2(h(u1)) = suf2(h(u2)). Now h(u1u2) ∈ F (w) and h(u1) and h(u2) are
3-abelian equivalent.

From the previous lemmas we have that if there exists a prefix preserv-
ing morphism over a three letter alphabet generating an infinite 3-abelian
square-free word it has to be of the following form:

h :


a 7→ aαa
b 7→ b
c 7→ cγc

, where α, γ ∈ Σ+.

With the following three lemmas we will show that the morphism above
always leads to a word containing 3-abelian square. For Lemmas 31, 32 and
33 let us denote h∞(a) = w.

Lemma 31. If aba, cbc ∈ F (w) then w contains a square.

Proof. Now h(aba) = aαabaαa and h(cbc) = cγcbcγc. This means that the
only non-trivial case is h(a) = aα′ca and h(c) = caγ′c where α′, γ′ ∈ Σ∗.
Now h(ac) = aα′cacaγ′c gives a square caca.

Thus we may restrict the word w not to contain the factor aba or cbc.
These cases are symmetric and it is enough to discuss the other one.

Lemma 32. If aba ∈ F (w) and cbc /∈ F (w) then w contains a square.

Proof. Now h(aba) = aαabaαa. By avoiding trivial squares this gives h(a) =
aca or h(a) = acα1ca where α1 ∈ Σ+. If h(a) = aca then h(ac) = acacγc
gives a square acac. Thus h(ac) = acα1cacγc and we may conclude that
h(a) = acα2bca and h(c) = cbγ1c where α2, γ1 ∈ Σ∗. The cases h(a) = acbca
and h(c) = cbc are not possible because cbc /∈ F (w). Further, h(ca) gives
h(a) = acbα3bca and h(c) = cbγ2bc where α3, γ2 ∈ Σ+. The assumption
cbc /∈ F (w) also gives that h(a) = acbaα4bca where α4 ∈ Σ∗. Now cba ∈
F (h(a)) ⊂ F (w) and h(cba) = cbγ2bcbacbaα4bca which contains the square
cbacba.

Now we know that w cannot have either aba or cbc as a factor.

Lemma 33. If aba, cbc /∈ F (w) then w contains a 3-abelian square.

Proof. By [91, 92, 6], the only infinite pure morphic square-free word over a
ternary alphabet avoiding aba and cbc is obtained by iterating a morphism

g :


a 7→ abc
b 7→ ac
c 7→ b

.
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Now g ∈ H and thus g∞(a) contains a 3-abelian square. In fact, already
g5(a) contains a 3-abelian square: g5(a) = ab cacbabcbacab︸ ︷︷ ︸ cacbacabcbab︸ ︷︷ ︸ . . . .

Consider now an erasing morphism (the one with c 7→ ϵ behaves simi-
larly)

e :


a 7→ aα
b 7→ ϵ
c 7→ γ

.

The word e∞(a) cannot contain aba as well as cbc because e(aba) = aαaα
and e(cbc) = γγ. Thus this case returns to the proof of Lemma 33 and, in
fact, the same argument can be used for general k-abelian case, too.

Now we are ready to state the first part of the result.

Lemma 34. Every ternary infinite pure morphic word contains a 3-abelian
square.

Proof. The proof is clear due to given lemmas. With lemmas 28, 29 and 30
we have restricted the form of the morphism that could produce an infinite
ternary 3-abelian square-free word and with lemmas 31, 32 and 33 we have
shown that the word obtained by iterating that kind of morphism always
contains a 3-abelian square.

The proof for the general case k ≥ 1

In this subsection we extend the result of Lemma 34 from 3-abelian squares
to arbitrary k-abelian squares. We start by a lemma.

Lemma 35. If a ternary infinite pure morphic word contains a (k − 1)-
abelian square for k > 3 then it contains a k-abelian square.

Proof. Consider a ternary prefix preserving morphism h and assume that
w = h∞(a) contains a (k−1)-abelian square, i.e., there exist (k−1)-abelian
equivalent words u1 and u2 such that u1u2 ∈ F (w). Assume to the contrary
that w is k-abelian square-free. From Lemma 29 it follows that we may
assume |h(a)|, |h(c)| ≥ 3 and h(b) = b.

Now every factor of length k in the word h(u1) (resp., h(u2)) is a factor of
h(v1) (resp., h(v2)) where v1 ∈ F (u1) and |v1| ≤

⌊
k−3
2

⌋
+ 3. This is because

if the word contains factors of which at most every other has length one and
all the others have length at least three we can reach at most

⌊
k−3
2

⌋
+ 3

factors with a subword of length k. For example, with a subword of length
11 we can reach at most 7 factors as depicted below.

. . .− ∗ −−− ∗ −−− ∗ −−− ∗ −︸ ︷︷ ︸−− ∗ − . . .
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Thus the factors of h(u1) (resp., h(u2)) of length k are determined by factors
of u1 (resp., u2) of length at most k−1 because k−1 ≥

⌊
k−3
2

⌋
+3 for k > 3.

We know that u1 and u2 are (k−1)-abelian equivalent thus h(u1) and h(u2)
have the same number of occurrences of different factors of length k.

In addition, from prefk−2(u1) = prefk−2(u2) it follows that prefk−1(h(u1))
= prefk−1(h(u2)). The suffixes of length k− 1 of the words h(u1) and h(u2)
coincide, too. This shows that h(u1) and h(u2) are k-abelian equivalent and
clearly h(u1)h(u2) ∈ F (w).

Now we have all the lemmas for the proof of Theorem 26 which general-
izes Lemma 34.

Proof for Theorem 26. Lemma 34 states the result for k = 3 and by Lemma
5 the claim holds also for 1 ≤ k ≤ 3. Now we can use Lemma 35 for the
case k = 4 and inductively prove the claim for k ≥ 4.

2.3.2 Computational results

We return to analyze our computational results more closely. We have al-
ready mentioned that the result of Theorem 16 was obtained by a computer
program. In this section we will describe the script which we used to find 2-
abelian cube-free words over a binary alphabet. The main idea is the same
as in the scripts used to find the finite limit for the length of ternary 2-
abelian square-free words and to produce long ternary 3-abelian square-free
words. Our observations based on computational tests have supported the
conjectures that 3-abelian squares would be avoidable over ternary alpha-
bets as well as 2-abelian cubes would be avoidable over binary alphabets.
Later these both conjectures have been shown to be true by Michaël Rao in
[87]. Rao also used the computer checking as a tool for the results.

We will first examine the tests made for Problem 1, i.e., tests for 2- and
3-abelian square-freeness over a ternary alphabet. Then we will show the
results from tests made for Problem 2, i.e., tests for 2-abelian cube-freeness
over a binary alphabet. The codes for generating binary 2-abelian cube-free
words and ternary 3-abelian square-free words are given in Appendices A
and B as examples of the used scripts. Explanations for the codes are given
in the end of this section.

After we had obtained the bound 537 for the length of 2-abelian square-
free words we constructed each of these shorter ternary 2-abelian square-free
words. We analyzed the number of such words for each of the lengths from
1 to 537, respectively. The sizes of the sets containing ternary 2-abelian
square-free words are shown in Figure 2.1. There exist 404 286 words of
length 105 and this is the biggest set. The number of words grows mono-
tonically from the length 1 up to 103 and the corresponding numbers of
words are 3 and 403 344. After the length 103 the behaviour of the number
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Figure 2.1: The number of ternary 2-abelian square-free words with respect
to their lengths.

of words turns out to be strange. There exist surprising peaks and valleys
and we do not have an explanation for that. It is also worth to note that
it is not typical to have a word longer than 500 letters that would avoid
a pattern but not to be able to construct such an infinite word. Another
similarly computationally a bit surprising result was found in paper [51].
There it was shown that all the factors of length 24 of an infinite binary
word may have the form ux1x2v where |u| = |v| and x1 ≡2 x2 without im-
plying the periodicity for the infinite word. These both examples emphasize
the unpredictable behaviour of k-abelian repetitions and the computational
challenges the notion may lead to.

We used the same technique to produce longer and longer 3-abelian
square-free ternary words in a lexicographic order as we had used to pro-
duce 2-abelian square-free words (see Appendix B). Now we obtained words
containing more than 100 000 letters and the numbers of 3-abelian square-
free words over a ternary alphabet seem to grow exponentially, at least for
small values of n, see Figure 2.2.

The results for words avoiding 2-abelian cubes over a binary alphabet
resembles the computations done for the ternary alphabet and 3-abelian
square-free words. We were able to construct a binary word of more than
100 000 letters that still avoids 2-abelian cubes. Again we can search for
the numbers of binary 2-abelian cube-free words of different lengths. The
numbers of such words with lengths from 1 to 60 grow approximately with a
factor 1.3 at each increment of the length, see Figure 2.3. So that the number
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Figure 2.2: The number of ternary 3-abelian square-free words with respect
to their lengths.
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Figure 2.3: The number of binary 2-abelian cube-free words with respect to
their lengths.
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of binary 2-abelian cube-free words of length 60 is already 478 456 030.
Another remark is that there exist more binary 2-abelian cube-free words
(254) than ternary 2-abelian square-free words (240) already for length 12.

We have now counted the numbers of ternary 2- and 3-abelian square-free
words and binary 2-abelian cube-free words. For comparison, the number
of ordinary ternary square-free words of length n is listed as a sequence
(A006156) in The On-Line Encyclopedia of Integer Sequences (OEIS) [82]
and the number of binary cube-free words of length n is listed as a sequence
(A028445). For the three other k-abelian cases presented above there cannot
be found a corresponding sequence from OEIS. The numbers of binary 2-
abelian cube-free and ordinary cube-free words coincide for the words up to
17 letters. Over a ternary alphabet and for square-free words and 2-abelian
square-free words or 3-abelian square-free words the numbers coincide up to
words of 11 letters or 23 letters, respectively.

We also chose some binary 2-abelian cube-free prefixes and counted the
numbers of binary 2-abelian cube-free words having these fixed prefixes. In
this way we can check how many suitable extensions the chosen 2-abelian
cube-free word has. As a result, we found examples of binary 2-abelian cube-
free words with the property that the number of their extensions again grows
approximately with a factor 1.3 when increasing the length of extensions by
one. In Figure 2.4 this is done for a fixed prefix of length 2000.

These results were starting points for the searching of infinite words
that would avoid 3-abelian squares and 2-abelian cubes. The results we
have proved in this thesis up to this point have been unavoidability results.
In the next section we will introduce the first avoidability results concerning
k-abelian square- and cube-freeness. Before that we will explain a few details
of attaining our computational results.

The code for generating 2-abelian cube-free words over a binary alpha-
bet {0, 1} is presented in Appendix A. The structure of the code is quite
straightforward and it is guaranteed that the execution of the code ends in
some point. User sets a limit for the length of words that will be generated.
The execution ends when this length is obtained, at the latest. It also ends if
there does not exist any new 2-abelian cube-free word. The idea is to build
up longer and longer words in lexicographic order and check whether they
are 2-abelian cube-free. If the word does not contain 2-abelian cube then we
increase the length by one. If the word contains a 2-abelian cube then we go
backwards and continue with the next possible word in lexicographic order.
The 2-abelian cube-freeness is checked by comparing the first and the last
letters and the numbers of factors 00, 11, and the total number of factors
01 and 10. The number of factors 01 and the number of factors 10 are de-
pendent as mentioned in the proof of Lemma 7, so it is enough to count the
total number of those factors. All the other codes used for computational
results given in this section and in Theorem 16 have the same basic ideas.
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Figure 2.4: The number of binary 2-abelian cube-free words of lengths 2000-
2031 having a fixed prefix of length 2000.

The code for generating 3-abelian square-free words over a ternary al-
phabet {0, 1, 2} is presented in Appendix B. The structure of the code is
similar to the structure of the code in Appendix A. Now the code is a bit
more complicated because of the ternary alphabet and the 3-abelian equiv-
alence relation. To count the number of different factors of length 3 we have
to count the numbers of factors 010, 012, 020, 021, 101, 102, 120, 121, 201,
202, 210 and 212. The script for generating 2-abelian square-free words over
a ternary alphabet can be obtained easily by simplifying the script given
for the 3-abelian case. For 2-abelian case it is enough to count the numbers
of factors 01, 02, 10, 12, 20 and 21. So the most significant change is to
simplify factorcount(int beg, int end) to count the factors of length 2
instead of length 3. Also the lengths of the prefixes and suffixes, that have
to be checked, decrease from 2 to 1.

2.3.3 Avoidability results

This section deals with results in which an infinite word avoiding some k-
abelian repetitions can be proved to exist. We present the first positive
results for problems 1 and 2, i.e. for avoiding k-abelian squares over a
ternary alphabet and k-abelian cubes over a binary alphabet. The values
for k are 64 and 8 in these results, respectively. So we have a positive result
for both of the main questions. The extended versions of the problems ask
now what are the minimal values for k to achieve the avoidability. Aleksi
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Saarela and Robert Mercas have been able to decrease the value of k all
the way to 3 for k-abelian cube-freeness over a binary alphabet, see [77, 78].
Finally, in a manuscript by Michaël Rao [87] the avoidability was obtained
for 2-abelian cubes over a binary alphabet and for 3-abelian squares over
a ternary alphabet. These reveal the optimal values of k because we have
already shown that 2-abelian squares are not avoidable in infinite ternary
words.

We start by an example of a ternary square-free word. The technique we
use to prove that the given simple morphism generates a ternary square-free
word has some similarities with the technique we use to prove the results
in k-abelian case. The idea is that the form of the morphism restricts in
an obvious way the possible lengths of squares and gives an easy way to
determine the positions of some factors in the generated infinite word. The
next Example 36 and the following two theorems 37 and 38 were established
originally in the paper [50]. Actually, Saarela was responsible for these
discoveries and the results are given here for self-containedness.

Example 36. Consider the morphism

g :


a 7→ abcbacbcabcba

b 7→ bcacbacabcacb

c 7→ cabacbabcabac

.

Let

t = g∞(a) =
∞∏
i=1

xisi,

where xi ∈ {a, b, c}, xisi = g(xi) and, moreover,

t = g−1(t) = x1x2 . . . . (2.2)

It was proved by Leech [65] that the infinite word t is square-free. The words
g(a), g(b) and g(c) have equal length, are palindromes and can be obtained
from each other by cyclically permuting the three letters. The morphism g
is the simplest square-free morphism with these symmetry properties, but
there are shorter uniform morphisms that are square-free [93].

To prove the square-freeness there are few details that need to be checked
first: it must be verified that t does not contain a square of a word of length
less than eight, and that the starting position of every factor of length eight
is uniquely determined modulo |g(a)| = 13. These two conditions can be
checked mechanically.

Now, assume that t contains the shortest square u1u2 with u1 = u2 = u.
Then |u| ≥ 8. If |u| would not be divisible by 13, then the prefixes of u1
and u2 of length eight would be in different positions modulo 13, and hence
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they would be different. So |u| must be divisible by 13. Denote by vi, for
i = 1, 2, the scattered subword of ui formed by the occurrences of xj in ui.
Since |u| is divisible by 13, necessarily v1 = v2, and hence by (2.2) t contains
a shorter square v1v2, which is a contradiction.

It is clear that t has a repetition of order 15/8. For instance, g(aba)
contains the factor ag(b)a = abcacbacabcacba. In fact, the proof above can
be modified to show that there are no higher powers.

Now we move on to study k-abelian repetitions. First we will show
that 8-abelian cubes can be avoided over a two-letter alphabet. It is known
that abelian squares can be avoided over a 4-letter alphabet, see [62]. We
show that starting from such a square-free word over a 4-letter alphabet
and mapping it to an infinite binary word with a uniform morphism we can
produce an infinite 8-abelian cube-free word over a binary alphabet.

We need the following notation. If u = a0 . . . an−1, where ai are letters
and 0 ≤ i ≤ j ≤ n, then we let u[i : j] = ai . . . aj .

Theorem 37. Let w ∈ {0, 1, 2, 3}ω be an abelian square-free word. Let k ≤ n
and h : {0, 1, 2, 3}∗ → {0, 1}∗ be an n-uniform morphism that satisfies the
following conditions:

1. if u ∈ {0, 1, 2, 3}4 is square-free, then h(u) is k-abelian cube-free,

2. if u ∈ {0, 1, 2, 3}∗ and v is a factor of h(u) of length 2k−2, then every
occurrence of v in h(u) has the same starting position modulo n,

3. there is a number i such that 0 ≤ i ≤ n−k and for at least three letters
x ∈ {0, 1, 2, 3}, v = h(x)[i : i+ k − 1] satisfies |h(u)|v = |u|x for every
u ∈ {0, 1, 2, 3}∗.

Then h(w) is k-abelian cube-free.

Proof. The first condition prohibits short k-abelian cubes in h(w). If h(w)
contained a k-abelian cube of length less than 3k, then this cube would be
a factor of h(u) for some u ∈ {0, 1, 2, 3}4, where u is a factor of w and thus
square-free.

The second condition restricts the length of every k-abelian cube in h(w)
to be divisible by 3n. If h(w) contained a k-abelian cube pqr, where |p| =
|q| = |r| = m ≥ k, then

p[m− k + 1 : m− 1] · q[0 : k − 2] = q[m− k + 1 : m− 1] · r[0 : k − 2].

and the starting positions of these factors would differ by m. Now m is
divisible by n showing that the length of every k-abelian cube in h(w) is
divisible by 3n.
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By using the third condition we show that a k-abelian cube in h(w)
would lead to an abelian square in w. Let a′a1 . . . asb

′b1 . . . bsc
′c1 . . . csd

′ be
a factor of w, where aj , bj , cj , a

′, b′, c′ ∈ {0, 1, 2, 3}, so that pqr is a k-abelian
cube in h(w) with

p = p1h(a1 . . . as)p2, q = q1h(b1 . . . bs)q2, r = r1h(c1 . . . cs)r2,

where p1 is a suffix of h(a′), p2q1 = h(b′), q2r1 = h(c′), r2 is a prefix of h(d′),
|p1| = |q1| = |r1| and |p2| = |q2| = |r2|. Let i be the number and a, b, c the
three letters in condition 3. Let |p| = m, |p2| = j and vx = h(x)[i : i+k− 1]
for x ∈ {a, b, c}. There are three cases.

If j ≤ i, then p2 is too short to contain vx and h(a′) contains vx if and
only if p1 contains vx for x ∈ {a, b, c}. Similarly for q2, h(b

′) and q1. This
gives by condition 3

|a′a1 . . . as|x = |h(a′a1 . . . as)|vx = |p|vx = |q|vx = |h(b′b1 . . . bs)|vx = |b′b1 . . . bs|x

for x ∈ {a, b, c}. Thus a′a1 . . . as and b′b1 . . . bs are abelian equivalent, which
contradicts the abelian square-freeness of w.

If j ≥ i+ k, then respectively

|a1 . . . asb′|x = |h(a1 . . . asb′)|vx
= |p|vx

= |q|vx = |h(b1 . . . bsc′)|vx
= |b1 . . . bsc′|x

for x ∈ {a, b, c}, so a1 . . . asb′ and b1 . . . bsc′ are abelian equivalent, which is
a contradiction.

If i < j < i + k, then any of p1, p2, q1 or q2 cannot contain vx for
x ∈ {a, b, c}, which gives

|a1 . . . as|x = |h(a1 . . . as)|vx = |p|vx = |q|vx = |h(b1 . . . bs)|vx = |b1 . . . bs|x

for x ∈ {a, b, c}. Further, vb′ is a factor of t = p[m−k+1 : m−1]q[0 : k−2]
and vc′ is a factor of q[m− k+1 : m− 1]r[0 : k− 2], which is the same word
as t. Now vb′ and vc′ have the same starting positions in t, so vb′ = vc′ , and
b′ = c′ by condition 3. Thus a1 . . . asb

′ and b1 . . . bsc
′ are abelian equivalent.

This contradiction completes the proof.

Now we can prove the existence of an infinite binary word which avoids
8-abelian cubes.

Theorem 38. Let w ∈ {0, 1, 2, 3}ω be an abelian square-free word. Let
h : {0, 1, 2, 3}∗ → {0, 1}∗ be the morphism defined by

h(0) = 00101 0 011001 0 01011,

h(1) = 00101 0 011001 1 01011,

h(2) = 00101 1 011001 0 01011,

h(3) = 00101 1 011001 1 01011.

Then h(w) is 8-abelian cube-free.
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Proof. Condition 1 of Theorem 37 is satisfied for k ≥ 4.
Condition 2 of Theorem 37 is satisfied for k ≥ 6.
Condition 3 of Theorem 37 is satisfied for k = 8 and i = 5. The three

letters are 0, 1 and 3, and the corresponding factors are 00110010, 00110011
and 10110011.

The claim now follows from Theorem 37.

The satisfiability of the three conditions in the previous proof can be
easily checked by computer as well as by paper and pencil. We remark that
for the case k = 2 the requirements of the last condition are too strict because
there exist only four different binary words of length 2. Thus Theorem 37
cannot be applied for the case k = 2.

Next we will introduce the first affirmative result of avoiding k-abelian
squares over a ternary alphabet. We have already shown in Theorem 26 that
this word cannot be pure morphic. The word we will construct is a morphic
word, i.e., a morphic image of a pure morphic word like the 8-abelian cube-
free word in Theorem 38. In addition, the pure morphic word which is used
as a starting point can be chosen to be the same word introduced by Keränen
in [62]. This infinite abelian square-free word is obtained by iterating an 85-
uniform morphism over a four letter alphabet. The other morphism we will
use is defined by Badkobeh and Crochemore in [5]. For convenience, we will
denote that morphism from {a, b, c, d}∗ into {0, 1, 2}∗ by g. The morphism
g is defined as follows:



a 7→ 0102101202102010210121020120210120102120121020120210121

0212010210121020102120121020120210121020102101202102012

10212010210121020120210120102120121020102101210212,

b 7→ 0102101202102010210121020120210120102120121020120210121

0201021012021020121021201021012102010212012102012021012

10212010210121020120210120102120121020102101210212,

c 7→ 0102101202102010210121020120210120102120121020102101202

1020121021201021012102010212012102012021012102010210120

21020102120121020120210120102120121020102101210212,

d 7→ 0102101202102010210121020120210120102120121020102101202

1020102120121020120210121020102101202102012102120102101

21020102120121020120210120102120121020102101210212.

Badkobeh and Crochemore proved the following result for g in [5]:

Theorem 39 ([5]). The morphism g translates any infinite 7/5+-free word
on the alphabet {a, b, c, d} into a 7/4+-free ternary word containing only two
7/4-powers.
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Before stating Theorem 42 we will define a few notions for the proof of
it. An identifying factor, an identifying prefix and an identifying suffix are
all defined with respect to a morphism.

Definition 40. An identifying factor with respect to a morphism h : Σ∗
0 →

Σ∗
1 is such a factor f ∈ Σ+

1 that

(a) there exists a unique a ∈ Σ0 such that f ∈ F (h(a)), and

(b) for this a, |h(w)|f = |w|a · |h(a)|f for all w ∈ Σ∗
0.

An identifying prefix with respect to a morphism h : Σ∗
0 → Σ∗

1 is such a prefix
p ∈ Σ+

1 of some word h(i) where i ∈ Σ0 that

(a) there exists a unique a ∈ Σ0 such that p ∈ pref(h(a)), and

(b) for this a, |h(w)|p = |w|a for all w ∈ Σ∗
0.

An identifying suffix is defined correspondingly.

These identifying objects with respect to a morphism h : Σ∗
0 → Σ∗

1 can be
used to track down properties of a word w ∈ Σ∗

0 by analysing the factors of
the word h(w). If h(a) for some a ∈ Σ0 contains an identifying factor f then
we can find out |w|a by counting |h(w)|f and |h(a)|f . Identifying prefixes
and suffixes can be used to locate letters in w. We give a short example to
illustrate these notions and to show how we will use them.

Example 41. Let h : {a, b, c}∗ → {a, b, c}∗ be a morphism defined by
a 7→ abcab,

b 7→ bcb,

c 7→ cacb.

Now the six shortest identifying factors with respect to h are ab, ac, acb, bcb,
cab and cac. From these six factors ab and ac are not identifying prefixes or
suffixes but cac is an identifying prefix, acb and cab are identifying suffixes
and bcb is both an identifying prefix and an identifying suffix. Consider a
word w′ = bcbabcabcacbabcab which is obtained by taking a h-morphic image
of some word w over an alphabet {a, b, c}. By counting the occurrences of
the identifying factor ab in the word w′ we can determine that w contains
the letter a twice. Because ab is not an identifying prefix or suffix we can
not locate the positions of these a’s by looking for the positions of ab’s in
w′. Instead, cab is an identifying suffix related to h(a) and we can determine
that w′ = bcbh(a)cacbh(a). By continuing analysis with identifying prefixes
bcb and cac we can find out that w = baca.
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We remind also the meaning of a synchronizing morphism. A morphism
h : Σ∗ → Σ′∗ is said to be synchronizing if for all letters a, b, c ∈ Σ and
words l, r ∈ Σ′∗ from h(ab) = lh(c)r it follows that either l = ϵ and a = c or
r = ϵ and b = c.

Theorem 42. Let Ω ∈ {a, b, c, d}ω be an infinite abelian square-free word
and g : {a, b, c, d}∗ → {0, 1, 2}∗ the morphism introduced on the page 39.
The infinite word ω = g(Ω) over {0, 1, 2} is 64-abelian square-free.

Proof. First, we make some remarks about the morphism g and the word
Ω. First of all, the word Ω exists and for example, the word constructed
by Keränen could be chosen to be Ω. The morphism g is 160-uniform and
synchronizing. It is of the form

g :


a 7→ uvαyz

b 7→ uvβyz

c 7→ uwγxz

d 7→ uwδxz

, where

{
|u| = 47, |z| = 40, |v| = |x| = 10, |w| = |y| = 13,

|α| = |β| = |γ| = |δ| = 50.

The word Ω can only contain factors ij where i, j ∈ {a, b, c, d} and i ̸= j. It
can be easily checked by computer that now each word g(ij) contains each
of its factors of length 63 at most once except in cases g(bd) = pfqrfs and
g(db) = rfspfq where |p| = 32, |f | = 78, |q| = 50, |r| = 57, |s| = 25. In these
cases there are 16 factors of length 63 that occur twice, namely the factors of
f . Thus each g(i) for i ∈ {a, b, c, d} contains at least one identifying factor
of each length from 63 up to 160 and each g(i) contains also an identifying
prefix and suffix of length 63 for any i ∈ {a, b, c, d}. In addition, the factor
pref30(u) occurs only as a prefix of g(a), g(b), g(c) and g(d). Respectively
for the factor suf30(z).

If the word ω contains a factor of length 63 twice they can not over-
lap by the observations above, so ω = ω0tω1tω2 where |t| = 63. Now
|tω1| = n · 160 + Λ1 · 135 + Λ2 · 25, where n ∈ {0, 1, 2, . . .} and (Λ1,Λ2) ∈
{(0, 0), (0, 1), (1, 0)}. Here Λ1 ̸= Λ2 if and only if t ∈ F (f). In most of the
cases the two occurrences of t originate from the images of two occurrences
of the same letter in Ω. Consequently, the coefficient 160 comes from the
length of the morphism. In the case that the first occurrence of t belongs to f
in g(d) and the second occurrence of t belongs to f in g(b), i.e. Λ1 = 1, there
exists extra factor of 135 referring to |fsp|. If the occurrences of t ∈ F (f)
are in the opposite order, thus first in g(b) and then in g(d), then we have
Λ2 = 1 and |fqr| = 185 = 160 + 25.

We proceed by showing that if ω contained a 64-abelian square then
Ω would not be abelian square-free or g(Ω) would not be square-free which
would give a contradiction. We use identifying factors and prefixes to return
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our analysis to the properties of Ω. So assume that the word ω contains a
64-abelian square, i.e., ω = wA1A2w

′ and A1 ≡64 A2. If |A1| ≤ 64 then
A1 = A2 and some of words g(ij), where ij ∈ {a, b, c, d} ({a, b, c, d} \ {i}),
should contain a square which contradicts the result of Theorem 39. So we
may assume that |A1| > 64.

Because A1 ≡64 A2 we have pref63(A1) = pref63(A2) and ω has the
same factor of length 63 twice. Similarly, suf63(A1) = suf63(A2) and thus
|A1| = np · 160+Λ1p · 135+Λ2p · 25 and |A2| = ns · 160+Λ1s · 135+Λ2s · 25.
Now |A1| = |A2| and the only possibility is that np = ns,Λ1p = Λ1s and
Λ2p = Λ2s. If Λ1p = 1, then both suf63(A1) ∈ F (f) and pref63(A2) ∈ F (f).
In fact, suf63(A1)pref63(A2) should be a factor of f which is not possible
because |suf63(A1)pref63(A2)| > |f |. Similar reasoning holds if Λ2p = 1. So
we have Λ1p = Λ2p = Λ1s = Λ2s = 0 and |A1| = |A2| = np · 160.

Let ω = wA1A2w
′ = w1g(a1)A

′
1g(a2)A

′
2g(a3)w

′
1, where a1, a2, a3 are

letters in {a, b, c, d}, g(a1) = u1v1, g(a2) = u2v2, g(a3) = u3v3 and v1A
′
1u2 =

A1 and v2A
′
2u3 = A2. The following graph illustrates the situation.


	
	 
	
	 
	
	& %& %
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Because |A1| = |A2| = np · 160 we have |u1| = |u2| = |u3| and |v1| = |v2| =
|v3|. Now we can divide the study into two cases.

If |u1| = 0 then A1 = g(α1), A2 = g(α2) for some α1α2 ∈ F (Ω). Because
each g(i) for any i ∈ {a, b, c, d} contains at least one identifying factor of
length 64 and A1 ≡64 A2 so α1 should be abelian equivalent to α2. This
gives a contradiction because Ω is abelian square-free.

If |u1| = m > 0 then A1 = v1g(α1)u2, A2 = v2g(α2)u3 for some α1a2α2 ∈
F (Ω). We may assume |u2| > 63, the case |v2| > 63 would be similar. Now
suf63(u2) = suf63(A1) = suf63(A2) = suf63(u3) and |u2v2g(α2)| = (|α2|+ 1) ·
160 so u2 have to be equal to u3 and a2 = a3, too. Because each g(i) for
any i ∈ {a, b, c, d} has an identifying prefix of length 64 and A1 ≡64 A2, so
g(α1a2) and g(α2a3) = g(α2a2) have to have those same identifying factors,
so α1 ≡a α2, too. This gives a contradiction because now α1a2α2a3 ∈ F (Ω)
and α1a2 ≡a α2a3.

Now we have proved the existence of a 64-abelian square-free word. By
choosing the initial abelian square-free word to be morphic we get that the
64-abelian square-free word constructed as in Theorem 42 is also morphic.
In general, let Ω be a morphic word over {a, b, c, d} then g(Ω) is a 64-abelian
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square-free word but by Theorem 26 there does not exist a single morphism
that would generate that word directly.

As mentioned, both results of Theorem 38 and Theorem 42 can be im-
proved. In a manuscript [87] by Rao he has been able to show that avoid-
ance can be obtained even for 2-abelian cubes over a binary alphabet and
3-abelian squares over a ternary alphabet. These are the optimal values for
k enabling positive answers to problems 1 and 2. First Rao gives a set of
conditions which ensure that a given morphism is k-abelian nth power-free.
This results is given without a proof in Theorem 43. This resembles the set
of conditions that assure a morphism to be abelian nth power-free which was
given by Carpi in [14]. Though, these new conditions does not give a char-
acterization for k-abelian nth power-free morphisms. Then Rao claims that
there exist such morphisms that meet the requirements of Theorem 43 for the
values k = 2 and n = 3 as well as k = 3 and n = 2. The checking was done
by computer. Applying those morphism respectively to an infinite abelian
cube-free word over a ternary alphabet and an infinite abelian square-free
word over a four-letter alphabet the asked 2-abelian cube-freeness and 3-
abelian square-freeness are obtained. For example, the word introduced by
Keränen can again be used as the abelian square-free word over a four-letter
alphabet.

For the next theorem we denote by Ψ(u) the Parikh vector of u. For a set
S ⊆ Σ∗, ΨS(u) denotes the vector indexed by S such that ΨS(u)[w] = |u|w
for every w ∈ S. For convenience, if the alphabet Σ is clear from the context
then ΨΣk(u) is denoted by Ψk(u), for k ≥ 1. So Ψk is now a k-generalized
Parikh vector.

Theorem 43 ([87]). We fix k ≥ 1 and n ≥ 2, and two alphabets Σ and Σ′.
Let h : Σ∗ → Σ′∗ be a morphism. Suppose that:

1. For every abelian nth power-free word w ∈ Σ∗ with |w| ≤ 2 or |h(w[2 :
|w| − 1])| ≤ (k − 2)n− 2, h(w) is k-abelian nth power-free.

2. There are p, s ∈ Σ′k−1 such that for every a ∈ Σ, p = prefk−1(h(a)p)
and s = sufk−1(sh(a)).

3. The matrix N indexed by Σ′k × Σ, with N [w, x] = |h(x)p|w, has rank
|Σ|.

4. Let S ⊆ Σ′k, with |S| = |Σ|, such that the matrix M indexed by S×Σ,
with M [w, x] = |h(x)p|w, is invertible. Let

ΨS(v, u) = ΨS(vp) + ΨS(su)−ΨS(sp)

and Ψk(v, u) = ΨΣ′k(v, u). For every ai ∈ Σ, ui, vi ∈ Σ∗ such that
uivi = h(ai); 0 ≤ i ≤ n; such that:
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• |{prefk−1(vip) : 0 ≤ i ≤ n}| = 1,

• M−1(ΨS(vi−1, ui) − ΨS(vi, ui+1)) is an integer vector, for every
1 ≤ i < n,

• Ψk(vi−1, ui)−Ψk(vi, ui+1) ∈ im(N) for every 1 ≤ i < n,

there is a (α0 · · ·αn) ∈ {0, 1}n+1 such that for every 1 ≤ i < n :

M−1ΨS(vi−1, ui)− (1− αi−1)Ψ(ai−1)− αiΨ(ai)

=M−1ΨS(vi, ui+1)− (1− αi)Ψ(ai)− αi+1Ψ(ai+1).

Then h is k-abelian nth power-free.

The following morphism were given in [87] as examples of 2-abelian cube-
free and 3-abelian square-free morphisms. These are not the only that were
given in the paper. These were chosen because they are uniform morphisms
and in addition, h2 is the smallest uniform 2-abelian cube-free morphism
that was found in the paper.

h2 :


0 7→ 00100101001011001001010010011001001100101101011

1 7→ 00100110010011001101100110110010011001101101011

2 7→ 00110110101101001011010110100101001001101101011

h3 :


0 7→ 0102012021012010201210212

1 7→ 0102101201021201210120212

2 7→ 0102101210212021020120212

3 7→ 0121020120210201210120212

Theorem 44. There exists an infinite 2-abelian cube-free word over a binary
alphabet, i.e., 2-abelian cubes are avoidable over binary alphabets.

Proof. By conditions of Theorem 43 h2 is a 2-abelian cube-free morphism
and maps an abelian cube-free word to a 2-abelian cube-free word. For
example, a fixed point of morphism µ : 0 7→ 0012, 1 7→ 112, 2 7→ 022 is
an infinite abelian cube-free word by Dekking [27]. Now h2(µ

∞(0)) is an
infinite 2-abelian cube-free word over a binary alphabet.

Theorem 45. There exists an infinite 3-abelian square-free word over a
ternary alphabet, i.e., 3-abelian squares are avoidable over ternary alphabets.

Proof. By conditions of Theorem 43 h3 is a 3-abelian square-free morphism
and maps an abelian square-free word to a 3-abelian square-free word. For
example, a fixed point of the morphism γ given by Keränen [62] is an infinite
abelian square-free word. Now h3(γ

∞(0)) is an infinite 3-abelian square-free
word over a ternary alphabet.
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As a conclusion we can present the completed version of Table 2.1 that
in the beginning summarized the older results and told us the limits for our
k-abelian avoidability problems. Now Table 2.2 shows how k-abelian square-
freeness and k-abelian cube-freeness behave in comparison with square- and
abelian square-freeness and cube- and abelian cube-freeness.

Avoidability of squares Avoidability of cubes

size of type of rep. size of type of rep.
the alph. = ≡k>2 ≡2 ≡a the alph. = ≡k>2 ≡2 ≡a

2 − − − − 2 + + + −
3 + + − − 3 + + + +

4 + + + +

Table 2.2: Avoidability of different types of repetitions in infinite words.

We can note from Table 2.2 that the behaviour of k-abelian power-
freeness depends on the value of k. If we talk about k-abelian cube-freeness
the behaviour is similar to the cube-freeness for all k ≥ 2. For k-abelian
square-freeness the behaviour is similar to the abelian square-freeness for
k = 2 and for the bigger values of k the behaviour is similar to the square-
freeness. These results were not guessed in the beginning of the study.

2.3.4 Unavoidability of weakly k-abelian squares

In this section we talk about k-abelian squares but we will define the notion
of a square in a bit unusual way. Carpi and De Luca have studied square-
freeness in partially commutative monoids earlier in [16]. Their approach to
square-freeness is similar but not identical to our interpretation. Another
related concept is that of approximate squares, which can be defined, for
example, as words of the form uv, where the so called Hamming distance of
u and v is “small enough” or equivalently as words w such that the Hamming
distance of w and some square is “small enough”. The first definition is
analogous to the definition of R-squares we will give shortly and the latter
definition is analogous to the definition of weakly R-squares which is the
definition we concentrate on in this section. The avoidability of approximate
squares has been studied by Ochem, Rampersad and Shallit [81].

Originally the results of this section were introduced in [52] and the ideas
for the proofs of theorems were by Saarela. In the paper we used the term
strongly k-abelian repetitions instead of weakly k-abelian repetitions. This
weakly k-abelian repetition is more natural because if a word is a weakly
(earlier strongly) k-abelian repetition it does not imply that the word would
also be a k-abelian repetition. Though, when we discuss about words that
avoid these weakly k-abelian repetitions we could say that these words are,
for example, strongly k-abelian square-free. Whereas, this is still reasonable
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because a strongly k-abelian square-free word is also k-abelian square-free.
So when talking about repetitions we define a weaker concept than k-abelian
repetitions but when talking about repetition-freeness we define a stronger
notion.

As mentioned in Section 2.1 k-abelian equivalence is, in fact, a congru-
ence of words. This means that k-abelian equivalence is such an equivalence
relationR that uvRu′v′ whenever uRu′ and vRv′. As in the previous sections
we are interested in the products of words which are k-abelian equivalent
but we will first define squares for all congruences R. Higher powers can be
then defined analogously.

If u and v are congruent words, then their product uv is an R-square.
This is the definition we have used this far and which is a common definition
in the study of abelian and k-abelian repetition-freeness, in general. In this
section, however, we concentrate on another definition:

Definition 46. A word w is a weakly R-square if it is congruent to a square
of some non-empty word v, i.e. wRvv.

For example, aabb is not an abelian square because aa and bb are not
abelian equivalent, but it is a weakly abelian square because it is abelian
equivalent to (ab)2. Next we will show an easy lemma that it does not
matter whether the word is congruent to a square or to a R-square. In both
cases the word is weakly R-square and, in fact, all of these words belong to
the same equivalence class.

Lemma 47. A word is a weakly R-square if and only if it is congruent to
an R-square.

Proof. It is clear that if word w is a weakly R-square then it is congruent
to an R-square. Then assume for the other direction that w is congruent
to an R-square, say wRuv and uRv. Now we use the assumption that R is
not just an equivalence relation but a congruence. So wRuu, because uRv
implies uvRuu.

It could be said that weakly R-squares take the concept of squares farther
away from words and closer to the monoid defined by R.

Let us now state the definitions of weakly abelian and k-abelian nth
powers for any n ≥ 1.

Definition 48. A word w is a weakly abelian nth power if it is abelian
equivalent to a word which is an nth power.

Definition 49. A word w is a weakly k-abelian nth power if it is k-abelian
equivalent to a word which is an nth power.
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The basic problem we are considering is avoidability of weakly abelian
and weakly k-abelian nth powers. We prove that, for all k and n, they are
unavoidable on all finite alphabets. First we show that in abelian case it
is easy to see that there does not exist infinite word which would avoid a
weakly abelian nth power. Recall that two words are abelian equivalent if
and only if they have the same Parikh vectors.

Theorem 50. Let Σ be an alphabet and let n ≥ 2. Every infinite word
w ∈ Σω contains a non-empty factor that is abelian equivalent to an nth
power.

Proof. A word is abelian equivalent to an nth power if and only if its Parikh
vector is zero modulo n. The number of different Parikh vectors modulo n
is finite, so w has two prefixes u and uv such that their Parikh vectors are
the same modulo n. Then the Parikh vector of v is zero modulo n, so v is
abelian equivalent to an nth power.

Theorem 50 can be generalized for k-abelian equivalence, but this is not
straightforward. One important difference between abelian and k-abelian
equivalence is that if a vector with non-negative elements is given, then a
word having that Parikh vector can be constructed, but if for every t ∈ Σk

a non-negative number nt is given, then there need not exist a word u such
that |u|t = nt for all t (see Example 53).

Perhaps the biggest difficulty in generalizing Theorem 50 lies in finding
an analogous version of the fact that a word is abelian equivalent to an nth
power if and only if its Parikh vector is zero modulo n. On the one direction
we have:

Lemma 51. If a word v of length at least k − 1 is k-abelian equivalent to
an nth power, then

|v|t + |sufk−1(v)prefk−1(v)|t ≡ 0 (mod n) (2.3)

for all t ∈ Σk.

Proof. Let v be k-abelian equivalent to un. Then

|v|t + |sufk−1(v)prefk−1(v)|t = |vprefk−1(v)|t
=|unprefk−1(v)|t = |unprefk−1(u

n)|t = n|uprefk−1(u
n)|t ≡ 0 (mod n)

for all t ∈ Σk.

The problem is that the converse does not hold. For example, v =
babbbbab satisfies (2.3) for n = 2 and k = 3 but it is not 3-abelian equiv-
alent to any square. However, the converse does hold if for every t either
|v|t is large enough or |vprefk−1v|t is zero. This is formulated precisely in
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Lemma 54. To prove this we need the definitions and Lemma 13 introduced
in Section 2.2 in connection with estimation of the number of k-abelian
equivalence classes, see [59]. We continue by few examples which demon-
strates these notions and the use of that lemma.

Example 52. Let k = 3 and consider the word u = aaabaab. The multi-
graph Gfu is

ab

��
aa

77 FF

��
baoo

The word u corresponds to the Eulerian path

aa→ aa→ ab→ ba→ aa→ ab.

There is also another Eulerian path from aa to ab:

aa→ ab→ ba→ aa→ aa→ ab.

This corresponds to the word aabaaab, which is 3-abelian equivalent to u.

Example 53. Let us consider some functions f : {a, b}2 → N0.

If f(aa) = f(bb) = 1 and f(t) = 0 otherwise, then the underlying graph
of Gf is not connected, so there does not exist a word u such that f = fu.

If f(ab) = 2 and f(t) = 0 otherwise, then the indegree of a in Gf is zero
but the outdegree is two, so there does not exist a word u such that f = fu.

In the original version of the next lemma in [52] there was a little mistake
which actually does not affect the essential parts of the proof. Now the
requirement |v|t > (n − 1)(k − 1) or |v|t = 0 for all t ∈ Σk is replaced by
|v|t > (n− 1)(k − 1) or |vprefk−1(v)|t = 0 for all t ∈ Σk.

Lemma 54. If

|v|t + |sufk−1(v)prefk−1(v)|t ≡ 0 (mod n) (2.4)

and either |v|t > (n− 1)(k − 1) or |vprefk−1(v)|t = 0 for all t ∈ Σk, then v
is k-abelian equivalent to an nth power.

Proof. Let s1 = prefk−1(v) and s2 = sufk−1(v). By Lemma 13 the underly-
ing graphs Gfv and Gfs2s1

are connected and,∑
a∈Σ

fv(as) =
∑
a∈Σ

fv(sa) + cs and
∑
a∈Σ

fs2s1(as) =
∑
a∈Σ

fs2s1(sa)− cs

(2.5)
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for all s ∈ Σk−1, where

cs =


−1, if s = s1 ̸= s2,

1, if s = s2 ̸= s1,

0, otherwise.

In the latter equality the term −cs has negative sign because s1 is now a
suffix of s2s1 and s2 is a prefix of it. By assumptions of the lemma, a function
f : Σk → N0 can be defined by

f(t) =
fv(t)− (n− 1)fs2s1(t)

n
.

Clearly, f(t) ∈ N0 for all t ∈ Σk. If |vprefk−1(v)|t = 0 then fv(t) = fs2s1(t) =
0, thus f(t) = 0. Otherwise |v|t > 0, and then fv(t) = |v|t > (n−1)(k−1) ≥
(n− 1)fs2s1(t) and thus f(t) > 0.

Because the underlying graph of Gfv is connected and from fv(t) > 0
it follows that f(t) > 0, thus the underlying graph of Gf must also be
connected, except possibly for some isolated vertices. By using (2.5) we get,∑

a∈Σ
f(as) =

∑
a∈Σ

f(sa) + cs

for all s ∈ Σk−1. So by Lemma 13, there is a word u ∈ S(s1, s2, |u|) such
that f = fu. Then u

n begins with s1 and ends with s2 and

|un|t = n|u|t + (n− 1)|s2s1|t = nf(t) + (n− 1)fs2s1(t) = fv(t) = |v|t

for all t ∈ Σk, so un is k-abelian equivalent to v.

Now we can use this lemma to prove the result of weakly k-abelian
unavoidability. The idea of the proof is quite similar to the proof of abelian
case in Theorem 50. Now the pair (fu mod n, sufk−1(u)). plays similar role
than the Parikh vector played in the abelian case.

Theorem 55. Let Σ be an alphabet and let k, n ≥ 2. Every infinite word
w ∈ Σω contains a non-empty factor that is k-abelian equivalent to an nth
power.

Proof. For a prefix u of w, consider the pair (fu mod n, sufk−1(u)). The
number of different pairs is finite, so w has infinitely many prefixes u1, u2, . . .
such that their pairs are the same. Let i be such that no factor of length
k appearing only finitely many times in w appears after ui. Let j > i be
such that if uj = uiv, then each other factor of length k appears at least
(n− 1)(k − 1) times in v. Then for all t ∈ Σk

|v|t + |sufk−1(v)prefk−1(v)|t = |sufk−1(v)v|t = |sufk−1(ui)v|t
=|uiv|t − |ui|t = fuj (t)− fui(t) ≡ 0 (mod n).
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Thus v satisfies the conditions of Lemma 54 and v is k-abelian equivalent
to an nth power.

Some further questions that might be asked on weakly k-abelian powers
are:

• How many k-abelian equivalence classes of words of length l contain
an nth power?

• How many words there are in those equivalence classes, i.e. how many
words of length l are weakly k-abelian nth powers?

• What is the length of the longest word avoiding weakly k-abelian nth
powers?

• How many words avoid weakly k-abelian nth powers?

The answers depend on k, n, l and the size of the alphabet. We will make
a few remarks about those questions.

First, it is easy to prove that two squares uu and vv are k-abelian equiv-
alent if and only if u and v are. Thus the number of k-abelian equivalence
classes of words of length 2l containing a square is the number of k-abelian
equivalence classes of words of length l. The estimation of this number has
been already presented in Theorem 12 and the number is polynomial with
respect to l.

Second, some of the equivalence classes contain exponentially many words.
For example, a word over the alphabet {a, b} is 2-abelian equivalent to
(am(ab)m)2 if and only if it begins with a, ends with b, contains 4m a’s
and 2m b’s but does not contain consecutive b’s, see Lemma 7. The num-
ber of such words is 3, 35, 462, 6435, 92378, . . .,

(
4m−1
2m

)
with respect to

m = 1, 2, 3, . . . by Example 14.

As an example we will consider binary words of length 12 , i.e., the words
{a, b}12 and count how many differently defined squares there exist. This
also illustrates the behaviour of these concepts. In the set of 4096 words
there are

• 64 squares,

• 168 2-abelian squares,

• 924 abelian squares,

• 1024 weakly 2-abelian squares,

• 2048 weakly abelian squares.
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Those 1024 weakly 2-abelian squares belong to 32 different equivalence
classes and weakly abelian squares belong to 7 different equivalence classes.
Representatives for each of these seven classes over a binary alphabet are as
follows: a12, a10b2, a8b4, a6b6, a4b8, a2b10, b12.

2.4 Overview of other results on k-abelian equiv-
alence

In this last section of this chapter we present a selection of other results
related to k-abelian equivalence. We will not go through the proofs or other
details because results of this section are mostly based on works of other
researchers and the purpose is just to give an overview of the general study.
First we will point out a general remark we made with Karhumäki in [48]
based on his earlier results.

With Parikh properties we mean abelian properties of words, that is,
properties that are dependent on number of each letter in the word. The
k-generalized Parikh properties then refer to properties that are dependent
on numbers of occurrences of factors of length k. As stated in [54] these
are closely related in problems defined by morphisms. Problems on 1-free
morphisms and k-generalized Parikh properties can be reduced to problems
on 1-free morphisms and usual Parikh properties over a bigger alphabet. A
1-free morphism means a morphism which maps each letter to a word at
least two letters. The action to check the factors of length k is denoted by
a mapping

∧
k : Σ∗ → Σ̂∗ and we use

∧
k(x) = x̂, for convenience. Details

of the notions and the proof of the following lemma are given in [54].

Lemma 56 ([54]). Let h : Σ∗ → Σ∗ be a 1-free morphism and k ≥ 1.
Then there exists a morphism ĥ : Σ̂∗ → Σ̂∗ such that

∧
k h = ĥ

∧
k, i.e., the

following diagram holds true for all x ∈ Σ∗

x
∧k //

h
��

x̂

ĥ��

h(x)
∧k// ĥ(x) = ĥ(x̂).

From Lemma 56 we can conclude, for instance, that the avoidability
questions on k-abelian repetitions for a morphism h can be reduced to prob-
lems on abelian avoidability for a morphism ĥ, although in bigger alphabets.

Other things we will present here are related to periodicity, Sturmian
words and Fine and Wilf’s theorem. First we define a k-abelian complexity

P(k)
w (n) of w, which counts the number of k-abelian equivalence classes of

factors of w of length n.

P(k)
w (n) = Card(Fn(w)/ ≡k).
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There exist many other complexity functions, for example, the factor com-
plexity of w is ρw(n) = Card(Fn(w)) and the abelian complexity of w is the
function that counts the number of pairwise non abelian equivalent factors of
w of length n, i.e. the abelian complexity is the same as 1-abelian complex-
ity, see e.g. [88]. Most of the complexity functions can be used to reveal that
a word is ultimately periodic. On the other hand, usually Sturmian words
have the lowest possible complexity among the aperiodic words. In [59] it is
shown that k-abelian complexity function does not make a difference. They
show in [59], for example, the following:

Theorem 57 ([59]). Let w ∈ Σω, k ∈ Z+ ∪ {+∞} and q(k) : N → N a
function

q(k)(n) =

{
n+ 1 for n ≤ 2k − 1

2k for n ≥ 2k.

If P(k)
w (n0) < q(k)(n0) for some n0 ≥ 1 then w is ultimately periodic.

Theorem 58 ([59]). Fix k ∈ Z+∪{+∞}. Let w ∈ Σω be an aperiodic word
and let q(k) : N → N be the same function as in Theorem 57. The following
conditions are equivalent:

• w is a balanced binary word, i.e., w is Sturmian word.

• P(k)
w (n) = q(k)(n).

In another paper [58] from the same authors they have studied, in con-
trast, the differences between the results obtained by using factor complexity,
abelian complexity or k-abelian complexity. They also study the asymptotic
lower and upper complexities and show that they may differ significantly
from each other.

One important question is when local properties imply global properties.
This is studied in context of local squares and global periodicity in paper [51].
There are given minimal values of n for which there exist aperiodic infinite
words which contain a left (or right or centered )square (or 2-abelian square
or abelian square) of length at most n everywhere. Here a word w contains
everywhere, for example, a left square of length at most n, if every factor
of w of length 2n has a non-empty square as a suffix. Another conclusion
concerning the study from local to global is the result from Fine and Wilf
[36]. This periodicity result tells how long a word can be having periods p
and q without having a period of common greatest divisor of p and q. In [57]
it is shown that if k-abelian periods are considered instead of usual word
periods then there does not exist corresponding bounds, in general. On the
other hand, the cases when such bounds exist can be characterized and some
non-trivial upper bounds and lower bounds can be given.
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Let k ≥ 1 and let p and q be such that p, q ≥ 2 and gcd(p, q) = d <
min{p, q}. The initial k-abelian periods of a word w are defined as follows:
If there are k-abelian equivalent words u1, . . . , un+1 of length p such that
w = u1 · · ·unpref |w|−np(un+1), then w has an initial k-abelian period p.
Other k-abelian periods can be defined by shifting the initial point of periods.
Let Lk(p, q) denote the length of the longest word that has initial k-abelian
periods p and q but does not have initial k-abelian period d. In [57] it is
shown, for instance, that:

Theorem 59 ([57]). Let p, q > gcd(p, q) = d > k. There exists an infinite
word that has initial k-abelian periods p and q but that does not have k-
abelian period d, i.e., Lk(p, q) = ∞.

Theorem 60 ([57]). Let p, q > gcd(p, q) = d and d ≤ k. If w has initial
k-abelian periods p and q and |w| ≥ lcm(p, q), then w has period d.

2.5 Conclusions and perspectives

We have defined a set of equivalence relations for words which build a bridge
between usual equality and abelian equality. One of the important and tra-
ditional questions in combinatorics on words is the avoidability question.
In this chapter we have studied this problem in context of k-abelian equiv-
alence. We have shown that 2-abelian squares cannot be avoided over a
ternary alphabet and in addition, k-abelian squares cannot be avoided over
ternary pure morphic words for any k ≥ 1. On the other hand, we have
obtained computational evidences that 3-abelian squares could be avoided
over ternary alphabets and 2-abelian cubes already over binary alphabets.
These questions have interested also other researchers and lately Rao has
managed to prove those conjectures to be true in a manuscript [87].

We have also studied a question of avoidability by defining the notion of
square in a new way and obtained two unavoidability results. Other general
or traditional questions on combinatorics on words can be also examined
with respect to k-abelian equivalences. We have introduced several results
of this kind in the end of this chapter but we will also come back to k-abelian
equivalences in the next chapters with such notions as the defect property
and equations. Thus there exist many questions that can be asked in terms
of k-abelian equivalences and even for avoidability there exist many open
problems, see e.g. [87].
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Chapter 3

Defect effect for
two-dimensional words and
trees

In this chapter we study the well-known property of words, the so called
defect property, see for example [68, 69]. The defect property states that
if a set of n+ 1 words satisfies a non-trivial equation then these words can
be expressed by concatenating at most n words. The validity of the defect
property has been studied also for other sets. For example, in [41, 55, 73, 79]
the defect property has been analyzed in the contexts of trees and figures.
These are also in the interest of this chapter. The defect property holds for
trees but does not hold for figures, in general. After the papers [41] and [79]
there remained two specific open problems. We will give counterexamples of
sets of figures that do not have the defect property for these two problems
and thus complete this survey. The content of this chapter is modified from
the paper [46]. Before we go into the main topic, i.e. figures, we give an
example showing that the defect property falls down with the concept of the
previous chapter, i.e. k-abelian equivalence.

Example 61. Let S = {ak−1b, akb} be a set of words representing different
k-abelian equivalence classes. Clearly ak−1b.akb ≡k a

kb.ak−1b so S satisfies
a non-trivial equation. If the defect property held then the words of S or
the k-abelian equivalence classes they represent should be possible to be
expressed by a single word. This single word should contain both letters a
and b and be a factor of ak−1b. So ak−1b is the only possibility for the word.
Now akb cannot be expressed by that word and thus the set S cannot be
expressed by one word and the defect property does not hold.
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3.1 Definitions

In this section we define essential notions for this chapter and present the
older results known about the subject. Here figure means a labelled poly-
omino, also called a brick or a 2-dimensional word. A figure is a partial
mapping x : Z2 → Σ, where Σ is a finite alphabet like for words. The
domain of x is a finite and connected subset of Z2. Every element of the
domain, i.e. unit square, corresponds to a labelled cell of the figure. The
position of the figure with respect to the point (0,0) is not significant. In
fact, only the shape and labels of the figure are determining.

Example 62. Consider a figure x : {(0, 0), (1, 0), (1, 1)(2, 1)} → {a, b} de-
fined by

x :


(0, 0) 7→ a
(1, 0) 7→ b
(1, 1) 7→ a
(2, 1) 7→ b

.

An illustration of the figure is the following:
a b

a b

The set of all figures over Σ is denoted by Σ#. If X ⊆ Σ# is a set
of figures then the set of all the figures tilable with the elements of X is
denoted by X#. In the tilings of the figures of the set X# we do not allow
rotations of the original figures of X. A set of figures X ⊆ Σ# is a code if
every element of X# admits exactly one tiling with the elements of X.

Because the shape of the domain qualifies figures so they can be divided
into different classes according to the shape. For example, the concepts
dominoes, squares and rectangles refer to the classes of figures with the
respective shape of domain. With a domino we mean a figure which has a
domain of 1 × n or a n × 1 rectangle with n ≥ 1. The defect theorem for
figures is usually examined over one class of figures at a time. The defect
property for figures of a class C ⊆ Z2 can be expressed as follows:

Formulation 63. Let X ⊆ Σ# be such a finite non-code that the domains
of all x ∈ X belong to C. Then there exists such a code Y ⊆ Σ#, with the
domains of all y ∈ Y belonging to C, that X ⊆ Y # and |Y | < |X|, i.e., the
size of the set Y is smaller than the size of the set X.

As mentioned earlier the defect property does not hold for the figures in
general. In addition, it does not hold even if we restrict to examine the sets
of figures with an arbitrary cardinality within a specific class C correspond-
ing to dominoes, squares or rectangles. So, in general, the answer to the
question, whether there exists the defect property for figures as stated in
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Formulation 63, would be negative. On the other hand, in [79] it was shown
that the sets of two figures possess the defect property within these three
classes. For dominoes the property also holds for the sets of size three as
shown in [79]. For example, in [41, 79] there were given counterexamples to
indicate that the defect property fails with figures with unrestricted shape
and with squares already for the sets of size three. For dominoes and rect-
angles it is enough to consider the sets of size four to detect the fail of the
defect property. We remark that if the defect property fails within a certain
class of figures at the certain size of a set it also fails for bigger sets. So
after these studies by Harju and Karhumäki and Moczurad two questions
remained open: whether the defect property holds or does not hold for three
rectangles and for two figures with unrestricted shape.

In the next section we give the examples which show that the answer
in both cases is that the property fails. Thus, the validity of the defect
property in the classes corresponding to dominoes, squares, rectangles and
figures with unrestricted shape is now determined for each size of the set.

3.2 Analysis of the defect property for figures

In this section we give two counterexamples for the defect property over the
sets of three rectangles and for the two figures of unrestricted shape. These
examples show that there exist non-codes composed of figures of the given
shape but these words cannot be tiled with fewer figures of the same class.
These two cases make the analysis of the defect property of the figures of
unrestricted shape, rectangles, squares and dominoes complete.

Example 64. A non-code consisting of the three rectangles which are shown
in Figure 3.1 cannot be tiled with two rectangles. A figure that has two
different tilings over the set of three considered rectangles is shown in Figure
3.2.

c b a c

b

a

c

b

a

b

a

c

a

c

b

c

b

a

Figure 3.1: The set of three rectangles not possessing the defect property.
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c b a

c

b

a

c

b

a

b

a

c

a

c

b

c

b

a

c b a c

b

a

c

b

a

b

a

c

a

c

b

c

b

a

Figure 3.2: There is a figure having two different tilings.

To show that the set does not have the defect property it has to be shown
that there are not any two rectangles that would tile the three original ones.
We start by examining the two dominoes at first. In the set of two figures
tiling all the original rectangles there have to be both original dominoes or
otherwise the size of the tiling set becomes larger than two. With these two
dominoes it is not possible to tile the third rectangle which is demonstrated
in Figure 3.3. The four lines in the figure denote all the cells that may be
covered with the dominoes and at least two cells remain uncovered. This
means that the defect property fails over the sets of rectangles if the size of
the set is three or greater.

c

b

a

b

a

c

a

c

b

c

b

a

Figure 3.3: The third rectangle cannot be tiled with the other rectangles of
the set.

Although, it is not required that the composition of the rectangles should
also be a rectangle we can construct a rectangle having two different tilings
as shown in Figure 3.4.
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c b a

c b a
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Figure 3.4: The figure with two tilings can be completed to a rectangle.
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Example 65. A non-code consisting of the two figures of an unrestricted
shape shown in Figure 3.5 cannot be tiled with one figure. In Figure 3.6 there
is shown a figure having two different tilings over the considered figures.

a a a

b b b

a a

b b

Figure 3.5: The set of two figures not possessing the defect property.

a a a

b b b

a a

b b

a a a

b b b

a a

b b

Figure 3.6: There is a figure having two different tilings.

To show that the set does not have the defect property we have to show
that there are not any figure that would tile the two original ones. We
consider the figure with four cells at first. This figure cannot be tiled with
any smaller factor hence the figure itself should be the figure that would also
tile the other one. The figure with six cells cannot be tiled with the figure
of four cells so these two figures of unrestricted shape cannot be tiled with
only one figure. This shows that the defect property already fails for two
figures if the shape of the figures is not restricted.

We can summarize the analysis of the defect property of the figures
of unrestricted shape, rectangles, squares and dominoes with the following
Theorem 66. In this theorem we give a table representing the validity of the
defect property which is a completed version of the corresponding table in
[79]. It is marked on the table whether the defect property holds for (H) or
fails over (F ) the specific shape and the size of the set.

Theorem 66. The complete analysis of the defect property of the figures
of unrestricted shape, rectangles, squares and dominoes gives the following
results:

Shape � Size 2 3 ≥ 4

Dominoes H H F

Squares H F F

Rectangles H F F

Unrestricted F F F
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The last row of the table in Theorem 66 indicates that the defect property
does not hold for the figures at all if the shape of the figures is not restricted.

3.3 The defect effect and the prefix rank for a set
of trees

Another example of two-dimensional objects for which survey of the defect
property has been done is a k-ary tree, see e.g. [41, 55, 74, 73]. We remind
that a tree is a certain type of graph and a few examples of trees can be
seen in Figure 3.7. A finite k-ary tree over an alphabet Σ can be defined
as a partial mapping {1, 2, . . . , k}∗ → Σ. The domain of a finite k-ary tree
is a finite and prefix closed subset of {1, 2, . . . , k}∗ and the elements of the
domain are called nodes. In this section we give a short overview of the
validity of the defect property with trees as we did in the previous section
with figures. The basic results for the defect property for trees are already
studied in earlier papers, for example, in [55, 74] but we will point out a few
special properties.

In combinatorics on words the hull of a set of wordsX means the smallest
semigroup that satisfies some special properties and contains the set X. The
size of the minimal generating set of this hull is called the rank. Now by
setting different conditions that the semigroup has to satisfy we can define
different hulls and ranks, respectively. For example, free rank, prefix rank
and suffix rank are common and much studied ranks. For example, the
prefix hull corresponds to the hull of which minimal generating set is a
prefix set. A prefix set of words means such a set that it does not contain a
word which would be a prefix of another word of the set. For more details
see for example [20].

To define a prefix set for trees we need a notion of compatibility, which
means that every pair of trees agrees on the intersection of their domains. A
set of trees is a prefix set if the trees of the set are pairwise noncompatible.
In this section we concentrate on the notions of prefix hull and prefix rank
for tree sets. For more about different notions of hulls and ranks that are
extended to trees and the exact definitions are given, for example, in [55].

In general, the defect theorem holds for the sets of trees as shown, for
example, in [74]. The defect property holds when stated by using the free
rank or the suffix rank for trees as it holds for words, too, see [55]. However,
because of the differences between the definitions of the prefix set of trees
and the prefix set of words, the defect theorem for trees cannot be expressed
with a prefix rank. As stated in [55] there is a counterexample showing that
this property fails. In the example there were a few mistakes and we give
a corrected version of the counterexample as Example 67. It shows that a
tree set of size three has the prefix rank of four which means that the defect
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property in this content is not valid, in general. In the previous section we
noticed that it was possible to define the boundaries for the size of the sets
of figures for which the defect property fails. This boundary was dependent
on the shape of the figures. Now we will examine the minimal size of the
set for which there is a tree set with a prefix rank greater than the size of
the set.

Example 67. A non-code consisting of the following three trees shown in
Figure 3.7 has the prefix rank of four.

a

a

a

a

a a

a

a

a

aa a

b b

b

b

bb

b

b

b

b b

b

Figure 3.7: The third tree of the set can be factorized with two others.

The following four trees shown in Figure 3.8 form the minimal generating
set of the prefix hull of the considered tree set indicating that the prefix rank
is four.

a a

a a ab b b

b b

Figure 3.8: The prefix hull of the set consists of four trees.

In [55] it is shown that the free rank of a non-code tree set is always
smaller than the size of the set. This means that the free hull of a non-code
consisting of two trees can be generated by just one tree. This implies that
the prefix hull of the set can be generated with the same tree, too. Thus
we know that the defect property holds for tree sets of size two expressed
with free rank as well as prefix rank. We remark that, likewise with figures,
if the defect property fails at the certain size of a set, it also fails for bigger
sets. Clearly, we can always increase the size of the set by adding a tree with
a node labelled with a new letter. This can be done to the set for which
the property already fails. We conclude that the defect property holds for
the sets of two trees in the context of prefix rank and fails over bigger sets.
So the result resembles the validity of the defect property for squares and
rectangles.
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3.4 Conclusions and perspectives

The defect theorem is often thought as folklore. It states that if a set of n
words satisfy a non-trivial equation then these words can be expressed by
n−1 words. The first known formulation of this property is by Skordev and
Sendov in 1961, [90], and the first fundamental paper of the defect theorem is
from 1979 by Berstel, Perrin, Perrot and Restivo, [9]. In 2004, 25 years later,
Harju and Karhumäki presented a detailed analyzis of the different aspects
of the defect theorem in [41]. In this chapter we have considered the defect
property within the sets of so called 2-dimensional words. These are sort
of generalizations of usual words seen as 1-dimensional words. The defect
property holds just for small sets of these 2-dimensional words, also called
figures. We have introduced two examples in which the defect theorem fails
and these give the answers to two open problems that remained after the
earlier studies of these basic cases for figures. Now we have that for figures
of unrestricted shape the defect theorem does not hold at all and for figures
that are rectangles the defect theorem holds for pairs but not for larger sets.

In [64] the concept of figures is discussed with additional properties en-
closed to the figures. These directed figures have two special points, a start-
ing point and an ending point. Two directed figures can be concatenated by
joining the figures together so that the starting point of the latter is placed
on the top of the ending point of the former. When concatenating directed
figures we need a merging function which determines the labels of the cells
that overlap in concatenation. In [64] it is shown that even in very simple
cases the defect property fails in the sets of directed figures. On the other
hand, if the set of directed figures is chosen so that the directed figures have
a correspondence with words then the set clearly satisfies the defect prop-
erty. An open problem is to find such restrictions for figures that they would
satisfy the defect property but would not have a correspondence to words.

We have also considered here other 2-dimensional objects, namely trees.
This time we add to the question of validity of the defect theorem the notion
of a prefix rank. The result is that the defect property holds for the sets
of two trees in the context of prefix rank and fails over bigger sets. So
the behaviour is similar to the rectangular figures. The defect theorem can
be studied in many different connections and here it is checked also for k-
abelian equivalences. A simple example shows that the defect property for
k-abelian equivalences does not hold at all.
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Chapter 4

Word equations over partial
semigroups

This chapter contains a discussion of word equations and the solutions of
those. A simple example of a word equation is x2 = abab for which the only
solution is that the unknown word x equals to the word ab. This equation has
both unknowns and constants. Actually, the other side consists of unknowns
and the other side of constants. Another, simple equation xy = yx consists
only of unknowns and this equation is one of the basic word equations.
The solution for this can be easily characterized and it can be applied in
solving many other equations. In fact, by the defect property, discussed in
the previous chapter, we already know that there exists a word z that both
of the words x and y can be represented by it, i.e., x = zi and x = zj

for some i, j ≥ 0. Although, word equations have been studied a lot there
exist quite simple looking questions about equations and their solutions but
the answers are still not known. In this thesis we concentrate on few basic
equations but we define the product of words in an exceptional way. For
more information of usual word equations, see for example [68].

The specific way to concatenate words we will use in this chapter is
motivated by DNA computing. This operation of overlapping product or
its extensions have been studied in a number of articles associated with
bio-operations in DNA strands, see e.g., [83, 22, 13, 29, 30, 53, 75, 76]. The
operation of overlapping product of words is locally controlled and a (partial)
associative operation on the set of non-empty words Σ+. The descriptional
complexity of this operation has been analyzed in the case of regular lan-
guages in [44]. As mentioned we will consider this operation in connection
with word equations. It turns out that many questions on equations can
be transformed, and finally solved, by translating these to related problems
on ordinary word equations. The translation is made because, for example,
the simple operation of cancellation does not work for equations over these
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partial semigroups. Thus, for example, x • y = x • z • x is not equivalent to
y = z • x, as explained more closely in Section 4.2.

More concretely, we solve a few basic equations over overlapping prod-
uct, introduce a general translation of such equations to a Boolean system
of ordinary equations, and as a consequence establish, e.g., that the funda-
mental result of solvability of the satisfiability problem extends to these new
types of equations. The content of this chapter is based on the paper [47].

4.1 Basic word equations

We have already mentioned one of the basic equations, that is the commuta-
tion equation. There also exist a few other equations that can be considered
as elementary equations on combinatorics on words. These equations are
elementary in a sense that they can be used in solving other equations and
they define some simple properties the words may have. We will shortly
present some of these equations and give the set of solutions for them. We
will not give the proofs for the solutions because these are quite well-known
and can be found, for example, in [68]. In addition, it is easy to verify that
the given solutions satisfy the equations. In the next section we will com-
pare these solutions to the solutions we get for the corresponding equations
with overlapping products. The equations with overlapping products are
considered in more details, too.

In what follows, let X be the set of unknowns and let Σ be the alphabet
of constants and thus also the alphabet for the solutions. We will use Greek
letters to denote the words over Σ to distinguish them from the unknowns in
X and the letters in Σ. In the first chapter a solution of an equation u = v,
where u, v ∈ (X ∪ Σ)+, was defined to be a morphism e : (X ∪ Σ)∗ → Σ∗

that satisfies e(u) = e(v) and e(a) = a for all a ∈ Σ. Though, the solution is
often given in the form x = α, y = β and z = γ for the unknowns x, y, z ∈ X
of the equation and α, β, γ ∈ Σ∗ meaning that the morphism maps x to α,
y to β and z to γ.

Arguments and tools that are commonly used for solving word equations
are Levi’s lemma, splitting the equations and the length argument. The
length argument means that it is possible to derive from the equation that
some parts in the equation have to have, for example, the same length. For
instance, it is clear that from the equation xyxz = z2xy it follows that
|x| = |z| and thus x = z. Splitting the equation means that it is possible to
split the equation to a pair of equations because of, for example, the length
argument or some other additional information. As an example, consider
the equation xyx3y = uv2u. The middle point can be located on both sides
of the equation. Thus we get a pair of equations xyx = uv and xxy = vu.
The third property that can be used to solve equations or to make them
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more simple is the following lemma, so called Levi’s lemma, see [67]:

Lemma 68 ([67]). Let x, y, u, v ∈ Σ+ be words such that xy = uv. Then
there exists a word w ∈ Σ∗ such that

x = uw and wy = v , or

xw = u and y = wv

.

Now we go to the basic word equations.

Equation 1. Consider the equation xy = yx, for x, y ∈ X. This equation
defining the commutative words has the solution x = αi, y = αj for α ∈ Σ∗

and i, j ≥ 0.

Equation 2. Consider the equation xz = zy, for x, y, z ∈ X. This equation
defines the conjugation, i.e., words x and y are conjugates if and only if they
satisfy the given equation. In other words, the words x and y can be obtained
from each other by cyclically shifting the letters and the word z corresponds
to those shifted letters. The solution for this equation is x = αβ, y = βα, z =
(αβ)iαj for α, β ∈ Σ∗ and i, j ≥ 0.

The third basic equation we consider asks when the product of two
squares is a square, a problem first studied in [71]. The answer is that
the equation has only periodic solutions.

Equation 3. Consider the equation x2y2 = z2, for x, y, z ∈ X. Clearly,
the length of z equals to the length of xy and z begins with x and ends with
y. Thus z = xy which gives commutation xy = yx. The solution for the
equation x2y2 = z2 is x = αi, y = αj , z = αi+j for α ∈ Σ∗ and i, j ≥ 0.

4.2 Concatenation of words with overlap

We define first the partial binary operation, so-called overlapping product,
on Σ+ as follows: For two words ua and bv, with a, b ∈ Σ, we set

ua • bv =

{
uav if a = b ,
undefined if a ̸= b .

Clearly, the operation • is an associative partial operation so that (Σ+, •)
constitutes a partial semigroup. In addition, letters can be seen in (Σ+, •)
as partial (non-unique) left and right units. Indeed, a • u with any u ∈ Σ+

is equal to u whenever the product is defined.
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The product can be written without parenthesis due to the associativity:

α = α1 • α2 • · · · • αn , for any αi ∈ Σ+. (4.1)

If the word α, as an element of Σ+, is defined as on (4.1) then for each
i = 1, . . . , n− 1, necessarily

last αi = first αi+1 .

Now α is deduced from (4.1) as follows

α = α1(last α1)
−1α2(last α2)

−1 · · ·αn−1(last αn−1)
−1αn

= α1(first α2)
−1α2(first α3)

−1 · · ·αn−1(first αn)
−1αn .

On the other hand any word

α = α1α2 · · ·αn with αi ∈ Σ+

can be written as an element of the partial semigroup (Σ+, •) as follows:

α = α1(first α2) • α2(first α3) • · · · • αn−1(first αn) • αn .

It is worth noting that the latter translation is always defined.
Common tools for solving word equations such as Levi’s Lemma, splitting

of equation and length argument are not so straightforward to use with
equations containing overlapping products. Problems for using these tools
arise from the facts that for overlapping products to be defined the last and
the first letters of the adjacent factors have to coincide and when a product is
conducted these two letters are unified to a single letter. The next example
shows one problem that may occur.

Example 69. Consider an equation x • y = x • z • x with overlapping
products and an equation xy = xzx. Equation xy = xzx can be reduced
into the form y = zx. Accordingly we could suppose that x • y = x • z • x
equals with equation y = z•x. However, for example, y = abb, z = ab, x = bb
is a solution for y = z • x but not for the original equation because the
overlapping product x • y = bb • abb is not defined.

Example 69 shows that we cannot use Levi’s Lemma straightforwardly
to eliminate the leftmost or the rightmost unknowns. The same problem
arises if we split an equation. Again we may loose the information of the
requirements that originated from the overlapping product that was located
at the point of splitting.

Unification of the last and the first letters of the adjacent factors com-
plicates also the use of length argument. The total length of an expression
containing overlapping products depends on the lengths of the factors and
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on the number of factors, i.e. |x1 • · · · • xk| = |x1| + · · · + |xk| − (k − 1).
Although, for some equations it may be easy to detect, for example, the
middle of both sides as for example in the equation x•y •y •x = z •z. From
this we can conclude that x • y = z, y •x = z. The consequences of splitting
the equation, that is last y = first y, have to be taken into account, too.

Now we proceed by solving the same basic equations as we did in the
previous section but here we consider them over the partial semigroup with
overlapping product. First we consider the equation x • y = y • x, which
corresponds to commutation and the Equation 1.

Example 70. To solve the equation x • y = y • x we first assume that
|x| , |y| > 1. For the overlapping product to be defined we can assume that
x = ax′a and y = ay′a, where a ∈ Σ and x′, y′ are new unknowns of the set
X ′. Now we can reduce the equation x • y = y • x into an ordinary word
equation x•y = ax′a•ay′a = ax′ay′a = ay′ax′a = ay′a•ax′a = y •x. From
the equation ax′ay′a = ay′ax′a we can notice that ax′ay′ = ay′ax′, and
hence ax′ and ay′ commute. Now we can write ax′ = ti and ay′ = tj , where
t = aα with α ∈ Σ∗ and i, j > 0. From this we get x = ax′a = tia = (aα)ia
and y = ay′a = tja = (aα)ja, where a ∈ Σ, α ∈ Σ∗ and i, j > 0. In the case
that |x| = 1 (resp. |y| = 1) we have x = a (resp. y = a), with a ∈ Σ and
y = aαa or y = a (resp. x = aαa or x = a), with α ∈ Σ∗. Thus the equation
x • y = y • x has solutions{

x = (aα)ia
y = (aα)ja

, where a ∈ Σ, α ∈ Σ∗ and i, j ≥ 0.

We remark that the answer of the equation of the previous example could
also be written with the help of the overlapping product. For example,
if x = (aα)2a, y = (aα)3a we could also write x = (aαa) • (aαa), y =
(aαa) • (aαa) • (aαa). Thus, the words that are solutions of this equation
referring to commutation are, in fact, overlapping products of words of the
form aαa or letters as a special case.

The second equation we will examine is associated with conjugation, i.e.
the Equation 2 xz = zy.

Example 71. We first check few special cases for the equation x•z = z •y.
If x = a, with a ∈ Σ, then y = b, b ∈ Σ, and z = aαb, α ∈ Σ∗, or if a = b,
then z = a is possible, too. If |x| = 2 then x = aa, with a ∈ Σ, and then
y = bb and z = aαb, where α ∈ Σ∗ or if a = b, then z = ai for i > 0 is
possible, too. In fact, if a ̸= b then x = aa, y = bb and z = aαb would give
an equation aaαb = aαbb, which does not have a solution. So if |x| = 2 then
x = y = aa and z = ai with a ∈ Σ and i > 0.

If |z| = 1 and |x|, |y| > 2 then z = a for some a ∈ Σ and x = y = aαa
for some α ∈ Σ+. If |z| = 2 and |x|, |y| > 2 then z = aa or z = ab for some
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a, b ∈ Σ. If z = aa then x = y = ai, for some i > 2. If z = ab then x = abαa
and y = bαab for some α ∈ Σ∗.

Now we can assume that |x| , |y| , |z| > 2 in equation x • z = z • y. As in
Example 70 we may assume x = ax′a, y = by′b and z = az′b, where a, b ∈ Σ
and x′, y′, z′ ∈ X ′. These assumptions are due to the facts that overlapping
products have to be defined and x and z have a common first letter and y
has a common last letter with z. Reduction gives now x • z = ax′az′b =
az′by′b = z • y. From the word equation x′az′ = z′by′ we can conclude
that x′a and by′ conjugate. The conjugation property gives that there exist
p, q′ ∈ Σ∗ so that x′a = pq′, by′ = q′p and z′ = p(q′p)i, where i ≥ 0. In
addition, if |q′| ≥ 2 then q′ = bqa with q ∈ Σ∗. Now with these assumptions
we have a solution

x = ax′a = apq′ = apbqa
y = by′b = q′pb = bqapb
z = az′b = ap(q′p)ib = ap(bqap)ib

,

where a, b ∈ Σ, p, q ∈ Σ∗ and i ≥ 0.
If q′ = a then a = b and solutions are of the form

x = ax′a = apa
y = ay′a = apa
z = az′a = (ap)i+1a

,

where a ∈ Σ, p ∈ Σ+ and i ≥ 0.
Notice that we can incude the special solution in which |z| = 1 into this
formula by changing z = (ap)ia. Now the solution of the special case in
which |x| = 2 can also be included in this formula by allowing p = ϵ.

We have one case left. If q′ = ϵ then p = bp′a, where p′ ∈ Σ∗ and
solutions are of the form

x = ax′a = ap = abp′a
y = by′b = pb = bp′ab
z = az′b = a(p)i+1b = a(bp′a)i+1b

,

where a, b ∈ Σ, p, p′ ∈ Σ∗ and i ≥ 0.
In fact, these last solutions and the solutions for the case |z| = 2 and |x| =
|y| > 2 are included in the the first formula of the three formulas above.
Thus equation x • z = z • y has solutions

x = apbqa
y = bqapb
z = ap(bqap)ib

, where a, b ∈ Σ, p, q ∈ Σ∗ and i ≥ 0

and the special solutions given below, where a, b ∈ Σ, α ∈ Σ∗, i ≥ 0:
x = a
y = b
z = aαb

,


x = a
y = a
z = aai

and


x = aαa
y = aαa
z = (aα)ia

.
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The third basic equation discusses squares. In the case of usual word
equations the answer for Equation 3 was that the equation has only periodic
solutions. If we consider the equation with overlapping product we get a
corresponding result.

Example 72. We first assume that |x| , |y| , |z| > 1 in the equation x • x •
y • y = z • z. Because overlapping products have to be defined we can
again assume that x = ax′a, y = ay′a and z = az′a, where a ∈ Σ and
x′, y′, z′ ∈ X ′. Reduction of overlapping products into usual word products
gives an equation ax′ax′ay′ay′a = az′az′a from which we get a more simple
equation (ax′)2(ay′)2 = (az′)2. From this we can conclude that ax′ = ti

and ay′ = tj and az′ = ti+j with t = aα, α ∈ Σ∗ and i, j > 0 and hence
x = ax′a = (aα)ia, y = ay′a = (aα)ja and z = az′a = (aα)i+ja.

Again if some of the unknowns equal to a letter, then the solution is
gained from the following general formula by allowing i, j ≥ 0. The equation
x • x • y • y = z • z has solutions

x = (aα)ia
y = (aα)ja
z = (aα)i+ja

, where a ∈ Σ, α ∈ Σ∗ and i, j ≥ 0.

We yet give one example of a basic equation which leads us to analyze
the defect property once again.

Example 73. To solve an equation x • y = u • v we may assume x =
x′a, y = ay′, u = u′b and v = bv′ where a, b ∈ Σ and x′, y′, u′, v′ ∈ X ′.
With these assumptions we have an ordinary word equation x′ay′ = u′bv′.
We consider only the case |x′| < |u′|, the case |u′| < |x′| being symmetric
and the case |x′| = |u′| being clear. The equation x′ay′ = u′bv′ has now a
solution x′ = α, y′ = βbγ, u′ = αaβ and v′ = γ where α, β, γ ∈ Σ∗. The
solution for the original equation with the assumption |x| < |u| can now be
given: 

x = αa
y = aβbγ
u = αaβb
v = bγ

, where a, b ∈ Σ, α, β, γ ∈ Σ∗.

We remark that these four words x, y, u and v of the previous example
can be expressed in the form x = αa, y = aβb • bγ, u = αa • aβb and
v = bγ, thus they can be formed from three words by overlapping product.
This implies, as stated in Theorem 75 that defect property is also valid in
(Σ+, •). Before the theorem we give an example illustrating the behaviour
of a set containing letters. It explains why the words that are letters are
excluded from the defect theorem.
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Example 74. Consider the set of words {a, b, ab}. Now the words satisfy
a non-trivial equation with overlapping products a • ab = ab • b. But these
three words cannot be obtained from any two words by concatenating those
with overlapping products. Thus the sets that contain letters, i.e., partial
left and right units, do not possibly have the defect effect.

Theorem 75. Let S be a set of n words with S ∩ Σ = ∅, i.e., each word
in S has length at least 2. If S satisfies a non-trivial equation with overlap-
ping products, then these words can be expressed with n− 1 words by using
overlapping products.

Proof. Let x1 • x2 • · · · • xk = y1 • y2 • · · · • yl be a non-trivial equation such
that xi, yj ∈ S for all i = 1, . . . , k and j = 1, . . . , l. We may assume that
|x1| < |y1| and hence y1 can be written in the form y1 = x1 • (last x1) y′1, for
some word y′1. Thus, the words of the set S can be expressed with words
S1 = (S−{y1})∪{(last x1) y′1}. The number of words in S1 is clearly at most
n and S1 ∩Σ = ∅. Now the equation corresponding to the original equation
can be reduced at least from the beginning with a factor x1 and hence, the
new (non-trivial) equation will be shorter in terms of the total length of an
expression which is given by |x1 • · · · • xk| = |x1|+ · · ·+ |xk| − (k − 1). We
divide the analyzis into two cases.

Case 1. Inductively, with respect to the length of the non-trivial equa-
tion, we will proceed step by step into an equation u = v1 • · · · • vm with
u, v1, . . . vm words from the processed set of at most n words. Now it is clear
that the word u may be removed from the set and the original words can be
expressed with n− 1 words as claimed.

Case 2. If in some point of the procedure described above the equation
will reduce into a trivial equation, the constructed set of words corresponding
to that situation contains already at most n−1 words. This follows from the
fact that the reduction from a non-trivial equation into a trivial equation
is possible only if some factor replacing an old word already exists in the
considered set of words.

As a conclusion, the above examples and Theorem 75 show that results
for word equations over overlapping product are often similar, but not ex-
actly the same, as in the case of ordinary word equations. Moreover, the
proofs reduce to that of ordinary words. This reduction is the subject of the
next section.

4.3 Reduction into word equations

In this section the reduction of equations over overlapping products to that
of ordinary word equations is analyzed in general. The reduction leads to a
Boolean combination of word equations, as we shall see in the next result.
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Theorem 76. Let Σ be a finite alphabet, X be the set of unknowns and
e : u = v be an equation over Σ ∪ X with overlapping products. Then
the equation e can be reduced into a Boolean combination of ordinary word
equations. The Boolean combination contains only disjunctions.

Proof. Consider the equation u = x1 • x2 • · · · • xl = y1 • y2 • · · · • ym = v,
where xi, yj ∈ X for all i = 1, . . . , l and j = 1, . . . ,m.

Part 1. Assume that the solutions ui for xi and vj for yj have |ui| , |vj | > 1,
for all i = 1, . . . , l and j = 1, . . . ,m, and hence we can mark the first and
the last letters of the words and write

x1 = a1x
′
1a2 , x2 = a2x

′
2a3 , . . . , xl = alx

′
lal+1 ,

y1 = b1y
′
1b2 , y2 = b2y

′
2b3 , . . . , ym = bmy

′
mbm+1 ,

where ai, bj ∈ Σ and x′i and y
′
j are new unknowns from the set X ′.

Now we have some restrictions for choosing the letters ai, bj . If xi = xj
then ai = aj and ai+1 = aj+1, and similarly if yi = yj , then bi = bj and
bi+1 = bj+1. Comparing unknowns of the equation e on both sides we have
that if xi = yj , then ai = bj and ai+1 = bj+1, and in addition, a1 = b1 and
al+1 = bm+1 always hold.

With these assumptions and markings we have a reduced word equation
e′ : u′ = v′ without overlapping products where u′ and v′ are defined as
follows:

u = x1 • x2 • · · · • xl = a1x
′
1a2x

′
2a3 · · · alx′lal+1 = u′

v = y1 • y2 • · · · • ym = b1y
′
1b2y

′
2b3 · · · bmy′mbm+1 = v′ .

In fact, to solve the original equation e we have to solve the reduced equation
e′ with all possible combinations of values for letters ai and bj from the set
Σ. In other words, the set of solutions of the original equation u = v equals
to the set of solutions of a Boolean set of equations which is a disjunction
of equations without overlapping products.

Part 2. In Part 1 we assumed that each unknown corresponds to a word of
length at least two. Now we assume that at least one of the unknowns corre-
sponds to a letter. We proceed as in Part 1 but with a bit different markings.
Let xi = ai,1x

′
iai,2 or xi = ai,12, with ai,1, ai,2, ai,12 ∈ Σ, depending on the

length of the solution corresponding to xi. Because overlapping products
have to be defined we have ai,2 = ai+1,1 or ai,2 = ai+1,12 and ai,12 = ai+1,1

or ai,12 = ai+1,12. We process similarly with yj ’s and b’s. As in Part 1, we
have some apparent additional restrictions for letters a’s and b’s depending
on equation e. With these assumptions and markings we can again form
a corresponding reduced word equation e′ : u′ = v′ without overlapping
products.
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To solve the original equation with assumptions of Part 2 we have again
a Boolean combination of word equations to solve. This set is a disjunction
of equations of the form e′ with all possible combinations such that at least
one unknown corresponds to a letter and values of corresponding a’s and b’s
vary in the set Σ.

Part 3. In Part 1 and Part 2 we have only discussed the cases of constant
free equations. If some factors in the equation u = x1 • x2 • · · · • xl =
y1 • y2 • · · · • ym = v are constants we proceed as previously in Parts 1 and
2 but with the additional knowledge of constants. If, for example, xi is a
constant in e and we have marked xi = aix

′
iai+1 we treat ai, ai+1 and x′i in

equation e′ as constants, too.

As a conclusion we remark that the considered Boolean sets are finite
and the set of solutions of the original equation e is the set of solutions of a
disjunction of Boolean sets of Part 1 and Part 2, the observations of the third
part taken into account if necessary. Equations in this combined Boolean
set do not contain overlapping products, and this proves the claim.

We remark that regardless of equation e having constants or not the
equations in the constructed Boolean set have constants. Constants appear
because the given reduction takes into account the fact that overlapping
products have to be defined. The property that the overlapping product
is only partially defined also makes it difficult to convert equations to the
other direction. As mentioned in Section 4.2 it is easy to write a word as the
element of partial semigroup (Σ+, •). But if we try to convert, for example,
an equation xy = z we cannot just write x • y = z. Instead, the equation
x • y′ = z with requirements y′ = ay, x = x′a, with a ∈ Σ, would correspond
the original equation.

4.4 Consequences of the reduction

It is known that any Boolean combination of word equations can be trans-
formed into a single equation, see [56, 20] or [12] as the original source.
Another well known result concerning word equations is the satisfiability
problem, that is decidability of whether a word equation has a solution or
not. The satisfiability problem is shown to be decidable by Makanin [72],
see also [84]. We will show that corresponding results are also valid for
equations with overlapping products.

Theorem 77. For any Boolean combination of equations with overlapping
products we can construct a single equation without overlapping products
such that the sets of solutions of the Boolean combination and the single
equation are equal when restricted to unknowns of the original equations.
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Proof. The result of the previous section shows that an equation with over-
lapping products can be reduced into a Boolean combination of usual word
equations. From this it follows that any Boolean combination of equations
with overlapping products can be reduced into another Boolean combina-
tion of ordinary word equations. This, in turn, as stated in [56] can be
transformed into a single equation without overlapping products.

We remind that combining a conjunction of two word equations into
a single equation does not require any extra unknowns but in a case of
disjunction two additional unknowns are required in the construction given
in [56], see also [20]. Thus, the single equation constructed from the Boolean
combination of equations is likely to contain many more unknowns than the
original equations because of the disjunctions derived from the reduction
method.

We next slightly modify this old proof for the result of [56] concerning
a disjunction of two equations. The new result shows that, in fact, two
additional unknowns are enough to combine a disjunction of a finite set of
equations into a single equation.

Theorem 78. Let e1 : u1 = v1, . . . , en : un = vn be a finite set of equations.
A disjunction of these equations, i.e. the property expressible by e1 or e2 or
. . . or en, can be transformed into a single equation with only two additional
unknowns.

Proof. We may assume that the right hand sides of the equations are the
same because the disjunctions of the equations of the following two sets S1
and S2 are equivalent:

S1 :

u1 = v1
u2 = v2

...
un = vn

and S2 :

u1v2v3 · · · vn = v1v2 · · · vn
v1u2v3 · · · vn = v1v2 · · · vn

...
v1v2 · · · vn−1un = v1v2 · · · vn .

Thus, we may assume that v1 = v2 = · · · = vn = v holds for equations
e1, . . . , en.

To complete the proof we will outline the necessary constructions, and
the justifications can be deduced as in [56]. First we define a function ⟨ ⟩ by

⟨α⟩ = αaαb , where a, b ∈ Σ, a ̸= b.

We will use the properties that for each α the shortest period of ⟨α⟩ is longer
than half of its length and ⟨α⟩ is primitive. We remark that now ⟨α⟩ can
occur in ⟨α⟩2 only as a prefix and a suffix. Let us denote u1 · · ·un = u. With
these observations we may deduce that

u1 = v or u2 = v or · · · or un = v ⇔ ∃Z,Z ′ : X = ZY Z ′ ,
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where
Y = ⟨u⟩2 v ⟨u⟩ v ⟨u⟩2

and

X = ⟨u⟩2 u1 ⟨u⟩u1 ⟨u⟩2 u2 ⟨u⟩u2 ⟨u⟩2 · · · ⟨u⟩2 un ⟨u⟩un ⟨u⟩2 .

The proof of the previous equivalence is based on the facts that the word ⟨u⟩2
is a prefix and a suffix of Y and that it occurs in X in exactly n+ 1 places.
We concentrate on the non-trivial part of the proof. Thus, if X = ZY Z ′

holds there are essentially two possibilities for v ⟨u⟩ v:

v ⟨u⟩ v = ui ⟨u⟩ui, for some i or

v ⟨u⟩ v = ui ⟨u⟩ui ⟨u⟩2 ui+1 ⟨u⟩ui+1 ⟨u⟩2 · · ·uj−1 ⟨u⟩uj−1 ⟨u⟩2 uj ⟨u⟩uj ,

for some i and j with i < j.
In the first case v = ui as required. In the second case we can use the

positions of factors ⟨u⟩ and ⟨u⟩2 to conclude that this case is not possible,
which completes the proof. We separate the analyzis into two cases depend-
ing on whether v ⟨u⟩ v equals to an expression containing an odd number
of factors ⟨u⟩2 or an even number of those. The following two examples
illustrate the argumentation in each case. We leave it to the reader to apply
corresponding arguments for the other values of i and j.

Let w = u1 ⟨u⟩u1 ⟨u⟩2 u2 ⟨u⟩u2 and assume v ⟨u⟩ v = w. Now the factor
⟨u⟩ in the middle of v ⟨u⟩ v has to overlap with the factor ⟨u⟩2 of w, otherwise
one of the v′s would contain a factor ⟨u⟩2. In a general case the overlapping
concerns the centermost occurrence of factors ⟨u⟩2. Now the factor preceding
(or succeeding) the mentioned ⟨u⟩ has the length at least 2|u1|+ 2| ⟨u⟩ | (or
2|u2| + 2| ⟨u⟩ |). We may assume |v| ≥ 2|u1| + 2| ⟨u⟩ |, the other case being
similar. Now |v ⟨u⟩ v| ≥ 4|u1| + 5| ⟨u⟩ | > |w| because | ⟨u⟩ | > 2|u2|. This
gives a contradiction.

Let w′ = u1 ⟨u⟩u1 ⟨u⟩2 u2 ⟨u⟩u2 ⟨u⟩2 u3 ⟨u⟩u3 and assume v ⟨u⟩ v = w′.
Now the factor ⟨u⟩2 has to be located in the same place on both occurrences
of v in the word v ⟨u⟩ v. This gives v = u1 ⟨u⟩u1 ⟨u⟩2 u3 ⟨u⟩u3 and thus
|v ⟨u⟩ v| = 9| ⟨u⟩ |+ 4|u1|+ 4|u3| > |w′| giving a contradiction.

With a positive Boolean combination we refer to a Boolean combination
that does not contain any negations, e.g. a Boolean combination of equations
without inequalities. Now we can show that the conversion of a finite positive
Boolean combination of equations over overlapping products into a single
ordinary word equation requires only two extra unknowns.

Theorem 79. For any finite positive Boolean combination of equations with
overlapping products we can construct a single ordinary word equation with
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two additional unknowns such that the sets of solutions of the Boolean com-
bination and the single equation are equal for some choice of these additional
unknowns.

Proof. For each equation over overlapping products we have a corresponding
finite disjunction of ordinary equations based on reduction of Theorem 76.
Thus, any finite positive Boolean combination of equations with overlapping
products can be transformed into a finite positive Boolean combination of
ordinary word equations. We may write the constructed Boolean combina-
tion in a disjunctive normal form and replace each conjunction of equations
by a single equation. Thus, we have formed a finite disjunction of word
equations without any additional unknowns. By Theorem 78 we can trans-
form this disjunction into a single equation with two additional unknowns
which proves the claim.

The compactness theorem for words says that each system of equations
over Σ+ and with a finite number of unknowns is equivalent to some of its
finite subsystems, see [3], [38] and also [42]. We remark that the analogical
result concerning equations with overlapping products is not an obvious con-
sequence of the reduction whereas the satisfiability theorem is as analyzed
a few lines later. In fact, we do not even know whether the compactness
theorem holds in this context. If we use the reduction on an infinite sys-
tem of equations with overlapping products in order to be able to use the
compactness theorem of ordinary word equations, we will end up with an in-
finite number of finite systems of disjunctions connected with conjunctions.
Although, a finite positive Boolean combination of equations over overlap-
ping products can be reduced into a single ordinary word equation with only
two additional unknowns, a corresponding reduction of an infinite positive
Boolean combination would require an infinite number of unknowns. Thus,
we cannot use the original compactness theorem because of the infinite num-
ber of unknowns and the question about validity of the compactness theorem
for equations over overlapping products remains open.

The decidability result for equations with overlapping products is instead
obtained easily.

Theorem 80. The satisfiability problem for a finite positive Boolean com-
bination of equations with overlapping products is decidable.

Proof. Theorem 77 shows that an equation with overlapping products can
be reduced into a single equation without overlapping products. With
Makanin’s algorithm we can decide whether this equation without over-
lapping products has solutions or not and the existence of solutions is not
affected by the additional unknowns in a sense that they would restrict the
existence. Thus, we can straightforwardly decide the existence of solutions
of the original equation with overlapping products, too.
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4.5 Conclusions and perspectives

In this chapter we have considered a few basic equations with a new concept
of overlapping product. In addition we have introduced a general reduc-
tion from a equation with overlapping products to a Boolean combination
of usual word equations. By this reduction we can show that the satisfia-
bility problem for a finite positive Boolean combination of equations with
overlapping products is decidable. Whereas the validity of the compactness
theorem for equations with overlapping products remains open.

This setting resembles another open problem discussed in [19]. The prob-
lem states that the isomorphism problem for finitely generated F-semigroups
(i.e. subsemigroups of free semigroups) is decidable whereas it is an open
problem whether the result can be extended to F-semigroups generated by
rational sets. The isomorphism problem asks whether two F-semigroups are
isomorphic. For a finitely generated F-semigroup we can form a finite F-
presentation which is, in fact, essentially based on equations. The finiteness
of this F-presentation is obtained by the compactness theorem. Now it is
decidable whether two finitely generated F-semigroups are isomorphic, i.e.
whether they have a common F-presentation. For the F-semigroups gener-
ated by rational sets we cannot use the same approach because we have now
infinitely many unknowns and we cannot apply the compactness theorem.
On the other hand, the freeness problem of F-semigroups is a special case
of the isomorphism problem and it is decidable for both F-semigroups gen-
erated by finite sets and by rational sets, see [8]. In addition, a free monoid
can be embedded into a multiplicative monoid of integer matrices and for
those already the freeness problem is undecidable, see [63, 40]. So these
isomorphism and freeness problems seem to lay on the interface of decidable
problems and undecidable problems. The situation may be the same for the
compactness theorem we were dealing with in this chapter.

As the last perspective of this section we again return to k-abelian equiv-
alences. It is a natural question what we can say about solving equations
over k-abelian equivalence classes. As an example, consider the commuta-
tion equation xy = yx. Now we can ask which k-abelian equivalence classes
x and y satisfy xy ≡k yx. Let us consider just equivalence classes which
contain words of at least k− 1 letters. Clearly, prefk−1(x) = prefk−1(y) and
sufk−1(x) = sufk−1(y) are now the only requirements that are needed. For
shorter words the requirements are a mixture of usual commutation condi-
tions and demands based on generalized Parikh properties. Let us consider
the conjugation, too. What are the requirements for words of length at
least k − 1 to satisfy xz ≡k zy? It is clear that prefk−1(x) = prefk−1(z)
and sufk−1(z) = sufk−1(y). It is easy to see that xprefk−1(x)sufk−1(y) have
to be k-abelian equivalent to prefk−1(x)sufk−1(y)y, too. Because in both
cases, for overlapping products and for k-abelian equivalence classes, the
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prefixes and suffixes are significant, they also play an important role when
solving equations. In fact, for solving equations with respect to k-abelian
equivalence the main focus seems to be in prefixes and suffixes, and thus the
results are of a little interest at this level.
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Chapter 5

On palindromes and
Sturmian words

As mentioned already in the first chapter, combinatorics on words has many
connections to other areas of mathematics as well as other sciences. Palin-
drome is an example of a concept that plays an important role in various
areas of mathematics including diophantine approximation and number the-
ory (e.g. [1, 21]), discrete mathematics (e.g. [37, 11]), algebra (e.g. [61, 28]),
biomathematics (e.g. [60]), geometric symmetry in translation surfaces as-
sociated with various dynamical systems including interval exchange trans-
formations (e.g. [35]) and theoretical physics in the spectral properties of
discrete Schrödinger operators defined on quasicrystals (e.g. [43]).

In this chapter we investigate the connection with palindromes and Stur-
mian words. This chapter is based on the paper [39]. The original purpose
was to consider binary words that can be defined up to word isomorphism
by a set of its palindromic factors. What we mean by defining words by
palindromes is explained later. The main result we ended up was the char-
acterization of infinite binary not ultimately periodic words whose factors
can always be defined by three palindromes. We found that this characteri-
zation is based on Sturmian words. On the other hand Sturmian words are
known to be a set of words that can be defined in many different ways. Re-
mark that, for example, in Chapter 2 it was mentioned that even k-abelian
complexity can be used to define Sturmian words.

5.1 Definitions and notations

To define what means that a word is generated palindromically we define
a set S(n) = {(i, j) | 1 ≤ i ≤ j ≤ n} for each positive integer n. We
remind that for a word u = u1u2 · · ·un ∈ An and (i, j) ∈ S(n), we denote
the factor uiui+1 · · ·uj by u[i, j]. In case i = j, we write u[i] instead of
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u[i, i]. Let Alph(u) = {ui | 1 ≤ i ≤ n} denote the subset of Σ consisting of
all letters occurring in u. Remark that a word w is a palindrome if w = wR,
where wR denotes the reversal (or mirror image) of the word. That is,
if w = a1a2 · · · an ∈ Σn then wR = an · · · a2a1. Finally, let P denote the
collection of all palindromes (over any alphabet).

Definition 81. Fix u ∈ Σn and S ⊆ S(n). We say that S palindromically
generates u if the following three conditions are verified:

• u[i, j] ∈ P for all (i, j) ∈ S,

• for all k ∈ {1, 2, . . . , n}, there exists (i, j) ∈ S with i ≤ k ≤ j,

• for each non-empty set Σ′ and word v ∈ Σ′n, if v[i, j] ∈ P for all
(i, j) ∈ S then there exists a mapping c : Alph(u) → Σ′ which extends
to a morphism c : Alph(u)∗ → Σ′∗ of words such that c(u) = v.

We call the elements of S generators (or palindromic generators). It
follows from the definition that if a set S ⊆ S(n) palindromically generates
two words u ∈ Σn, v ∈ Σ′n then u and v are word isomorphic, i.e., there is
a bijection ν : Alph(u) → Alph(v) which extends to a morphism of words
such that ν(u) = v. In particular, the last condition in Definition 81 means
that Alph(u) has the largest cardinality such that the first two conditions
are satisfied.

Example 82. For each letter a ∈ Σ, the singleton set S = {(1, 1)} palin-
dromically generates a. The set S = {(1, 2)} palindromically generates the
word a2, while S = {(1, 1), (2, 2)} palindromically generates the word ab. For
n ≥ 3, the sets S = {(1, n − 1), (1, n)} and S = {(1, n), (2, n)} each palin-
dromically generate an. Let a, b, c ∈ Σ and S1 = {(1, 5), (3, 8), (7, 9)} and
S2 = {(1, 5), (2, 9)}. Now S1 and S2 both generate the same word abcbaabcb.

Given a word u ∈ Σ+, we let µ(u) denote the infimum of the cardinality
of all sets S ⊆ S(|u|) which palindromically generate u, i.e.,

µ(u) = inf{#S |S ⊆ S(|u|) palindromically generates u}.

As usual, we let inf(∅) = +∞. For instance, it is easily checked that µ(an) =
1 for n = 1, 2 and µ(an) = 2 for n ≥ 3. Also µ(u) < +∞ whenever u ∈ Σ+

and #Σ = 2, i.e., whenever u is a binary word. Indeed, it is readily verified
that for each u ∈ {0, 1}+, the set

Su = {(i, j) | u[i, j] = abka for {a, b} = {0, 1}, k ≥ 0}.

palindromically generates u. Typically µ(u) < #Su, e.g., if u = 00101100,
then the set S = {(1, 2), (2, 4), (3, 5), (4, 7), (7, 8)} palindromically gener-
ates u. In this example Su = S ∪ {(5, 6)}, but the palindrome (5,6) is not
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needed in the generating set. The set S is the smallest palindromic generat-
ing set whence µ(00101100) = 5. In contrast, for the ternary word abca no
subset S of S(4) palindromically generates abca. For this reason, we shall
primarily restrict ourselves to binary words.

Given an infinite word x ∈ Σω, we are interested in the quantity

ψ(x) = sup{µ(u) |u is a factor of x}.

This means that we try to find the minimal number of palindromes for which
each factor of x can be generated.

Recall that a binary word x ∈ {0, 1}ω is called Sturmian if x contains
exactly n + 1 factors of each given length n. It is well known that each
Sturmian word x is aperiodic and uniformly recurrent, i.e., each factor of x
occurs in x with bounded gap. Sturmian words are also closed under reversal
(i.e., if u is a factor of x then so is uR) and balanced (for any two factors u
and v of the same length, ||u|a − |v|a| ≤ 1 for each a ∈ {0, 1}). In fact an
infinite binary word x ∈ {0, 1}ω is Sturmian if and only if it is aperiodic and
balanced. For more on Sturmian words we refer the reader to [7, 68].

A factor u of a Sturmian word x is called right special (resp. left special)
if both u0 and u1 (resp. 0u and 1u) are factors of x. Thus x contains exactly
one right special (resp. left special) factor of each given length, and u is right
special if and only if uR is left special. A factor u of x is called bispecial if
u is both right and left special. Thus, if u is a bispecial factor of x, then u
is a palindrome. A binary word y ∈ {0, 1}∗ is called a central word if and
only if y ∈ P and y0 and y1 are both balanced.

We will use several times the notion of a bordered word. Given two non-
empty words u and v, we say u is a border of v if u is both a proper prefix
and a proper suffix of v. If v has no borders then it is said to be unbordered.

We will later state our main result by making use of the following mor-
phisms: For each subset A ⊆ {0, 1} we denote by dA : {0, 1}∗ → {0, 1}∗ the
doubling morphism defined by the rule

dA(a) =

{
aa if a ∈ A

a if a /∈ A.

Definition 83. A word y ∈ {0, 1}ω is called double Sturmian if y is a suffix
of dA(x) for some Sturmian word x and A ⊆ {0, 1}. In particular, taking
A = ∅, it follows that every Sturmian word is double Sturmian.

Clearly, if y is double Sturmian, then there exists a Sturmian word x, a
subset A ⊆ {0, 1} and a ∈ A such that dA(x) ∈ {y, ay}.

For each pair I = (i, j) ∈ S(n), we define a function

ρI : {i, i+ 1, . . . , j} → {i, i+ 1, . . . , j}
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called a reflection by ρI(k) = i+ j−k. The function ρI is an involution, i.e.,
it is a permutation that satisfies ρI(ρI(k)) = k for all i ≤ k ≤ j. For u ∈ Σn

we have that u[i, j] ∈ P if and only if u[k] = u[ρI(k)] for each i ≤ k ≤ j.
If J = (i′, j′) with i ≤ i′ ≤ j′ ≤ j, we denote by ρI(J) the reflected pair
(ρI(j

′), ρI(i
′)).

Definition 84. Suppose S ⊆ S(n) palindromically generates a word u ∈ Σn,
and let m ∈ {1, 2, . . . , n}. We say m is a leaf with respect to S if there exists
at most one pair I = (i, j) ∈ S for which i ≤ m ≤ j and ρI(m) ̸= m.

Example 85. Consider a word abbabab which is palindromically generated
by S = {(1, 4), (3, 7), (5, 7)}. Now 1, 2, 5 and 6 are leaves with respect to S.
Note also that two of the leaves has label a and two of them has label b.

5.2 Preliminary results

In this section we give preliminary results that we will need in our main
results. First we give a simplified proof for the result shown by Saari in [89].
It improves an earlier result of Ehrenfeucht and Silberger in[33].

Lemma 86. Each aperiodic infinite word x contains an infinite number of
Lyndon words. In particular x has arbitrarily long unbordered factors.

Proof. Let ≼ be a lexicographic ordering of words, and suppose to the
contrary that x contains only finitely many Lyndon factors. We write
x = u1u2 · · · where for each i ≥ 2 we have that ui is the longest Lyn-
don word that is a prefix of the suffix (u1 · · ·ui−1)

−1x. Then, for all i, we
have ui+1 ≼ ui since otherwise uiui+1 would be a Lyndon prefix longer than
ui. Thus there exists a positive integer j such that x = u1 · · ·uj−1u

ω
j , contra-

dicting that x is aperiodic. The last claim now follows since every Lyndon
word is unbordered. Indeed, if u = vuv is a Lyndon word with respect to
the order ≼, then vvu ≼ vuv (since vu ≼ uv), and hence v is the empty
word.

We will also need the following result.

Lemma 87. Let u be an unbordered factor of a Sturmian word x ∈ {0, 1}ω.
Then either u ∈ {0, 1} or u = ayb, where {a, b} = {0, 1}, and y is a central
word.

Proof. If u /∈ {0, 1}, then we can write u = ayb with {a, b} = {0, 1}. We
claim that y is a palindrome. In fact, suppose vc (resp. dvR) is a prefix
(resp. suffix) of y with v ∈ {0, 1}∗ and {c, d} = {0, 1}. Since u is balanced
it follows that c = b and d = a. Since avRb and avb are both factors of x,
and Sturmian words are closed under reversal, it follows that v is a bispecial
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factor of x, and hence a palindrome. Thus avb is both a prefix and a suffix
of u. Since u is unbordered, it follows that u = avb, and hence y = v. Thus
y is central.

The following lemma gives a reformulation of Definition 81:

Lemma 88. Let u ∈ Σn be such that all letters of Σ occur in u. Let
S ⊆ S(n). The following conditions are equivalent:

(i) S palindromically generates u.

(ii) for each k ∈ {1, 2, . . . , n}, there exists an (i, j) ∈ S such that i ≤ k ≤ j,
and for each 1 ≤ i, j ≤ n, we have u[i] = u[j] if and only if

there exists a finite sequence (or path) (It)
r
t=1 ∈ Sr (⋆)

such that j = ρIrρIr−1 · · · ρI1(i).

Proof. We first define relation θ as follows. Let iθj if and only if there exists
an I ∈ S such that j = ρI(i). Denote by θ∗ the reflexive and transitive
closure of θ. The relation θ is symmetric by the definition of the mappings
ρI and thus θ∗ is an equivalence relation. Here iθ∗j if and only if (⋆) holds
for some sequence (It)

r
t=1 of elements from S. Let then v ∈ Σ′n be any word

such that the factor v[i, j] is a palindrome for each (i, j) ∈ S. Now, iθj
implies v[i] = v[j]. Consequently, iθ∗j implies u[i] = u[j] by transitivity.
It follows that the cardinality of Σ′ is at most the number of equivalence
classes of θ∗.

If S palindromically generates the given word u, then, by the last condi-
tion of Definition 81, each equivalence class of θ∗ corresponds to a different
letter in Σ. Therefore u[i] = u[j] if and only if iθ∗j. This proves the claim
from (i) to (ii).

Suppose then that S satisfies (ii). First, let I = (i, j) ∈ S, and let
i ≤ k ≤ j. Denote k′ = ρI(i). By (ii), we have that u[k] = u[k′], and
therefore u[i, j] ∈ P. Hence the first condition of Definition 81 holds. The
second condition is part of (ii). For the third condition, by the beginning
of the proof, any word v ∈ Σ′n for which v[i, j] is a palindrome for each
(i, j) ∈ S, the cardinality of Σ′ is at most the cardinality of Σ. By (ii), we
have that v[i] = v[j] implies u[i] = u[j] which proves the claim.

In the next lemma we show a certain heritage property for the number
of palindromes that are needed to generate factors of a word.

Lemma 89. Let u ∈ Σ+. Then µ(v) ≤ µ(u) for all factors v of u.

Proof. The result is clear in case µ(u) = +∞. So suppose S ⊆ S(|u|)
palindromically generates u and set k = #S. It suffices to show that if
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u = ax = yb, where a, b ∈ Σ, then max{µ(x), µ(y)} ≤ k. We prove only that
µ(x) ≤ k as the proof that µ(y) ≤ k is completely symmetric.

Suppose S = {I1, I2, . . . , Ik} palindromically generates u and let m ∈ N
be the largest integer such that I = (1,m) ∈ S. Let D = {r ∈ {1, 2, . . . , k} |
Ir = (1, q) with q < m}. Let

S′ = S ∪ {I ′r | r ∈ D} \ {Ir | r ∈ D}

where for each r ∈ D we set I ′r = ρI(Ir) = (m− q + 1,m) (see Fig. 5.1).

� �Ir � �I ′r� �
I

· · ·w

Figure 5.1: Reflecting the generators in S.

It follows that S′ also palindromically generates u and I is the only
generator in S′ containing the initial position 1. Whence 1 is a leaf w.r.t. S′,
and hence

S′′ = S′ ∪ {(2,m− 1)} \ {I}
palindromically generates the suffix x = a−1u. This proves the claim.

Next we will prove an important lemma for doubling letters. We will
show that if the word has a palindrome of odd length in a palindromic
generating set and we double the letters corresponding to the letter in the
middle of that odd palindrome, it is enough to have the same number of
palindromes in the palindromic generating set of this new doubled word.

Lemma 90. Suppose u ∈ Σn is palindromically generated by a set S ⊆ S(n).
Suppose further that there exist p, q ∈ N such that (p, p+ 2q) ∈ S. Then for
A = {u[p+ q]} we have µ(dA(u)) ≤ #S.

Proof. Let a = u[p + q], and write da for d{a}. We define first a mapping
pda : {1, 2, . . . , n} → N ∪ {(j, j + 1) : j ∈ N} for the positions of u ∈ Σn. It
maps every position of u to a corresponding position of da(u) or to a pair
of positions of da(u) depending on whether the position of u has a label a
that will be doubled or some other label. For convenience let us denote the
prefix u[1, i] of u by ui and let u0 be the empty word.

pda(i) =

{
|da(ui)| if u[i] ̸= a

(|da(ui)| − 1, |da(ui)|) if u[i] = a.

Let S′ = {(i′, j′) | (i, j) ∈ S} where i′ = |da(ui−1)| + 1 and j′ = |da(uj)|. In
other words, we dilate each generator (i, j) by applying da to the correspond-
ing factor u[i, j]. Clearly #S′ = #S. We shall show that S′ palindromically

84



generates da(u). We claim first that if a position i1 of u is reflected to i2 by
a generator (iS , jS) ∈ S then pda(i1) is reflected to pda(i2) by a generator
(iS′ , jS′) ∈ S′. Here (iS′ , jS′) is the generator in S′ corresponding to the
generator (iS , jS) in S. Now U = u[iS , i1 − 1] = u[i2 + 1, jS ]

R, and thus
|da(U)| = |da(UR)| = |da(u[i2 + 1, jS ])|; see Figure 5.2. So if u[i1] ̸= a
then pda(i1) − iS′ = jS′ − pda(i2) and otherwise pda(i1) − (iS′ , iS′ + 1) =
(jS′ − 1, jS′) − pda(i2). Thus pda(i1) is reflected to pda(i2) as a single or as
a pair of positions.

u
iS

U r
i1

r
i2

UR

jS
da(u)

i′S

� �� �|da(U)| r
pda(i1)

r
pda(i2)

� �� �|da(UR)|

j′S

Figure 5.2: Reflection complies with doubling morphism da.

Let us denote, for any x ∈ Σ,

Ωu,x = {i : 1 ≤ i ≤ n and u[i] = x},

i.e., Ωu,x is the set of occurrences of x in u. By Lemma 88, for each i, j ∈ Ωu,x

there exists a sequence i = i1, i2, . . . , il = j of positions im ∈ Ωu,x such that
im is reflected to im+1 by some generator in S. As we just shown, there also
exists a sequence i′ = pda(i1), pda(i2), . . . , pda(il) = j′ such that pda(im) is
reflected to pda(im+1) by some generator in S′. Let us define

Ω̂da(u),x = {pda(i) : i ∈ Ωu,x}.

In fact, if x ̸= a then Ω̂da(u),x is the same set as Ωda(u),x. The only prob-

lematic set is Ω̂da(u),a = {(i′, i′ + 1) : 1 ≤ i′ < |da(u)| and for which ∃i ∈
Ωu,a s.t. pda(i) = (i′, i′ + 1)}.

Now, consider the generator (p′, q′) ∈ S′ obtained from (p, p + 2q) ∈ S,
i.e. (p′, q′) = (|da(up−1)| + 1, |da(up+2q)|). The length of the palindrome
determined by the generator (p′, q′) is even because |da(u[p, p + q − 1])| =
|da(u[p+q+1, p+2q])| and |da(u[p+q])| = 2. Hence a pair of two consecutive
positions of da(u), namely the positions of pda(p + q) ∈ Ω̂da(u),a, is now in
the middle of this palindrome (p′, q′) thus these two positions reflect to each
other and they have to have the same letter in word da(u). Because of the
pairwise reflections among the set Ω̂da(u),a, the positions of u according to
the pairs in this set contain the same letter a.

So we have that Ω̂da(u),x = Ωda(u),x for x ̸= a. In the case x = a the

positions covered by the pairs in Ω̂da(u),a are exactly the positions in Ωda(u),a.
This shows that there exists a path as described in Lemma 88 between each
positions in Ωda(u),x for any x ∈ Σ thus S′ palindromically generates the
doubled word da(u) and this ends the proof.
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Corollary 91. Let a ∈ Σ and u ∈ Σn. Then for A = {a} we have

µ(dA(u)) ≤ µ(u) + 1.

Proof. The result is clear if the symbol a does not occur in u since in this
case dA(u) = u. Thus we can assume that a occurs in u. Suppose S ⊆ S(|u|)
palindromically generates u and µ(u) = #S. If S contains a generator that
determines a palindrome of odd length whose center is equal to a, then by
Lemma 90 we deduce that µ(dA(u)) ≤ µ(u) < µ(u)+1. If no such generator
exists, then we can add a “trivial” generator (i, i) where i is such that
u[i] = a. Now S ∪{(i, i)} has µ(u)+ 1 elements and the result follows again
from Lemma 90.

Next we give an example of this result and as another example we refer
to the end of this chapter, to Example 108.

Example 92. Consider a palindrome u = aba which can be generated
by one palindromic generator (1,3). The doubled word d{a}(u) = aabaa
can be generated by the set {(1, 5), (1, 2)} and µ(d{a}(u)) = µ(u) + 1. If
we instead double the letter b then we do not need any additional genera-
tors, i.e., the doubled word d{b}(u) = abba can be generated by (1, 4) and
µ(d{b}(u)) = µ(u).

The next lemma will be used several times, especially, in the proof of
Lemma 104.

Lemma 93. Let w ∈ {0, 1}∗ be an unbordered word of length n which is
palindromically generated by a set S ⊆ S(n) with #S = 3. Then w has at
most four leaves. Moreover, there are at most two leaves with label 0, and
at most two leaves with label 1.

Proof. We note first that since w is unbordered, the longest palindromic
prefix U and the longest palindromic suffix V of w do not overlap. Indeed,
if U = ux and V = xv then w has a border xR; a contradiction.

Let S = {(1, i), (j, n), (k,m)}. Since the maximal palindromes U and V
do not overlap, we have i < j, and hence every path starting from a leaf has
a unique continuation to a new position until the path enters another leaf.
Therefore, there is at most one path for the letter 0 and at most one for the
letter 1. These two paths necessarily consume every position of w, and the
endpoints of these paths are the leaves of S.

5.3 Main results

Finally we are ready to express and prove our main results concerning palin-
dromic generating sets of words. First we give a result that in a sense jus-
tifies our study. This first main result concerns the well known Thue-Morse
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infinite word

T = 01101001100101101001 . . .

defined as the fixed point beginning in 0 of the morphism τ : {0, 1}∗ →
{0, 1}∗ given by τ(0) = 01 and τ(1) = 10. We prove that such a number
of palindromes in a palindromic generating set that would be enough for all
factors of Thue-Morse word is not finite.

Theorem 94. For each positive integer n there exists a factor u of T with
µ(u) ≥ n, i.e., ψ(T) = +∞.

Proof. Set tk = τk(0) for k ≥ 0. We will show that µ(t2k) > µ(t2k−2) for
each k > 1 from which it follows immediately that ψ(T) = +∞. For each
k ≥ 0 there exists S2k ⊆ S(22k) which palindromically generates t2k and
µ(t2k) = #S2k. We first observe that the prefix t2k of T of length 22k is
a palindrome, since t2k = t2k−1t

R
2k−1. Also, since T is overlap-free (see for

instance [68]), it follows that if v is a palindromic factor of t2k, either v
lies completely in the prefix t2k−1 or completely in the suffix tR2k−1, or its
midpoint is the midpoint of t2k. There necessarily exists a generator in S2k
that shares the middle point with t2k in order to relate an occurrence of 0
in the prefix t2k−1 with an occurrences of 0 in the suffix tR2k−1 of t2k. Such

a generator can always be replaced by the full palindrome F = (1, 22k), and
thus without loss of generality we can assume that F ∈ S2k.

If I = (i, j) ∈ S2k lies in the suffix tR2k−1 of t2k, i.e., if i > 22k−1, then
we replace I by its reflection I ′ = ρF (I) which lies entirely in the first half
of t2k. Since ρI = ρFρI′ρF on the domain of ρI , the set (S2k \ {I}) ∪ {I ′}
generates t2k. In this fashion we obtain a generator set S′

2k consisting of F
and a set of pairs (i, j) where j ≤ 22k−1. Thus S′

2k \ {F} palindromically
generates the prefix t2k−1 of t2k. Since t2k−2 is a factor of t2k−1, it follows
from Lemma 89 that µ(t2k) > µ(t2k−1) ≥ µ(t2k−2) as required.

So there exist infinite binary words x that have ψ(x) = +∞. On the
other hand, we we will prove the existence of aperiodic binary words x′ for
which ψ(x′) is just three. In fact, we obtain a complete classification of such
words. Next we show that ψ(y) ≥ 3 always for aperiodic words y.

Lemma 95. If x ∈ Σω is aperiodic, then ψ(x) ≥ 3.

Proof. Let r = #Σ and let x ∈ Σω be aperiodic. Suppose to the contrary
that ψ(x) ≤ 2. By Lemma 86, x contains an unbordered factor w of length
|w| ≥ 2r + 1. If w is palindromically generated by a singleton set {I} ⊆
S(|w|), then w contains at least r + 1 distinct symbols, a contradiction. If
w is palindromically generated by a set {(1, p), (q, |w|)} ⊆ S(|w|) of size 2,
then as w is unbordered, it follows that the palindromic prefix w[1, p] does
not overlap the palindromic suffix w[q, |w|] (i.e., p < q). It follows again
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that w must have at least r + 1 distinct symbols, a contradiction. Hence,
ψ(x) ≥ 3.

Now we are ready to express the main result of this chapter. The proof
of this theorem is given in the following subsection.

Theorem 96. Let u ∈ {0, 1}+. Then µ(u) ≤ 3 if and only if u is a factor
of a double Sturmian word.

Combining Lemma 95 and Theorem 96 we deduce that:

Corollary 97. Let x ∈ {0, 1}ω be aperiodic. Then ψ(x) = 3 if and only if x
is double Sturmian. In particular, if ψ(x) = 3 then x is uniformly recurrent.

5.3.1 Proof of Theorem 96

We begin by showing that every factor of a double Sturmian word is palin-
dromically generated by a set S of size at most 3. We recall the following
fact which is a consequence of a result in [25] (see also [17]):

Lemma 98 (Proposition 22 in [7]). A word x ∈ {0, 1}∗ is a central word if
it is a power of a single letter or if it satisfies the equations x = u01v = v10u
with u, v ∈ {0, 1}∗. Moreover in the latter case u and v are central words
and setting p = |u| + 2 and q = |v| + 2, we have that p and q are relatively
prime periods of x and min{p, q} is the least period of x.

We also recall the following extremal property of the Fine and Wilf
theorem [36] due to de Luca and Mignosi [26]

Lemma 99 (Proposition 23 in [7]). A word x is a central word if and only
if there exist relatively prime positive integers p and q with |x| = p + q − 2
such that x has periods p and q.

We will also use the following property by Lothaire [69] several times to
find a period of a palindrome which has a palindromic prefix (and suffix).

Lemma 100 ([69]). If uv = vu′, then |u| is a period of uv.

Proposition 101. Let y be a factor of a double Sturmian word ω ∈ {0, 1}ω.
Then µ(y) ≤ 3.

Proof. Let y be a factor of a double Sturmian word ω. Thus there exists a
Sturmian word ω′ ∈ {0, 1}ω and a subset A ⊆ {0, 1} such that ω is a suffix
of dA(ω

′). Let y′ be a shortest unbordered factor of ω′ such that y is a factor
of dA(y

′). Because ω′ is aperiodic and uniformly recurrent, by Lemma 86
such a factor y′ always exists. Now by Lemma 89 it is enough to show that
dA(y

′) is palindromically generated by a set with at most three generators.
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By Lemma 90 it suffices to show that y′ is palindromically generated by a
set S′ with #S′ ≤ 3 and containing two generators which determine two
palindromes of odd length in y′ with distinct central symbols .

Since y′ is unbordered, by Lemma 87, we may write y′ = axb where
x ∈ {0, 1}∗ is a central word and {a, b} = {0, 1}. Without loss of generality
we can assume that a = 0 and b = 1. We first consider the case where x
is a power of a single letter. If x is empty, then y′ = 01 is palindromically
generated by S′ = {(1, 1), (2, 2)}. If x = 0n with n ≥ 1, then y′ = 0n+11
is palindromically generated by S′ = {(1, n), (1, n + 1), (n + 2, n + 2)}. If
x = 1n with n ≥ 1, then y′ = 01n+1 is palindromically generated by S′ =
{(1, 1), (2, n+ 1), (2, n+ 2)}. In all of these cases there exist two generators
which determine odd length palindromes with distinct central symbols.

Next we assume x is not a power of a single letter. By Lemma 98 there
exist central words u and v such that y′ = 0u01v1. Put U = 0u0 and
V = 1v1. We claim that y′ is palindromically generated by the set

S′ = {(1, |U |), (|y′| − |V |+ 1, |y′|), (2, |x|+ 1)}.

We first note that y′[1, |U |] = U , y′[|y′|−|V |+1, |y′|] = V and y′[2, |x|+1] =
x, whence y′[1, |U |], y′[|y′| − |V |+1, |y′|], y′[2, |x|+1] ∈ P. Next let B be a
new alphabet and let w ∈ B∗ be a word with |w| = |y′|. Set U ′ = w[1, |U |],
V ′ = w[|y′| − |V | + 1, |y′|], and x′ = w[(2, |x| + 1)] so that w = a′x′b′ with
a′, b′ ∈ B. Suppose U ′, V ′, x′ ∈ P. It follows, e.g., from Lemma 100 that
x′ has now periods |U ′| = |U | and |V ′| = |V | and by Lemma 98 they are
relatively prime because |U | and |V | are.

Since |x′| = |U ′|+ |V ′| − 2, we deduce by Lemma 99 that x′ is a central
word. Thus x′ is either a power of a single letter or it is isomorphic to x. In
the first case w is also a power of a single letter. In the second case, w is word
isomorphic to y′. Thus in either case there exists a mapping ν : Σ → Σ′ with
ν(y′) = w. So y′ is palindromically generated by S′ = {(1, |U |), (|y′| − |V |+
1, |y′|), (2, |x|+1)} where two of the associated palindromes have odd length.
Indeed, by Lemma 98 |U | and |V | are relatively prime and |x| = |U |+|V |−2.
So either |U | and |V | are odd or only the other one is odd but then |x| is
odd, too. Because y′ ∈ {0, 1}∗ is unbordered and palindromically generated
by a set of size 3, Lemma 93 gives that y′ has at most two leaves with label
0 and at most two leaves with label 1. Thus the central symbols of these
odd palindromes are necessarily distinct since the first and the last letter of
y′ are also leaves with different symbols.

It follows from the following refinement of Lemma 98 that the generating
set obtained in Proposition 101 for y = axb, where x is a central word,
includes both the longest palindromic prefix and the longest palindromic
suffix of y.
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Proposition 102. Let x ∈ {0, 1}∗ be a central word which is not a power
of a single letter. Let u and v be as in Lemma 98. Then 0u0 (resp. 1v1)
is the longest palindromic prefix (resp. suffix) of 0x1. Moreover, two of the
three palindromes {x, 0u0, 1v1} are of odd length and have distinct central
symbols.

Proof. Since u is a central word and hence a palindrome, we have that 0u0
is a palindromic prefix of 0x1. It remains to show that it is the longest such
prefix. Suppose to the contrary that 0x1 admits a palindromic prefix 0u′0
with |u′| > |u|. Then by Lemma 98, we have that p = |u|+2, q = |v|+2 and
p′ = |x| − |u′| are each periods of x. Since p′ = |x| − |u′| < |x| − |u| = q, it
follows from Lemma 98 that the min{p, q} = p. Also, as |x| = |u|+ |v|+2 ≤
|u′|+ |v|+ 1, we deduce that

|x| ≥ |x| − |u′|+ |x| − |v| − 1 = p′ + p− 1 ≥ p′ + p− gcd(p, p′).

But since both p and p′ are periods of x, it follows from the Fine and Wilf
Theorem [36] that x has period gcd(p, p′) which by Lemma 98 is equal to
p. Whence p divides p′. Let z denote the suffix of x of length p′. Since 0u′0
is a palindromic prefix of 0x1 it follows that z begins in 0. On the other
hand, since 10u is a suffix of x of length p and p divides p′, it follows that z
begins in 1. This contradiction proves that 0u0 is the longest palindromic
prefix of 0x1. Similarly one deduces that 1v1 is the longest palindromic suffix
of 0x1.

By Lemma 98 p and q are relatively prime so two of the three palindromes
{x, 0u0, 1v1} have odd length and by Lemma 93 the central symbols of these
have to be different.

We will next give a proof for the converse part of Theorem 96, namely:

Proposition 103. Suppose w ∈ {0, 1}+ and µ(w) ≤ 3. Then w is a factor
of a double Sturmian word ω.

For the proof of the proposition we will first give a few essential lemmas.
In the following lemmas we use a and b as variables of letters such that
{a, b} = {0, 1}. Lemma 93 on the number of leaves entails some immediate
restrictions on w.

Lemma 104. Suppose w ∈ {a, b}∗ be such that µ(w) ≤ 3. Then

(i) The words a3 and b3 do not both occur in w.

(ii) For odd k, bakb and ak+2 do not both occur in w.

(iii) The words bakb and ak+3 do not both occur in w for any k ≥ 1.

(iv) All three words ak+2, bak+1b and bakb do not occur in w for any k ≥ 1.
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Proof. In each of the cases we assume that w with |w| = n is a minimal
counter example, i.e., none of its proper factors is a counter example. By
the minimality assumption, w begins and ends in the expressed forbidden
words. Since also the reverse wR is a counter example, we may assume that
the first letter of w is b.

We remind that if w is palindromically generated by S′ then all the
positions of w have to be covered by palindromic generators of S′. So S′

has to contain generators corresponding to a prefix (resp. a suffix) of the
longest palindromic prefix (resp. suffix) of w.

For Case (i), let w = b3ua3 for some u. By the minimality assumption, w
is unbordered, and w is palindromically generated by the set S = {(1, p), (n−
s, n), (i, j)} for some 1 ≤ p ≤ 3, 0 ≤ s ≤ 2 and some (i, j) that determines
the palindrome w[i, j]. Here either i > 3 or j < n− 2, since the palindrome
w[i, j] starts and ends with the same letter. So there are at least three leaves
for a or at least three leaves for b which contradicts Lemma 93.

� �bakb � �as+1� �
w[i, j]

Figure 5.3: The palindromic factors of w in Case (ii).

For Case (ii), let w = bakbuak+2 for some u. Since w is minimal, it is
unbordered, and it is palindromically generated by S = {(1, k + 2), (n −
s, n), (i, j)} for some 1 ≤ s ≤ k + 1 and some (i, j). These generators deter-
mine the factors w[1, k+2] = bakb, w[n−s, n] = as+1 and w[i, j], respectively,
where the palindrome w[i, j] necessarily misses the first b of w[1, k + 2] and
the last two a’s of w[n − s, n]; see Figure 5.3. Also, w[1, k + 2] is of odd
length, since k is assumed to be odd, and thus its middle position is the
third leaf with a letter a. This contradicts Lemma 93.

For Case (iii), let w = bakbuak+3. Since w is minimal, w is unbordered,
and it is palindromically generated by S = {(1, k + 2), (n − s, n), (i, j)} for
some 2 ≤ s ≤ k + 2 and some (i, j). The palindrome w[i, j] misses at least
the last three a’s of w. Again Lemma 93 yields a contradiction.

For Case (iv), consider first any factor of the form v = bakbuak+1 of w,
where bakb occurs only as a prefix and ak+1 only as a suffix of v. Again v
is unbordered, and S contains a generator (i, j), where i > 1 and j < |v|,
i.e., the palindrome v[i, j] misses at least the suffix a and the prefix b of v.
By Case (ii), u ̸= ab (for otherwise k + 1 ≥ 3 and w contains both bab and
a3), and hence, by Lemma 93, u ∈ {ε, b}. Similarly, if v = ak+1ubakb then
u ∈ {ε, b}. This proves the case since if ak+2 and bakb occur in w, by the
above bak+1b does not occur in w.
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The key result for the converse is stated in Lemma 106 which gives a
simplified criterion for pairs witnessing that a word is unbalanced when
compared to the general case of Lemma 105. By Proposition 2.1.3 of
Lothaire [69], we have

Lemma 105 ([69]). If w ∈ {a, b}∗ is unbalanced then there is a palindrome
u such that both aua and bub are factors of w.

Lemma 106. Suppose w ∈ {a, b}∗ is unbalanced and µ(w) ≤ 3. Let aua
and bub be any palindromic factors of w. Then u = ak or u = bk for some
even k ≥ 0.

Proof. By Lemma 104 we can assume without loss of generality that b3 is
not a factor of w. Also, the case for u = ε is clear, and thus we can assume
that u ̸= ε.

Consider a shortest factor z of w containing both aua and bub. Then
z begins with aua and ends with bub, or vice-versa, and z has unique oc-
currences of the factors aua and bub. We can suppose that z starts with a,
since otherwise we take the reverse of z. Now, aua is a maximal palindromic
prefix of z, since a longer palindromic prefix of z would contain aua as a
suffix. Similarly bub is a maximal palindromic suffix of z.

By Lemma 89, µ(z) ≤ 3. Since u is a palindrome, the factors aua and
bub do not overlap. Indeed, if z = au1bu2au3b, where u = u1bu2 = u2au3,
then by taking a reverse of u, we have uR2 bu

R
1 = u2au3, and so buR1 = au3; a

contradiction since a ̸= b. Since aua and bub do not overlap and z is chosen
to be minimal, z is unbordered, and thus Lemma 93 applies to z.

Let the palindromic generators of z be (1, p) (s, n) and (i, j). Then z[1, p]
is a prefix of the maximal palindromic prefix aua of z, z[s, n] is a suffix of
the maximal palindromic suffix bub of z, and z = xz[i, j]y, where x and y
are non-empty. By Lemma 93, |x|+ |y| ≤ 4, and |x|, |y| ≥ 1 since two of the
leaves (one a and one b) reside at the ends of z. We have |x| ≠ |y|, since the
last letter of aua and the first letter of bub cannot be reflected to each other
by the generator (i, j). Therefore, either |x| = 1 or |y| = 1. We assume that
|y| = 1 (i.e., y = b) and |x| > 1, the proof for |x| = 1 and |y| > 1 being
similar. We now have found three leaves, two in the prefix of z and one at
the end. Hence, we have z = z[1, p]vz[s, n] where |v| ≤ 1 since the positions
in v are also leaves.

Since bub is a maximal palindromic suffix of z and y = b, z[i, j] is pre-
ceded by the letter a. It follows that both leaves for the letter a occur in the
prefix x, and the remaining fourth leaf resides at a position for the letter b.
In particular, if v ̸= ε then v = b.

Suppose first that |u| is odd. If |v| = 1, and thus v = b, then the position
of v is the fourth leaf, and z[1, p] = aua or z[s, n] = bub. Here z[s, n] ̸= bub
since otherwise the midpoint of bub would be a fifth leaf. Hence z[1, p] = aua
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and the midpoint of aua is a leaf. To avoid a fifth leave, it must be at position
i = 2, i.e., |u| = 1, and consequently z = acabcb where c = a because b3 does
not occur in z. However, µ(aaabab) = 4. Therefore, by Lemma 93, v = ε, in
which case, z[1, p] = aua and z[s, n] = bub, and they both have odd length.
Again, necessarily |u| = 1 to avoid a fifth leaf, and as above z = aaabab with
µ(z) = 4.

Consequently, |u| must be even. Let u = u1u2 be such that z[i, j] =
u2atbu1u2 for some t and hence z = au1u2atbu1u2b. By the above, we have
|t| ≤ 1, and if |t| = 1, then z[1, p] = aua and z[s, n] = bub. Here u2 is a
palindrome since z[i, j] is one. Also, in all cases both u1 and t consist of
leaves only, and hence 1 ≤ |u1| + |t| ≤ 2. Since u is a palindrome, we have
u = u1u2 = uR2 u

R
1 = u2u

R
1 , and, by Lemma 100, |u1| is a period of u.

If t ̸= ε, i.e., t ∈ {a, b}, then |u1| = 1, and thus u = ak for some k.
Assume then that t = ε. Now, |u1| = 1 or |u1| = 2. If |u1| = 1, then
again u = ak for some k. Finally, if |u1| = 2, then z = z[1, p] · z[s, n] with
z[1, p] = aua and z[s, n] = bub by Lemma 93, since the three positions of
the prefix au1 and the last position of z are leaves. Also, u1 = ba since
z[i, j] and thus also its middle factor abu1 is a palindrome. Since z[i, j] is a
palindrome, and |u1| is a period of u, we have z[1, p] = aua = a(ba)i+1ba for
some i. However, now |u| is odd; a contradiction. This proves the claim.

For w ∈ {0, 1}+ ∪ {0, 1}ω, we define A(w) ⊆ {0, 1} by the rule a ∈ A(w)
if and only if w has no factors of the form ba2k+1b for any k ≥ 0 with a ̸= b.
If w is a finite word, we define the lean word of w to be the shortest word
u such that dA(w)(u) contains w as a factor. We extend this notion to the
infinite case as follows: If w ∈ {0, 1}ω, we say u ∈ {0, 1}ω is the lean word
of w if dA(w)(u) contains w as a suffix and for all v ∈ {0, 1}ω, if w is a suffix
of dA(w)(v), then u is a suffix of v. Clearly, if w is not periodic then in each
case the lean word of w is uniquely determined by w.

For instance, if w = 0010011, then A(w) = {0} and the lean word of w is
u = 01011. Similarly if w = 011001, then A(w) = {0, 1} and the lean word
u = 0101. For w = 0010110, we have A(w) = ∅ and hence w is its own lean
word.

The proof of the next lemma is based on Lemmas 104, 105 and 106.

Lemma 107. Let w ∈ {0, 1}∗ be a binary word with µ(w) ≤ 3. Then the
lean word u of w is balanced.

Proof. Let w be a shortest counter example to the claim such that its lean
word u is unbalanced. By appealing to symmetry and Lemma 104(i), we
can assume that w contains no occurrences of 111.

Since u is not balanced, it has factors 0v0 and 1v1 for some palindrome v
according to Lemma 105. Now, also 0dA(w)(v)0 and 1dA(w)(v)1 are palin-

dromes, and they are factors of w. By Lemma 106, we have dA(w)(v) = 0k
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for some even integer k. It follows that v = 0m for m = k/2 or m = k
depending on whether 0 is in A(w) or not. Here u has factors 0m+2 and
10m1.

Suppose first that k > 0. Since w has factors 0k+2 and 10k1, it has no
blocks of 0’s of odd length by Lemma 104 (iii) and (iv). Hence 0 ∈ A(w) by
the definition of A(w), but then dA(w)(u) has factors 0

2m+4 and 102m1, and
thus w has factors 02m+3 and 102m1 contradicting Lemma 104(iii).

Suppose then that k = 0. Since now 11 occurs in u but 111 does not
occur in w, we have 1 /∈ A(w). By the definition of A(w), the word 010 must
be a factor of u, and hence by the minimality of w, we have u = 00(10)r11 for
some positive r ≥ 1 (the case u = 11(01)r00 being similar). From this also
0 /∈ A(w) follows, and hence u = w. However, the palindromic generators
of w are now (1, 2) that determines the prefix w[1, 2] = 00, and (n − 1, n)
that determines the suffix w[n − 1, n] = 11, and (i, j) that determines the
factor w[i, j]. But the palindrome w[i, j] cannot overlap with both w[1, 2]
and w[n − 1, n] and thus the two 0’s in w[1, 2] and the latter 0 are not
equivalent or the two 1’s in w[n− 1, n] are not equivalent to a preceding 1;
a contradiction.

Finally, we can complete the proof of the converse part.

Proof of Proposition 103. By Lemma 107, if µ(w) ≤ 3, then w is a factor
of the word dA(w)(u) for a balanced word u. Since the factors of Sturmian
words are exactly the balanced words, see [69], the claim follows.

Thus now we have also finished the proof of the main result stating that
for binary words µ(u) ≤ 3 if and only if u is a factor of a double Stur-
mian word. The proof of this main result, Theorem 96, is straightforwardly
concluded from the propositions 101 and 103. We still have to prove the
corollary of this theorem given in Corollary 97.

Proof of Corollary 97. Let x ∈ {0, 1}ω be aperiodic. By Proposition 95,
ψ(x) ≥ 3.

If x is double Sturmian then, by Proposition 101, µ(w) ≤ 3 for all factors
of x, and thus by definition, ψ(x) = 3.

For the converse, assume that ψ(x) = 3, and consider the set A(x) ⊆
{0, 1} together with the lean word y of x. Then x is a suffix of dA(x)(y). We
need to show that y is Sturmian. Let v be a factor of y, and let u be a factor
of y such that u contains v and dA(x)(u) contains a factor of the form ba2k+1b
with k ≥ 0 for each a /∈ A(x). Hence A(dA(x)(u)) = A(x), and therefore u
is the lean word of dA(x)(u); see Figure 5.4. By Lemma 89, µ(dA(x)(u)) ≤ 3,
and thus Lemma 107 yields that u, and hence also v, is balanced. It follows
that y is Sturmian as required.
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Figure 5.4: Proof of Corollary 97: The word v is extended to a lean factor
u of dA(x)(u).

5.4 Conclusions and perspectives

For an infinite word w the value of ψ(w) means the minimal number of
palindromes for which each factor of w can be generated up to word isomor-
phism. As a conclusion, we have shown that for all infinite binary aperiodic
words w we need ψ(w) ≥ 3. We have also shown that there exists an infinite
binary word w that has ψ(w) = +∞, namely, for example, the well-known
Thue-Morse word. The main result is that we are able to characterize such
infinite aperiodic binary words x that have ψ(x) = 3. Surprisingly, all these
words are related to Sturmian words.

We finish the section of Conclusions and perspectives and at the same
time the whole chapter by giving one more example. This shows how we can
construct infinite binary words that can be generated, for example, by four
palindromes. So there are many open problems for words having different
values of ψ() and for different sizes of alphabets.

Example 108. Let us construct a word which is palindromically gener-
ated by four palindromes. Let y′ be a factor of a double Sturmian word
d{0,1}(w) = w′ ∈ {0, 1}ω obtained from a Sturmian word w by doubling
the letters. By Proposition 101, y′ can be generated by three palindromes.
Assume that y′ contains both 0 and 1 and consider the word d{0}(y

′). Now,
by Lemma 91, d{0}(y

′) can be generated by four palindromes, and three
generators are not enough unless d{0}(y

′) is a factor of a double Sturmian
word.

Take, e.g., φ to be the Fibonacci word, φ = 0100101001001 . . . and thus
d{0,1}(φ) = 00110000110011000011000011 . . .. Let y′ = d{0,1}(φ)[6, 19] =
00011001100001. Now S = {(1, 12), (2, 7), (9, 14)} is a palindromic generat-
ing set for y′. In addition, now the word d{0}(y

′) = 00000011000011000000001
is generated by four palindromes, namely {(1, 2), (1, 20), (3, 12), (14, 23)},
where (1, 2) determines an added short palindrome 00.
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Appendix A

Cube-freeness

/**

* To generate 2-abelian cube-free words over an alphabet {0,1}.

*/

public class Cube {

//word is the list of letters and of size border

private int[] word;

private int border;

//You give the maximal length of the word

//and the three first letters to the constructor

public Cube(int size, int fi, int se, int th) {

word = new int[size];

word[0] = fi;

word[1] = se;

word[2] = th;

for(int t = 3; t < size; t++){ word[t] = 3; }

border = size;

}

//generating() tries to generate a 2-abelian

//cube-free word

public void generating(){

boolean tob = false; //tob == true, to add letter 1

int i = 3;
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while(i < border){

boolean repetition = false;

if(tob){ word[i] = 1; }

else{ word[i] = 0; }

int maxl = (i+1)/3;

//maxl is the maximal length of word to be repeated

int j = 1;

while(j < maxl+1 & !repetition){

if(word[i] == word[i-j] &

word[i] == word[i-(2*j)] &

word[i-j+1] == word[i-(2*j)+1] &

word[i-j+1] == word[i-(3*j)+1]){

int[] u = new int[3]; //the first word

int[] v = new int[3]; //the second word

int[] w = new int[3]; //the third word

u = this.factorcount(i-j+1, i);

v = this.factorcount(i-(2*j)+1, i-j);

w = this.factorcount(i-(3*j)+1, i-(2*j));

if(u[0] == v[0] & v[0] == w[0] & u[1] == v[1] &

v[1] == w[1] & u[2] == v[2] & v[2] == w[2]){

System.out.println(i);

repetition = true;

}

else{ j = j+1; } //factors are different

}

else{ j = j+1; } //pref&suf doesn’t hold

}

if(repetition){

if(word[i] == 0){

tob = true;

repetition = false; //i doesn’t change

}

else{ //word[i] == 1, have to go backwards

int k = i;

while(k > 2 & word[k] == 1){

word[k] = 3;

k = k-1;

}

if(k > 2){

i = k;

tob = true;
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}

else { //you reached the beginning

System.out.println(i);

System.out.println("Termination");

i = border;

}

}

}

else{ //repetition==false

tob = false;

i = i+1;

}

}

System.out.println(i);

System.out.println("You reached the border");

}

//factorcount() counts the number of factors 00,

//01 and 10 together and 11

public int[] factorcount(int beg, int end){

int[] result = new int[3];

for(int i = beg; i < end; i++){

if(word[i] + word[i+1] == 0){

result[0] = result[0] + 1; }

else{

if(word[i] + word[i+1] == 1){

result[1] = result[1] + 1; }

else{ result[2] = result[2] + 1; }

}

}

return result;

}

public String toString(){

String asword = "[";

for(int i = 0; i < border; i++){

asword = asword + word[i]; }

return asword + "]";

}
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public int[] aslist(){

int[] copy = new int[border];

for(int i = 0; i < border; i++){ copy[i] = word[i]; }

return copy;

}

}
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Appendix B

Square-freeness

/**

* To generate 3-abelian square-free words over

* an alphabet {0,1,2}.

*/

public class Square {

//word is the list of letters and of size border

private int[] word;

private int border;

//You give the maximal length of the word

//and the three first letters to the constructor

public Square(int size, int fi, int se, int th) {

word = new int[size];

word[0] = fi;

word[1] = se;

word[2] = th;

for(int t = 3; t < size; t++){ word[t] = 4; }

border = size;

}

//generating() tries to generate a 3-abelian

//square-free word

public void generating(){

boolean tob = false; //tob == true, to add letter 1
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boolean toc = false; //toc == true, to add letter 2

int i = 3;

while(i < border){

boolean repetition = false;

if(tob){ word[i] = 1; }

else{

if(toc){ word[i] = 2; }

else{ word[i] = 0; }

}

int maxl = (i+1)/2;

//maxl is the maximal length of word to be repeated

if(word[i] == word[i-1]){ repetition = true; }

if(word[i] == word[i-2] & word[i-1] == word[i-3]){

repetition = true;

}

int j = 3;

while(j < maxl+1 & !repetition){

if(word[i] == word[i-j] &

word[i-j+1] == word[i-(2*j)+1] &

word[i-1] == word[i-j-1] &

word[i-j+2] == word[i-(2*j)+2]){

int[] u = new int[12]; //the first word

int[] v = new int[12]; //the second word

u = this.factorcount(i-j+1, i);

v = this.factorcount(i-(2*j)+1, i-j);

if(u[0] == v[0] && u[1] == v[1] &&

u[2] == v[2] && u[3] == v[3] &&

u[4] == v[4] && u[5] == v[5] &&

u[6] == v[6] && u[7] == v[7] &&

u[8] == v[8] && u[9] == v[9] &&

u[10] == v[10] && u[11] == v[11]){

System.out.println(i);

repetition = true;

}

else{ j = j+1; } //factors are different

}

else{ j = j+1; } //pref&suf doesn’t hold

}

if(repetition){

if(word[i] == 0){

tob = true;
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toc = false;

repetition = false; //i doesn’t change

}

else{

if(word[i] == 1){

tob = false;

toc = true;

repetition = false; //i doesn’t change

}

else{ //word[i] == 2, have to go backwards

int k = i;

while(k > 2 & word[k] == 2){

word[k] = 4;

k = k-1;

}

if(k > 2){

i = k;

if(word[i] == 0){

tob = true;

toc = false;

}

else{

tob = false;

toc = true;

}

}

else{ //you reached the beginning

System.out.println(i);

System.out.println("Termination");

i = border;

}

}

}

}

else{ //repetition==false

tob = false;

toc = false;

i = i+1;

}

}

System.out.println(i);

System.out.println("You reached the border");

}
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//factorcount() counts the number of factors 010, 012,

//020, 021, 101, 102, 120, 121, 201, 202, 210 and 212

public int[] factorcount(int beg, int end){

int[] result = new int[12];

for(int i = beg; i < end-1; i++){

if(word[i] == 0){

if(word[i+1] == 1){

if(word[i+2] == 0){ result[0] = result[0]+1; }

else{ result[1] = result[1]+1; }

}

else{

if(word[i+2] == 0){ result[2] = result[2]+1; }

else{ result[3] = result[3]+1; }

}

}

if(word[i] == 1){

if(word[i+1] == 0){

if(word[i+2] == 1){ result[4] = result[4]+1; }

else{ result[5] = result[5]+1; }

}

else{

if(word[i+2] == 0){ result[6] = result[6]+1; }

else{ result[7] = result[7]+1; }

}

}

else{

if(word[i+1] == 0){

if(word[i+2] == 1){ result[8] = result[8]+1; }

else{ result[9] = result[9]+1; }

}

else{

if(word[i+2] == 0){ result[10] = result[10]+1; }

else{ result[11] = result[11]+1; }

}

}

}

return result;

}
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public String toString(){

String asword = "[";

for(int i = 0; i < border; i++){

asword = asword + word[i]; }

return asword + "]";

}

public int[] aslist(){

int[] copy = new int[border];

for(int i = 0; i < border; i++){ copy[i] = word[i]; }

return copy;

}

}
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[48] M. Huova and J. Karhumäki. On k-Abelian Avoidability. In Combi-
natorics and graph theory. Part IV, RuFiDiM’11, Zap. Nauchn. Sem.
POMI 402:170–182. POMI, 2012. Translation of the volume in: J.
Math. Sci. (N. Y.), 192(3):352–358, 2013.
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[66] A. Lepistö. Repetitions in Kolakoski Sequence. In G. Rozenberg and
A. Salomaa, editors, Developments in Language Theory, 130–143, 1993.

[67] F. W. Levi. On semigroups. Bull. Calcutta Math. Soc., 36:141–146,
1944.

[68] M. Lothaire. Combinatorics on Words. Addison-Wesley, 1983.

[69] M. Lothaire. Algebraic Combinatorics on Words. Cambridge University
Press, 2002.

[70] M. Lothaire. Applied Combinatorics on Words. Cambridge University
Press, 2005.

[71] R. C. Lyndon and M. P. Schützenberger. The equation aM = bNcP in
a free group. Michigan Math. J., 9:289–298, 1962.

[72] G. S. Makanin. The problem of the solvability of equations in a free
semigroup. Mat. Sb. (N.S.), 103:147–236, 1977. In Russian and a
English translation in Math. USSR-Sb. 32:129–198, 1997.

[73] S. Mantaci and A. Restivo. Codes and Equations on Trees. Theoret.
Comput. Sci., 255:483–509, 1998.

[74] S. Mantaci and A. Restivo. On the defect theorem for trees. In A. Ádám
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Errata

A correction for Lemma 89

The Lemma 89 is incorrect as stated in the dissertation on page 83. Here
we give a corrected version of Lemma 89. We will state the lemma for a
binary alphabet because we will use only that case afterwards in Chapter 5.
Fortunately, the new version of Lemma 89 is still efficient enough for the
conclusions made from it in Chapter 5.

Lemma 89. Let u ∈ {0, 1}+. Then µ(v) ≤ max{3, µ(u)} for all factors v
of u.

Proof. The result is clear in case µ(u) = +∞. So suppose S ⊆ S(|u|)
palindromically generates u and set k = #S. It suffices to show that if
u = ax = yb, where a, b ∈ {0, 1}, then max{µ(x), µ(y)} ≤ max{3, k}. We
prove only that µ(x) ≤ max{3, k} as the proof that µ(y) ≤ max{3, k} is
completely symmetric.

Suppose S = {I1, I2, . . . , Ik} palindromically generates u and let m ∈ N
be the largest integer such that I = (1,m) ∈ S. Let D = {r ∈ {1, 2, . . . , k} |
Ir = (1, q) with q < m}. Let

S′ = S ∪ {I ′r | r ∈ D} \ {Ir | r ∈ D}

where for each r ∈ D we set I ′r = ρI(Ir) = (m− q + 1,m) (see Fig. 5.1).

� �Ir � �I ′r� �
I

· · ·w

Figure 5.1: Reflecting the generators in S.

It follows that S′ also palindromically generates u and I is the only
generator in S′ containing the initial position 1. Whence 1 is a leaf w.r.t. S′,
and hence putting

S′′ = S′ ∪ {(2,m− 1)} \ {I}



it follows that either S1 = {(i− 1, j− 1)|(i, j) ∈ S′′} or S2 = S1 ∪{(|x|, |x|)}
palindromically generates the suffix x of u. The set S2 is for the case where
I = (1, |u|) and |u| is a leaf w.r.t. S′, and otherwise S1 will palindromically
generate x. If I = (1, |u|) and |u| is a leaf w.r.t. S′ then u = abna, for
some integer n ≥ 0. Clearly, µ(abna) ≤ 2 and x = bna is palindromically
generated by a set {(1, 1)}, {(1, 1), (2, 2)} or {(1, n), (2, n), (n + 1, n + 1)}
respectively in cases n = 0, n = 1 or n > 1. This proves the claim.
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