83 research outputs found

    Log-concavity and lower bounds for arithmetic circuits

    Get PDF
    One question that we investigate in this paper is, how can we build log-concave polynomials using sparse polynomials as building blocks? More precisely, let f=_i=0da_iXiR+[X]f = \sum\_{i = 0}^d a\_i X^i \in \mathbb{R}^+[X] be a polynomial satisfying the log-concavity condition a\_i^2 \textgreater{} \tau a\_{i-1}a\_{i+1} for every i{1,,d1},i \in \{1,\ldots,d-1\}, where \tau \textgreater{} 0. Whenever ff can be written under the form f=_i=1k_j=1mf_i,jf = \sum\_{i = 1}^k \prod\_{j = 1}^m f\_{i,j} where the polynomials f_i,jf\_{i,j} have at most tt monomials, it is clear that dktmd \leq k t^m. Assuming that the f_i,jf\_{i,j} have only non-negative coefficients, we improve this degree bound to d=O(km2/3t2m/3log2/3(kt))d = \mathcal O(k m^{2/3} t^{2m/3} {\rm log^{2/3}}(kt)) if \tau \textgreater{} 1, and to dkmtd \leq kmt if τ=d2d\tau = d^{2d}. This investigation has a complexity-theoretic motivation: we show that a suitable strengthening of the above results would imply a separation of the algebraic complexity classes VP and VNP. As they currently stand, these results are strong enough to provide a new example of a family of polynomials in VNP which cannot be computed by monotone arithmetic circuits of polynomial size

    A Simple Sublinear-Time Algorithm for Counting Arbitrary Subgraphs via Edge Sampling

    Get PDF
    In the subgraph counting problem, we are given a (large) input graph G(V, E) and a (small) target graph H (e.g., a triangle); the goal is to estimate the number of occurrences of H in G. Our focus here is on designing sublinear-time algorithms for approximately computing number of occurrences of H in G in the setting where the algorithm is given query access to G. This problem has been studied in several recent papers which primarily focused on specific families of graphs H such as triangles, cliques, and stars. However, not much is known about approximate counting of arbitrary graphs H in the literature. This is in sharp contrast to the closely related subgraph enumeration problem that has received significant attention in the database community as the database join problem. The AGM bound shows that the maximum number of occurrences of any arbitrary subgraph H in a graph G with m edges is O(m^{rho(H)}), where rho(H) is the fractional edge-cover of H, and enumeration algorithms with matching runtime are known for any H. We bridge this gap between subgraph counting and subgraph enumeration by designing a simple sublinear-time algorithm that can estimate the number of occurrences of any arbitrary graph H in G, denoted by #H, to within a (1 +/- epsilon)-approximation with high probability in O(m^{rho(H)}/#H) * poly(log(n),1/epsilon) time. Our algorithm is allowed the standard set of queries for general graphs, namely degree queries, pair queries and neighbor queries, plus an additional edge-sample query that returns an edge chosen uniformly at random. The performance of our algorithm matches those of Eden et al. [FOCS 2015, STOC 2018] for counting triangles and cliques and extend them to all choices of subgraph H under the additional assumption of edge-sample queries

    Modelling Clock Synchronization in the Chess gMAC WSN Protocol

    Get PDF
    We present a detailled timed automata model of the clock synchronization algorithm that is currently being used in a wireless sensor network (WSN) that has been developed by the Dutch company Chess. Using the Uppaal model checker, we establish that in certain cases a static, fully synchronized network may eventually become unsynchronized if the current algorithm is used, even in a setting with infinitesimal clock drifts

    Space proof complexity for random 3-CNFs

    Get PDF
    We investigate the space complexity of refuting 3-CNFs in Resolution and algebraic systems. We prove that every Polynomial Calculus with Resolution refutation of a random 3-CNF φ in n variables requires, with high probability, distinct monomials to be kept simultaneously in memory. The same construction also proves that every Resolution refutation of φ requires, with high probability, clauses each of width to be kept at the same time in memory. This gives a lower bound for the total space needed in Resolution to refute φ. These results are best possible (up to a constant factor) and answer questions about space complexity of 3-CNFs
    corecore