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—— Abstract

We show that every binary pattern of length greater than 14 is abelian-2-avoidable. The best
known upper bound on the length of abelian-2-unavoidable binary pattern was 118, and the best

known lower bound is 7.

We designed an algorithm to decide, under some reasonable assumptions, if a morphic word
avoids a pattern in the abelian sense. This algorithm is then used to show that some binary
patterns are abelian-2-avoidable. We finally use this list of abelian-2-avoidable pattern to show
our result. We also discuss the avoidability of binary patterns on 3 and 4 letters.
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1 Introduction

The avoidability of patterns in words has been widely studied since the work of Thue on
avoidability of repetitions [22, 23]. Thue wanted to know whether, for any word u and long
enough word w, there is always a non-erasing morphism A such that h(u) is a factor of w.
He answered negatively to the question by constructing an infinite word over three letters
that does not contain any image of AA, and an infinite word over two letters that does not
contain any image of AAA.

The formal notion of pattern was introduced in [2]. For two words P and w, we say that
w avoids the pattern P if there is no non-erasing morphism h such that h(P) is a factor of w,
or equivalently if there is no factor wyws ... w|p| in w such that Vi, j, P; = P; = w; = w;.
The avoidability of patterns was studied by Zimin [24] and many other authors worked on
the classification of avoidable patterns [4, 14, 15, 20, 21]. In particular Roth proved in [20]
that binary patterns of length greater than 6 are avoidable over the binary alphabet and in
[1] authors showed the existence of a pattern avoidable over 4 letters, but not avoidable over
3 letters. More recently it has been showed that patterns with m different letters of length
at least 3(2™~1) are 2-avoidable [3, 16].

Erdds proposed a commutative version of the results of Thue [8, 9]. An abelian square is
any non-empty word uv where u and v are permutations of each other. Erdds asked whether
there is an infinite abelian-square-free word over an alphabet of size 4 [8, 9]. After some
intermediary results (alphabet of size 25 by Evdokimov [10] and size 5 by Pleasant [17]),
Kerénen answered positively to Erdds’s question by giving a 85-uniform morphism (found
with the assistance of a computer) whose fixed point is abelian-square-free [11]. Moreover,
Dekking showed that it is possible to avoid abelian cubes on a ternary alphabet and abelian-
4-powers over a binary alphabet [7].

© Matthieu Rosenfeld;
37 licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 81; pp.81:1-81:11

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


https://core.ac.uk/display/62922484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.81
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

81:2

Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable

Following the question of Erdds we say that two words u and v are abelian equivalent,
denoted u &, v, if they are permutations of each other, for example: listen ~, silent. Let
P = P P,...P, be a pattern, where the P; are letters. Then we say that a word w € ¥*
realizes P in the abelian sense if there are wy,...,w, € X1 such that w = wyw, ... w, and
Vi,j, P = P; = w; =, wj. If a word w has no factor that realizes a pattern P in the
abelian sense, then w avoids P in the abelian sense, w is abelian-P-free. In Section 2 we
show that one can decide if the fixed point of a morphism avoids a given pattern. This
generalizes a result from [5] that tells that under some conditions one can decide if the fixed
point of a morphism avoids abelian-k-powers.

We say that a pattern is abelian-k-avoidable if there is a word from an alphabet of size
k that avoids this pattern. For any pattern P € A* the abelian-avoidability index of P
(denoted by A.(P)) is the smallest integer k such that P is abelian-k-avoidable or oo if
there is no such k. It is an abelian analog of the usual avoidability index of a pattern
P. For example A\,(ABA) = N (ABACABA) = o0, M\ (AA) = 4 [11], A\ (AAA) = 3
and A\, (AAAA) = 2 [7]. In [6] authors showed that binary pattern of length greater than
118 are abelian-2-avoidable and asked for a more precise characterization. We can use the
algorithm of Section 2 to show that every binary pattern of length greater than 14 are
abelian-2-avoidable.

In Section 2 we explain how to decide, under some conditions, whether a morphic word
avoids a given pattern in the abelian sense. In Section 3 we show that binary patterns of
length greater than 14 are abelian-2-avoidable. We also discuss the avoidability of binary
patterns over any finite alphabet and we raise some open questions.

2  Proving the decidability

In this part we explain how to decide, under some conditions, if the fixed point of a morphism
avoids some given pattern in the abelian sense.

We use terminology and notations of Lothaire [13]. For any morphism h : X* +— X*_ if
there is a € 3 and w € ¥* such that h(a) = aw, then the sequence (h"(a)),>¢ converges for
the usual topology on ¥* U X* and we denote by h*(a) = lim,_,o h™(a). Note that h¥(a) is
a fixed point of h. To any pattern P we associate the function ¢p : [1,|P]] — [1,|P]] such
that ¢p(i) = min{j : P; = P;} is the position of the first occurrence of the letter P; in P.

For any word w, we denote by [w]; the letter at position 7 in w (or w; if it is clear in the
context). For any word w, we denote by |w| the length of w and for any letter a € 3, |w]|,
is the number of occurrences of a in w. The Parikh vector of a word w € ¥*, denoted by
U(w), is the vector indexed by ¥ such that for every a € ¥, ¥(w)[a] = |w|,. Note that by
definition for any two words w and v, u =, v iff ¥(u) = ¥(v).

We associate to any morphism h : £* — ¥* a matrix Mj;, on ¥ x X such that (My)ap =
|h(b)|a. Note that from the definition we can deduce for any morphism h and any word u
the formula:

U(h(u)) = My ¥ (u).

[Mz|2
2

The induced norm of a matrix M € Ry, xm is given by |[|[M |2 = supzerm
is the Euclidean norm of v.

where ||v]]2

We generalize the notion of k-templates introduced in [5] in order to show Theorem 1.
Let A and X be two alphabets, and let P be a pattern over A, then a P-template over X is a
2(| P[4 1)-tuple of the form: [wq, v, w1,v2...,vp|,w p|] where for all i, w; € X*, v; € Z>l,
A word w € ¥* realizes (or is a realization of) a P-template t = [wo,v1,...,vp|, wp|] if
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there are uy,...,up| € 3+ such that w = wouiwiusws . ..upjwp| and Vi,j P, = P; =
\IJ(’LLZ) — \I/(Uj) =V; — Uy.

Each template can be associated to its set of realizations, but many templates are as-
sociated to the same set. We say that a P-template is normalized if for all i € [1,|P|],
pp(i) =1 = v; = ﬁ For any P-template, we can compute a normalized template that is
realized by the same set of words. Since one doesn’t change the set of realizations by adding
the same vector to all vectors corresponding to the same letter, one get the normalization
of a template by taking for all i v; = v; — v, (;y and w; = w;. Note that there is a natural
bijection between the set of k-templates from [5] and the set of normalized AF-templates.
In the following we only use normalized templates.

We say that a morphism h : ¥* — X* is convenient if its associated matrix Mj, is
invertible, ||M, |2 < 1 and Va € %, |h(a)| > 1. We can now state the main theorem:

» Theorem 1. For any alphabets A and ¥, pattern P € A*, P-template t, convenient
morphism h : ¥* — X* and any letter a € X such that h(a) = as for some s, it is possible
to decide if h¥(a) avoids t.

By definition, w avoids P if and only if w avoids the P-template [e, 6}, €y, ﬁ
From that we can deduce the following corollary:

y € ’E].

» Corollary 2. For any alphabets A and 3, pattern P € A*, any convenient morphism
h:¥* — ¥* and any letter a € ¥ such that h(a) = as for some s, it is possible to decide if
h¥(a) is abelian-P-free.

The rest of this section is devoted to the proof of Theorem 1. The main idea of the
proof is that we can compute S, a set of templates, such that t € S and h"*1(a) avoids any
template of S if and only if A" (a) avoids any template of S. Thus h*(a) avoids ¢ if and only
if @ avoids any template of S which is easy to check. The set S corresponds to what we call
the set of special ancestors. In the following A will always be the alphabet of patterns and
Y the alphabet of words and templates.

2.1 Parents and ancestors of a template

Let t = [wo,v1,...,vp|,wp]and t’ = [wy,v],. .. ’UI/P\’w\IPI] be two normalized P-templates.
We say that t' is a parent of t by h if there are po, so,...,p|p|,5|p| € £* such that:
Vi € [0, |P]], p; is a prefix of the image of the first letter of w; (a prefix of h([w}]1)), s; is
a suffix of the image of the last letter of w} and h(w}) = p;w;s;,
Vi,j € [17 ‘PH, P, = Pj = V; —U; = (\11(82;1) + thg =+ \I/(pz)) — (\11(83;1) + Mh’U;» +
U (p;))-
For any normalized template ¢ we denote Par,(t) the set of parents of ¢t by h. The
ancestors of t by h is the set Ancestorsy, () = U2, Par} (t). The relation “is an ancestor” is

the transitive and reflexive closure of the relation “is a parent”.
Lemmas 3, 4 and 5 tell us that the set of ancestors of a template is computable.

» Lemma 3. For any convenient morphism h : ¥* — ¥* and normalized P-template t, the
set Pary,(t) is finite and computable.

Proof. Since the template ¢ is normalized we know that:

th{:{ 0 if pp(i) =i
’ v = W(si—1) = U(pi) + Y(spp(iy—1) + Y(Pppi)) if pp(i) #i.
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Since My, is invertible, there is at most one parent for a given valuation of (wj)o<,<|p|,
(8i)o<i<|p| and (p;)o<i<|p|- Moreover the possibilities for the s;, p; and hence for the wj are
finite (if h is injective there is at most one possibility for each w}). So we can try all the
valuations for (w;)o<i<|p|, (8i)o<i<|p| and (pi)o<i<|p| and we get all the parents. <

» Lemma 4. For any convenient morphism h : ¥X* — X* and normalized P-template t there
are (r1,...,7rp|) € RT such that if t' = [wj, v], w},vh ..., vp|,wp|] is an ancestor of t by h
then for all i ||vl]|2 < 7.

We omit the details of the proof of Lemma 4 which is similar to the proof of Lemma 4 in [5].
Let v; be the i-th vector of ¢, then v} = M ~"v; +Z;7':_01 M~ (U(s;)+P(py) — U (sh) —(p)))
for some s;, S; and p;, p;- being respectively suffixes and prefixes of images of letters by h.
Moreover || M, '||l2 < 1, so [|v}]|2 is bounded.

» Lemma 5. For any normalized P-template t the set of ancestors of t by h is finite and
computable.

Proof. Let t' = [wo,v1,w1,v2 ..., v p|, w p|] be an ancestor of ¢ by h. From Lemma 4, each
of the v; is bounded and since v; € ZI*! there are finitely many choices for each of the v;.
Moreover, since for all @ € %, |h(a)| > 1, the length of the w; is bounded and there are
finitely many different values for the w;. It implies that there are only finitely many possible
ancestors.

In order to compute the set of ancestors, one starts with the singleton S = {t} and
repeats the operation S = S U Pary,(S) (computable thanks to Lemma 3) until S reaches a
fixed point, which will eventually happen since the set of ancestors is finite. |

» Lemma 6. For any word w and any P-templates t and t' € Pary,(t), if w is a realization
of t' then h(w) contains a realization of t.

Proof. Let t = [wo,v1,...,vp|,wp|] and t' = [wé’vllv""v\lppwfp\] € Pary(t). Then by
definition there are po, so, ..., p|p[,s|p| € £* such that:
Vie [L |P|]’ h(w;) = PiW;S4,
Vi,j € [LIP|], Pi=P; = v —v; = (V(si-1) + Mpv; + ¥(pi)) — (Y(sj-1) + Mpvj +
¥(pj))-

Assume there is a word w realizing ¢'. Then there are uf,.. "UIP\ € Y7 such that
W = WoUIW uHWy . . U pwp and Vi, j P, = Pj = \Il(u;)— V(uj) = v; —vj. Then
h(w) = powosoh(uy)prws ... s|p|—1h(up )p|p|wip|s|p|- For all i let u; = s;—1h(uj)p;, then
W = wouiwiugws . .. u pjwip| is a factor of h(w).

Moreover for all 4, j € [1,|P]], if P; = P; then:

W(ui) — W(uj) = U(si—1h(ui)pi) — U(sj—1h(u})p;)
(U(sim1) + W(h(ui) + U(pi) — (Y(sj—1) + U(h(u})) + U(p;))
(W(si—1) + Mpv; + ¥(pi)) — (¥(s5-1) + Mpv + ¥(p;))

v,;fvj

So W realizes t and is a factor of h(w). <

It tells us that if one of the ancestors of ¢ is not avoided by h™(a) for some n € N, then
there is m > n such that ¢ is not avoided by h™(a).
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2.2 Specializations of a template

Let P € A* and L C A then we denote by P, the pattern which is obtained by deleting
from P every letter from A — L. For example ABCBBCCA 4,0y = ACCCA.

Let Pospr) : [1,[P]] = [1,|P|] be such that Pos(p 1)(i) = min{j : [(Py ... Pj)|z| = i},
where P; is the i-th letter of P. Pos(p (i) is the position of the letter in P that is sent to
position 7 in Pr.

Let t = [wo,v1,w1, ...,V p|, wyp|] be a P-template and |1, = [wp, v], w], . .. 7U|IP\L‘7w‘IP\LI]
be a Py -template. We say that ¢ is a L-specialization of t if there are (wi)i:pgr € Tt
such that:

Vi U; = UPOS(p,L)(i)7
VZ,], Pl :P] Q/L = \I](uz) _\Ij(u_]) = V; — vy,

Vi W) = Wi, Wiy 41 Wiy 41 - - - Wi, —1U3, W;, , Where i, = Pos(p 1) (i) and i, = Pos(p, 1) (i+1)—1.

» Lemma 7. Let P € A* be a pattern and L C A. For any P-template t and any L-
specialization t|;, of t if there is a word w realizing t|;, then w realizes t.

We omit the proof of Lemma 7 which is technical but straightforward.

With this definition a P-template ¢ has infinitely many L-specializations, but in most
cases the parents of a given L-specialization are included in the L-specializations of the
parents. Thus we need to introduce the set of small L-specializations in order to keep a finit
subset of them. A L-specialization of a P-template t is a small L-specialization if, with the
notations from the definition of L-specialization, for any A € A — L there is ¢ € [1,|P|] such
that P, = A and |u;| < 2 - max,ex |h(a).

» Lemma 8. For any pattern P € A*, P-template t and L C A the set of small L-
specializations of t is finite and computable.

Proof. Let P € A*, t = [wo,v1,w1,...,vp|,wp|] be a P-template and L C A. Let
ti, = [’lUé,'Ull,’lUll,...,Ulp‘Ll,w‘p‘Ll} be a small L-specialization of . Since ¢, is a small
L-specialization of ¢, for any letter A ¢ L there is an index i4 such that P;, = A and
lwi, | < 2-maz,es|h(a)|, and there are only finitely many possible values for the w;,. Then
from the definition for all j, (P; = Aand j # ia) = ¥(u;) = ¥(u;,) +vp, —vp,, . SO
there are only finitely many possible values for each u;.

Once we have chosen the (u;)::p,¢1 the w) and v} are fixed. Hence by trying all the
possible values for (u;);:p,¢r we can compute the set of all small L-specializations of t. <«

We denote by SmallSpec; (¢) the set of small L-specializations of a P-template ¢.

2.3 Special ancestors of a template

The set of special ancestors of a P-template t by h is the smallest set of templates containing
t and any ancestor or small- L-specialization of any of its element. Let us first show that we
can compute this set:

» Theorem 9. For any alphabets A and X, pattern P € A*, normalized P-template t and
convenient morphism h : X% — 3* one can compute the set of special ancestors of t by h.
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Proof. The following algorithm computes this set for any P, t and h.
Input : P, t, h.
Output: The set S of special ancestors of ¢.
S = Ancestorsy, (t);
fori=|A|—1...0do
for LC A, |L|=1ido
| S=SUSmallSpec,, (S5);
end
S = S U Ancestors, (S);
end
Algorithm 1: How to compute special ancestors.

This algorithm halts because if S is finite at some point then by Lemmas 5 and 8 one can
execute S = S U Ancestors(S) and S = S U SmallSpec; (S) and keep S finite.

For any D C L C A and any pattern P € A*, (Pp), = Pp. So for any L-specialization
tpr of a D-specialization tp of a P-template ¢, tp;, = tp. It implies that at the end for any
L C A, every element of S has all of its small L-specializations in .S. Since the last operation
of the algorithm adds the ancestors, every ancestor of any element of S is in S. <

In some reasonable implementation of the algorithm, it is important to use for S a data-
structure that allows to check if a template is already in S in logarithmic time. Moreover,
we are careful with specialization so that we do not obtain twice the same template by two
different paths of specialization (dropping the letter A and then the letter B is the same
than dropping B and then A).

2.4 Using special ancestors to decide

Under the conditions of Theorem 1, one can compute the set of special ancestors of a
template, thanks to Theorem 9. Now we show that this set allows us to decide if the
morphism’s fixed point avoids the template.

» Theorem 10. For any pattern P € A", any normalized P-template t, any convenient
morphism h and any word w € X*, if there is a factor f of h(w) that realizes t, then there
is a factor f' of w that realizes a special ancestor of t.

In fact we show that f’ realizes the parent of an L-specialization of ¢ for some well chosen
set L. The only thing we do is to unfold the definitions with this set L.

Proof. Let t = [wg, v1,w1,. .., v|p|, w|p‘] be a normalized P-template and assume there is
a factor f of h(w) that realizes t. Then by definition there are uy,...,up| € YT such that
[ = wourwiugws . .. u pjw)p| and

Vi,j R = Pj — \I/(u1> — \I/(u]) =V — Vj. (1)

Let us introduce the set L:

L:{AEA:W,PZ-:A = u¢>2-ma§<|h(a)|}. (2)
aec
Take the Pr-template ¢, = [w(, v}, wy,...,vp,|, wp,|] such that:

.
V'Lv v, = vPOS(p,L)(i)a

S . . . ) .
Vi, Wi = Wi, Uiy 41Wi, 11 - - - Wi, —1U;, W5, , Where iy, = Posp 1) (7) and i, = Pos(p ) (i+1)—1.
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From the equality (1) and the definition of L, #|;, is a small L-specialization of ¢. Let
(u;)lggpm be such that for all i, u} = UPosp (i) Then f = TR uTP\L‘wl/PHL‘. Then
from the equality (1) we can deduce:

Vi,j [Pl = [Prl; = ¥(w) — ¥(uj) = vj — v} (3)
So f is a realization of the P j-template 1.

Since f is a factor of h(w) there is a factor f’ of w such that h(f’) = pofs|p |, where
po € prefixes(h(f])) and sp,| € suﬂixes(h(fl’f,l)). By construction, for all 4, |u;| > 2 -
maxgex |h(a)| so we know that each of the u) contains at least the full image of one letter.
So there are uf, ... ’UT/P\LI ext, wy,... ,w"}m € X* and $9,p1,81,- -+, S|P, |-1,P| P, | € Z°
such that ' = wjujwiul ... uf'PlLlw"}JM and for all ¢ € [0, |P|]:

p; is a prefix of the image of the first letter of w},

s; is a suffix of the image of the last letter of w,

h(w') = piwjsi,

u, = si—1h(u)p;.

For all i € [1,|PL[], let v = W(uf) — ¥(u, () and let ¢ be the P -template
L

t" = [w{,vf,wf,vy,.. "U\/;’wl’wl/}’wl]' Then t” is the normalization of the P;-template
[wl, T(uy), w, ¥(uy),.. .,\I!(ufp‘Ll),wl’}lL‘} which is realized by f’, thus f’ is a realization
of t.

From u; = s;_1h(u})p; we get:

W(u;) = W(si—1) + Mp¥(uy) + ¥(p;). (4)
Let 4,5 € [1,|P]|] such that [Pz]; = [P1]; then ¢(i) = ¢(j) and hence

W(ug) = Plugg)): (5)
Now if we put all of that together we get:

v; —v; =V (u;) — U(u}) (from (3))

(U(si-1) + Mp¥(u)) + ¥(p:)) — (¥(sj-1) + Mp¥(uj) + ¥(p;)) (from (4))
(U(si-1) + Mpv + ¥ (p;)) — (¥(sj-1) + Mpvi’ + ¥(p;)) (from (5))

Thus t” is a parent of ¢|;,. So t" is a parent of a specialization of ¢ and is realized by a factor
f of w. <

Theorem 10 together with the fact that, by definition, a special ancestor of a special ancestor
of t is itself a special ancestor of ¢ gives:

» Theorem 11. For any pattern P € A*, any normalized P-template t, any convenient
morphism h and any letter a € X, if there is a positive integer n and a factor of h™(a) that
realizes t, then a realizes a special ancestor of t.

We also need the converse, that is:

» Theorem 12. For any pattern P € A*, any normalized P-template t, any convenient
morphism h and any letter a € X, if a realizes a special ancestor t' of t, then there is a
positive integer n and a factor of h™(a) that realizes t'.
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Proof. We first take the sequence of parent and L-specialization that reaches t' from ¢.
Then we use Lemmas 6 and 7 to reverse operations on a and we reach the factor of h™(a)
that realizes t. <

From Theorems 11 and 12 we deduce the following one:

» Theorem 13. For any pattern P € A*, any normalized P-template t, any convenient
morphism h and any letter a € X, h*(a) avoids t if and only if a does not realize any special
ancestor of t.

Since we can compute the set of special ancestors and compare it to the letter a, we can
decide if h¥(a) avoids t. We implemented this algorithm in c++ and thus we can check if a
pattern is avoided by the fixed point of a morphism.

3 Abelian avoidability of patterns

Patterns are words so we can say that a pattern avoids another pattern in the abelian
sense. Moreover, for two patterns P, P’ and word w, if P’ is not abelian-P-free and the
word w is abelian-P-free, then w is abelian-P’-free. It means that if P’ is not abelian-
P-free, then \,(P’) < A;(P). For instance, since \,(AA) = 4 for any P € {A, B}*, if
P ¢ {A,B,AB,BA, ABA, BAB}, then \,(P) < 4 because all the other binary patterns
are not abelian-AA-free. So every binary pattern is either abelian-4-avoidable or abelian
unavoidable. It is interesting to know which of them have avoidability index 2 or 3.

» Theorem 14. Binary patterns of length greater than 8 are abelian-3-avoidable. More
precisely every pattern that does not appear up to symmetry on the following list is abelian-
3-avoidable:

A, AA, AB, AAB, ABA, AABA, AABB, ABAB, ABBA, AABAA, AABAB, AABBA,
ABAAB, ABABA, AABAAB, AABABA, AABABB, AABBAA, ABAABA, AABAABA,
AABABAA, ABBABBA, AABAABAA, ABAABAAB.

Proof. It is well known that AAA is abelian-3-avoidable [7] and it is already enough to show
the upper bound. Moreover, we can use the algorithm from Theorem 1 to show that any
fixed point of a — aabaac, b+ cbbbab, ¢ — cbecac is abelian-AABBAB-free. So we only
need to find exhaustively all the words that avoid AAA, AABBAB and ABAABB. This
gives the list of Theorem 14. |

Conversely, if there is a word that avoids AABAA, there is also a recurrent word w
that avoids AABAA and then w avoids AA, thus A\,(AABAA) = 4. So the patterns
A, AAAB,AAB, ABA, AABA, AABAA are not abelian-3-avoidable. But, for the rest of
the list, we do not know which of them are abelian-3-avoidable

» Problem 1. Which of the following patterns are abelian-3-avoidable?
ABAB, ABBA, AABAB, AABBA, ABAAB, ABABA,AABAAB, AABABA, AABABB,
AABBAA, ABAABA, AABAABA, AABABAA, ABBABBA, AABAABAA, ABAABAAB.

There is a direct link with the following question:

» Problem 2 (Makela (see [12])). Can you avoid abelian squares of the form uv where |u| > 2
over three letters ¢ - Computer experiments show that you can avoid these patterns at least
in words of length 450.

If the answer to the question from Mékel4 is positive then all the patterns from Problem 1
are abelian-3-avoidable. In [18] we showed that abelian squares of the form uv where |u| > 6
are avoidable over three letters.
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Abelian-2-avoidability. For the binary case it was showed in [6] that:

» Theorem 15 (J.D. Currie, T.I. Visentin). Binary patterns of length greater than 118 are
abelian-2-avoidable.

They also asked:

» Problem 3 (J.D. Currie, T.I. Visentin). Characterize which binary patterns are abelian-2-
avoidable.

Using the algorithm from Theorem 1 we can improve this result and lower the 118 to 14.
First we use the algorithm to check that:

» Lemma 16. The fized point of the morphisms on the left avoid in the abelian sense the
corresponding patterns in the right:

morphisms avoided patterns

AABBBAAAB, ABAAABBBA, AAABABABBB,
AAABABBABB,AAABABBBAB, AABBBABAAB,
AABBBABABA, ABAABABBBA, ABAABBBABA,
a — aabaa ABABAABBBA, ABBBABAAAB, AABAABBBAB,

b — bbabb AABBBAABAB, AABBBAABAAB, AAABABBAAAB,
AABBBABBBAA, ABABABBBABA, ABABBABBABA,
AAABAAABBAB, AAABBABAAAB, AAABAABAABAB,
AAABABAAABAB, AABAAABABAAB, AAABAAABABBA,
AAABAABABAAB, AAABABAABAAB, ABBABAAABAAB,
ABABBBABBBABA.

ABAABBBAAB, AAABBABABB, AAABBABBAB,
AABAABBABB, AABABABBBA, AABABBABBA,

a > aaaab AABABBBAAB, AABABBBABA, AABBAABBBA,

b+ abbab AABBABABBA, AABBABBAAB, AABBABBABA,

AABBBAABBA, ABAABBABBA, AABBABABBBA,
AABABBBABBBA,

AAAA, AAABAABBB, AAABBBABE,

AABBABBBA, AABBBABBA, AAABBAAABB,

a > abb AABABAAABB, ABBBAABBBA, AAABAABBAB,

b+ aaab AAABAABAABB, AAABBAABAAB, AABAABAABBA,
AABAABBAAAB, AABABABAAAB, AAABBAAABAB

AABAAABABAB, AABAAABBAAB, AAABAABAAABAB,

a — aaab AAABABBBAA, AAABBAABBB, AAABBABBAA,
b +— bbba ABABAAABBB, ABABBBAABBA, AABABBAAABA,
AABBABAAABA,
a — abaa AABBABBABBA, AABABBABBBA, AABBBABBBABA,
b +— babb ABABBABBABBA, ABABBABBBABA, ABABBBABABBA,
ABBABABBABBA,
a — aaaba ABAABBBAAA,
b +— babbb AABABBBAAA,
a — aababbaaaba AABAAABAAABAB, ABBBABBBABBBA,
b +— babbbaababb AAABAAABAAABAAA,

It implies that, if a pattern contains any of the pattern from Lemma 16, then it can be
avoided by a binary word. One can easily check that any binary pattern of length greater
than 14 contains at least one of the patterns from the Lemma 16. It implies:

» Theorem 17. Binary patterns of length greater than 14 are abelian-2-avoidable.
In fact, up to symmetry, there are only 284 patterns that avoid all patterns of Lemma 16.

» Theorem 18. The patterns from the following list are abelian-2-unavoidable: A, AA,
AB, AAA, AAB, ABA, AAAB, AABA, AABB, ABAB, ABBA, AAABA, AAABB, AABAA, AABAB
AABBA, ABAAB, ABABA, ABBBA, AAABAA, AAABAB, AABAAB, ABAAAB, AAABAAA
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Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable

Proof. Let assume that AAABAAA is abelian-2-avoidable, then we can find a recurrent
word that avoids AAABAAA in the abelian sense and this words necessarily avoids AAA
which is not possible. Thus AAABAAA is abelian-2-unavoidable.

For all the other patterns one can do an exhaustive search and check that they are
abelian-2-unavoidable. |

For the 260 other patterns we don’t know which are abelian-2-avoidable and which are
not. For most of them there is probably no fixed point of a binary morphism avoiding them,
but they could be avoided by the image of a fixed point by a second morphism.

We are left with some interesting questions:

» Problem 4. What is the length of the longest abelian-2-unavoidable binary pattern?
We know that the answer is between 7 and 14.

» Problem 5. What is the exact list of the abelian-2-unavoidable binary patterns?

It is probably related somehow to the question 6 which seems really hard.

» Problem 6 (Makela (see [12])). Can you avoid abelian-cubes of the form uvvw where |u| > 2,
over two letters ¢ - You can do this at least for words of length 250.

It was showed in [19] that the answer to Problem 6 is negative. But we can replace the 2 in
the question by any integer. In particular a proof that abelian cubes of the form uwvw where
|u| > 3 are avoidable over two letters would imply that many of the 284 patterns are also
abelian-2-avoidable.

Finally we have some more general questions:

» Problem 7. For any finite alphabet A is it true that:
dn € N such that any pattern over A of length greater than n is abelian-avoidable?
In € N such that any pattern over A of length greater than n is abelian-|A|-avoidable?
dn € N such that any pattern over A of length greater than n is abelian-2-avoidable?
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