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Abstract
In the subgraph counting problem, we are given a (large) input graph G(V,E) and a (small)
target graph H (e.g., a triangle); the goal is to estimate the number of occurrences of H in G.
Our focus here is on designing sublinear-time algorithms for approximately computing number
of occurrences of H in G in the setting where the algorithm is given query access to G. This
problem has been studied in several recent papers which primarily focused on specific families of
graphs H such as triangles, cliques, and stars. However, not much is known about approximate
counting of arbitrary graphs H in the literature. This is in sharp contrast to the closely related
subgraph enumeration problem that has received significant attention in the database community
as the database join problem. The AGM bound shows that the maximum number of occurrences
of any arbitrary subgraph H in a graph G with m edges is O(mρ(H)), where ρ(H) is the fractional
edge-cover of H, and enumeration algorithms with matching runtime are known for any H.

We bridge this gap between subgraph counting and subgraph enumeration by designing a
simple sublinear-time algorithm that can estimate the number of occurrences of any arbitrary
graph H in G, denoted by #H, to within a (1 ± ε)-approximation with high probability in
O(m

ρ(H)

#H ) · poly(logn, 1/ε) time. Our algorithm is allowed the standard set of queries for general
graphs, namely degree queries, pair queries and neighbor queries, plus an additional edge-sample
query that returns an edge chosen uniformly at random. The performance of our algorithm
matches those of Eden et al. [FOCS 2015, STOC 2018] for counting triangles and cliques and
extend them to all choices of subgraph H under the additional assumption of edge-sample queries.
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6:2 Sublinear-Time Counting of Arbitrary Subgraphs via Edge Sampling

1 Introduction

Counting (small) subgraphs in massive graphs is a fundamental algorithmic problem, with a
wide range of applications in bioinformatics, social network analysis, spam detection and
graph databases (see, e.g. [36, 8, 11]). In social network analysis, the ratio of the number of
triangles in a network to the number of length 2 paths (known as the clustering coefficient) as
well as subgraph counts for larger subgraphs H have been proposed as important metrics for
analyzing massive networks [42]. Similarly, motif counting are popular method for analyzing
protein-protein interaction networks in bioinformatics (e.g., [36]). In this paper we consider
designing efficient algorithms for this task.

Formally, we consider the following problem: Given a (large) graph G(V,E) with m edges
and a (small) subgraph H(VH , EH) (e.g., a triangle) and a precision parameter ε ∈ (0, 1),
output a (1±ε)-approximation to the number of occurrences of H in G. Our goal is to design
an algorithm that runs in time sublinear in the number m of edges of G, and in particular
makes a sublinear number of the following types of queries to the graph G:

Degree query v: the degree dv of any vertex v ∈ V ;
Neighbor query (v, i): what vertex is the i-th neighbor of the vertex v ∈ V for i ≤ dv;
Pair query (u, v): test for pair of vertices u, v ∈ V , whether or not (u, v) belongs to E.
Edge-sample query: sample an edge e uniformly at random from E.

The first three queries are the standard baseline queries (see Chapter 10 of Goldreich’s
book [23]) assumed by nearly all sublinear time algorithms for counting small subgraphs such
as triangles or cliques [16, 18] (see [25] for the necessity of using pair queries for counting
subgraphs beside stars). The last query is somewhat less standard but is also considered in
the literature prior to our work, for example in [2] for counting stars in sublinear time, and
in [19] in the context of lower bounds for subgraph counting problems.

1.1 Our Contributions
For the sake of clarity, we suppress any dependencies on the approximation parameter ε,
logn-terms, and the size of graph H, using the O∗(·) notation. Our results are parameterized
by the fractional edge-cover number of the subgraphH (see Section 3 for the formal definition).
Our goal in this paper is to approximately compute the number of occurrences #H of H in
G, formally defined as number of subgraphs H ′ of G such that H and H ′ are isomorphic.

I Theorem 1. There exists a randomized algorithm that given ε ∈ (0, 1), a subgraph H, and
a query access to the input graph G, with high probability outputs a (1± ε) approximation to
the number of occurrences of H in G, denoted by #H, using:

O∗
(

min
{
m,

mρ(H)

#H

})
queries and O∗

(mρ(H)

#H

)
time.

The algorithm uses degree, neighbor, pair, and edge-sample queries.

Since the fractional edge-cover number of any k-clique Kk is k/2, as a corollary of Theorem 1,
we obtain sublinear algorithms for counting triangles, and in general k-cliques using

O∗
(

min
{
m,

m
√
m

#K3

})
and O∗

(
min

{
m,

mk/2

#Kk

})
,

queries respectively. These bounds match the previous results of Eden et al. [16, 18] modulo
an additive term of O∗( n

(#K3)1/3 ) for triangles in [16] and O∗( n
(#Kk)1/k ) for arbitrary cliques
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in [18] which is needed in the absence of edge-sample queries that are not used by [16, 18].
Our bounds settle a conjecture of Eden and Rosenbaum [19] in the affirmative by showing
that one can avoid the aforementioned additive terms depending on n in query complexity
by allowing edge-sample queries. We now elaborate more on different aspects of Theorem 1.

AGM Bound and Database Joins. The problem of enumerating all occurrences of a graph
H in a graph G and, more generally, the database join problem, has been considered
extensively in the literature. A fundamental question here is that given a database with m
entries (e.g. a graph G with m edges) and a conjunctive query H (e.g. a small graph H),
what is the maximum possible size of the output of the query (e.g., number of occurrences of
H in G)? The AGM bound of Atserias, Grohe and Marx [5] provides a tight upper bound of
mρ(H) (up to constant factors), where ρ(H) is the fractional edge cover of H. The AGM
bound applies to databases with several relations, and the fractional edge cover in question
is weighted according to the sizes of the different relations. A similar bound on the number
of occurrences of a hypergraph H inside a hypergraph G with m hyperedges was proved
earlier by Friedgut and Kahn [22], and the bound for graphs is due to Alon [3]. Recent
work of Ngo et al. [37] gave algorithms for evaluating database joins in time bounded by
worst case output size for a database with the same number of entries. When instantied
for the subgraph enumeration problem, their result gives an algorithm for enumerating all
occurrences of H in a graph G with m edges in time O(mρ(H)).

Our Theorem 1 is directly motivated by the connection between subgraph counting and
subgraph enumeration problems and the AGM bound. In particular, Theorem 1 provides a
natural analogue of AGM bound for estimation algorithms by stating that if the number
of occurrences H is #H ≤ mρ(H), then a (1± ε)-approximation to #H can be obtained in
O∗(m

ρ(H)

#H ) time. Additionally, as we show in Section 4.3, Theorem 1 can be easily extended
to the more general problem of database join size estimation (for binary relations). This
problem corresponds to a subgraph counting problem in which the graphs G and H are both
edge-colored and our goal is to count the number of copies of H in G with the same colors on
edges. Our algorithm can solve this problem also in O∗(m

ρ(H)

#Hc ) time where #Hc denotes the
number of copies of H with the same colors in G.

Optimality of Our Bounds. Our algorithm in Theorem 1 is optimal from different points
of view. Firstly, by a lower bound of [19] (building on [16, 18]), the bounds achieved by our
algorithm when H is any k-clique is optimal among all algorithms with the same query access
(including the edge-sample query). In Theorem 15, we further prove a lower bound showing
that for odd cycles as well, the bounds achieved by Theorem 1 are optimal. These results
hence suggest that Theorem 1 is existentially optimal: there exists several natural choices
for H such that Theorem 1 achieves the optimal bounds. However, there also exist choices
of H for which the bounds in Theorem 1 are suboptimal. In particular, Aliakbarpour et
al. [2] presented an algorithm for estimating occurrences of any star S` for ` ≥ 1 using
O∗( m

(#S`)1/` ) queries in our query model (including edge-sample queries) which is always
at least as good as our bound in Theorem 1, but potentially can be better. On the other
hand, in the full version of the paper [4], we show that our current algorithm, with almost
no further modification, in fact achieves this stronger bound using a different analysis.

Additionally, as we pointed out before, our algorithm can solve the more general database
join size estimation for binary relations, or equivalently the subgraph counting problem with
colors on edges. In Theorem 16, we prove that for this more general problem, our algorithm
in Theorem 1 indeed achieves optimal bounds for all choices of the subgraph H.

ITCS 2019
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Edge-Sample Queries. The edge-sample query that we assume is not part of the standard
access model for sublinear algorithms, namely the “general graph” query model (see, e.g. [32]).
Nonetheless, we find allowing for this query “natural” owing to the following factors:

Theoretical implementation. Edge sampling queries can be implemented with an Õ(n/
√
m)

multiplicative overhead in query and time using the recent result of [20], or with an O(n)
additive preprocessing time (which is still sublinear in m) by querying degrees of all vertices.
Hence, we can focus on designing algorithms by allowing these queries and later replacing
them by either of the above implementations in a black-box way at a certain additional cost.

Practical implementation. Edge sampling is a common practice in analyzing social
networks [34, 33] or biological networks [1]. Another scenario when random edge sampling is
possible is when we can access a random location of the memory that is used to store the
graph. To quote [2]: “because edges normally take most of the space for storing graphs, an
access to a random memory location where the adjacency list is stored, would readily give
a random edge.” Hence, assuming edge sampling queries can be considered valid in many
scenarios.

Understanding the power of random edge queries. Edge sampling is a critical component
of various sublinear time algorithms for graph estimation [16, 17, 2, 18, 20]. However, except
for [2] that also assumed edge-sample queries, all these other algorithms employ different
workarounds to these queries. As we show in this paper, decoupling these workarounds from
the rest of the algorithm by allowing edge-sample queries results in considerably simpler
and more general algorithms for subgraph counting and is hence worth studying on its own.
We also mention that studying the power of edge-sample queries has been cast as an open
question in [19] as well.

Applications to Streaming Algorithms. Subgraph counting is also one of the most studied
problems in the graph streaming model (see, e.g. [6, 28, 10, 31, 9, 27, 41, 35, 13, 7] and
references therein). In this model, the edges of the input graph are presented one by one
in a stream; the algorithm makes a single or a small number of passes over the stream and
outputs the answer after the last pass. The goal here is to minimize the memory used by the
algorithm (similar-in-spirit to minimizing the query complexity in the query model).

Our algorithm in Theorem 1 can be directly adapted to the streaming model, resulting
in an algorithm for subgraph counting that makes O(1) passes over the stream and uses
a memory of size O∗

(
min

{
m, m

ρ(H)

#H

})
. For the case of counting triangles and cliques,

the space complexity of our algorithm matches the best known algorithms of McGregor et
al. [35] and Bera and Chakrabarti [7] which are known to be optimal [7]. To the best of
our knowledge, the only previous streaming algorithms for counting arbitrary subgraphs H
are those of Kane et al. [31] and Bera and Chakrabarti [7] that use, respectively, one pass
and O∗(m

2·|E(H)|

(#H)2 ) space, and two passes and O∗(m
β(H)

#H ) space, where β(H) is the integral
edge-cover number of H. As ρ(H) ≤ β(H) ≤ |E(H)| by definition and #H ≤ mρ(H) by
AGM bound, the space complexity of our algorithm is always at least as good as the ones
in [31, 7] but potentially can be much smaller.

1.2 Main Ideas in Our Algorithm
Our starting point is the AGM bound which implies that the number of “potential copies”
of H in G is at most mρ(H). Our goal of estimating #H then translates to counting how
many of these potential copies form an actual copy of H in G. A standard approach at this
point is the Monte Carlo method: sample a potential copy of H in G uniformly at random
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and check whether it forms an actual copy of H or not; a simple exercise in concentration
inequalities then implies that we only need O(m

ρ(H)

#H ) many independent samples to get a
good estimate of #H.

This approach however immediately runs into a technical difficulty. Given only a query
access to G, it is not at all clear how to sample a potential copy of H from the list of all
potential copies. Our first task is then to design a procedure for sampling potential copies of
H from G. In order to do so, we again consider the AGM bound and the optimal fractional
edge-cover that is used to derive this bound. We first prove a simple structural result that
states that an optimal fractional edge-cover of H can be supported only on edges that form a
disjoint union of odd cycles and stars (in H). This allows us to decompose H into a collection
of odd cycles and stars and treat any arbitrary subgraph H as a collection of these simpler
subgraphs that are suitably connected together.

The above decomposition reduces the task of sampling a potential copy of H to sampling
a collection of odd cycles and stars. Sampling an odd cycle C2k+1 on 2k + 1 edges is as
follows: sample k edges e1, . . . , ek uniformly at random from G; pick one of the endpoints of
e1 and sample a vertex v from the neighborhood of this endpoint uniformly at random. With
some additional care, one can show that the tuple (e1, . . . , ek, v) sampled here is enough to
identify an odd cycle of length 2k+ 1 uniquely. To sample a star C` with ` petals, we sample
a vertex v from G with probability proportional to its degree (by sampling a random edge
and picking one of the two endpoints uniformly), and then sample ` vertices w1, . . . , w` from
the neighborhood of v. Again, with some care, this allows us to sample a potential copy of a
star S`. We remark that these sampling procedures are related to sampling triangles in [16]
and stars in [2]. Finally, to sample a potential copy of H, we simply sample all its odd cycles
and stars in the decomposition using the method above. We should note right away that
this however does not result in a uniformly at random sample of potential copies of H as
various parameters of the graph G, in particular degrees of vertices, alter the probability of
sampling each potential copy.

The next and paramount step is then how to use the samples above to estimate the value
of #H. Obtaining an unbiased estimator of #H based on these samples is not hard as
we can identify the probability each potential copy is sampled with in this process (which
is a function of degrees of vertices of the potential copy in G) and reweigh each sample
accordingly. Nevertheless, the variance of a vanilla variant of this sampling and reweighing
approach is quite large for our purpose. To fix this, we use an idea similar to that of [16] for
counting triangles: sample a “partial” potential copy of H first and fix it; sample multiple
“extensions” of this partial potential copy to a complete potential copy and use the average of
estimates based on each extension to reduce the variance. More concretely, this translates to
sampling multiple copies of the first cycle for the decomposition and for each sampled cycle,
recursively sampling multiple copies of the remainder of H as specified by the decomposition.
A careful analysis of this recursive process – which is the main technical part of the paper
– allows us to bound the variance of the estimator by O(mρ(H)) · (#H). Repeating such
an estimator O(m

ρ(H)

#H ) times independently and taking the average value then gives us a
(1± ε)-approximation to #H by a simple application of Chebyshev’s inequality.

1.3 Further Related Work
In addition to the previous work in [16, 18, 2] that are already discussed above, sublinear-time
algorithms for estimating subgraph counts and related parameters such as average degree and
degree distribution moments have also been studied in [21, 24, 25, 17]. Similarly, sublinear-

ITCS 2019



6:6 Sublinear-Time Counting of Arbitrary Subgraphs via Edge Sampling

time algorithms are also studied for estimating other graph parameters such as weight of the
minimum spanning tree [15, 12, 14] or size of a maximum matching or a minimum vertex
cover [40, 38, 43, 26, 39] (this is by no means a comprehensive summary of previous results).

Subgraph counting has also been studied extensively in the graph streaming model (see,
e.g. [6, 28, 10, 31, 9, 27, 41, 35, 13, 7, 30, 29] and references therein). In this model, the
edges of the input graph are presented one by one in a stream; the algorithm makes a single
or a small number of passes over the stream and outputs the answer after the last pass.
The goal in this model is to minimize the memory used by the algorithm similar-in-spirit to
minimizing the query complexity in our query model. However, the streaming algorithms
typically require reading the entire graph in the stream which is different from our goal in
sublinear-time algorithms.

2 Preliminaries

Notation. For any integer t ≥ 1, we let [t] := {1, . . . , t}. For any event E , I(E) ∈ {0, 1} is an
indicator denoting whether E happened or not. For a graph G(V,E), V (G) := V denotes the
vertices and E(G) := E denotes the edges. For a vertex v ∈ V , N(v) denotes the neighbors
of v, and dv := |N(v)| denotes the degree of v.

To any edge e = {u, v} in G, we assign two directed edges ~e1 = (u, v) and ~e2 = (v, u)
called the directed copies of e and let ~E be the set of all these directed edges. We also fix
a total ordering ≺ on vertices whereby for any two vertices u, v ∈ V , u ≺ v iff du < dv, or
du = dv and u appears before v in the lexicographic order. To avoid confusion, we use letters
a, b and c to denote the vertices in the subgraph H, and letters u, v and w to denote the
vertices of G.

We use the following standard variant of Chebyshev’s inequality.

I Proposition 2. For any random variable X and integer t ≥ 1, Pr (|X − E [X]| ≥ t) ≤
Var[X]
t2 .

We also recall the law of total variance that states the for two random variables X and Y ,

Var [Y ] = E
x

(Var [Y | X = x]) + Var
x

[E [Y | X = x]] . (1)

Assumption on Size of Subgraph H. Throughout the paper, we assume that the size of
the subgraph H is a fixed constant independent of the size of the graph G and hence we
suppress the dependency on size of H in various bounds in our analysis using O-notation.

3 A Graph Decomposition Using Fractional Edge-Covers

In this section, we give a simple decomposition of the subgraph H using fractional edge-covers.
We start by defining fractional edge-covers formally (see also Figure 1).

I Definition 3 (Fractional Edge-Cover Number). A fractional edge-cover of H(VH , EH) is
a mapping ψ : EH → [0, 1] such that for each vertex a ∈ VH ,

∑
e∈EH ,a∈e ψ(e) ≥ 1. The

fractional edge-cover number ρ(H) of H is the minimum value of
∑
e∈EH ψ(e) among all

fractional edge-covers ψ.
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(a) The subgraph H.

0.5 0.5

0.5
0.5

0.5

1 1

1
(b) An optimal edge-cover of H
with ρ(H) = 5.5.

(c) Decomposition of H.

Figure 1 Illustration of the our decomposition for H based on fractional edge-covers.

The fractional edge-cover number of a graph can be computed by the following LP:

ρ(H) = minimize
∑

e∈E(H)

xe

subject to
∑

e∈EH :a∈e
xe ≥ 1 for all vertices a ∈ V (H). (2)

The following lemma is the key to our decomposition. The proof is based on standard
ideas in linear programming and is postponed to the full version of the paper [4].

I Lemma 4. Any subgraph H admits an optimal fractional edge-cover x∗ such that the
support of x∗, denoted by supp(x∗), is a collection of vertex-disjoint odd cycles and star
graphs, and,
1. for every odd cycle C ∈ supp(x∗), x∗e = 1/2 for all e ∈ C;
2. for every edge e ∈ supp(x∗) that does not belong to any odd cycle, xe = 1.

3.1 The Decomposition

We now present the decomposition of H using Lemma 4. Let x∗ be an optimal fractional
edge-cover in Lemma 4 and let C1, . . . , Co be the odd-cycles in the support of x∗ and S1, . . . ,Ss
be the stars. We define D(H) := {C1, . . . , Co,S1, . . . ,Ss} as the decomposition of H (see
Figure 1 for an illustration).

For every i ∈ [o], let the length of the odd cycle Ci be 2ki + 1 (i.e., Ci = C2ki+1); we
define ρCi := ki + 1/2. Similarly, for every j ∈ [s], let the number of petals in Sj be `j (i.e.,
Sj = S`j ); we define ρSj := `j . By Lemma 4,

ρ(H) =
o∑
i=1

ρCi +
s∑
j=1

ρSj . (3)

Recall that by AGM bound, the total number of copies of H possible in G is mρ(H). We also
use the following simple lemma which is a direct corollary of the AGM bound.

I Lemma 5. Let I := {i1, . . . , io} and J := {j1, . . . , js} be subsets of [o] and [s], respectively.
Suppose H̃ is the subgraph of H on vertices of the odd cycles Ci1 , . . . , Cio and stars Sj1 , . . . ,Sjs .
Then the total number of copies of H̃ in G is at most mρ(H̃) for ρ(H̃) ≤

∑
i∈I ρ

C
i +

∑
j∈J ρ

S
j .

Proof. Let x∗ denote the optimal value of LP (2) in D(H). Define y∗ as the projection of
x∗ to edges present in H̃. It is easy to see that y∗ is a feasible solution for LP (2) of H̃ with
value

∑
i∈I ρ

C
i +

∑
j∈J ρ

S
j . The lemma now follows from AGM bound for H̃. J

ITCS 2019
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3.2 Profiles of Cycles, Stars, and Subgraphs
We conclude this section by specifying the representation of the potential occurrences of the
subgraph H in G based on the decomposition D(H).
Odd cycles: We represent a potential occurrence of an odd cycle C2k+1 in G as follows. Let
e = (~e1, . . . , ~ek) ∈ ~Ek be an ordered tuple of k directed copies of edges in G and suppose
~ei := (ui, vi) for all i ∈ [k]. Define u∗e = u1 and let w be any vertex in N(u∗e). We refer to any
such collection (e, w) as a profile of C2k+1 in G. We say that “the profile (e, w) forms a cycle
C2k+1 in G” iff (i) u1 is the smallest vertex on the cycle according to ≺, (ii) v1 ≺ w, and
(iii) the edges (u1, v1), (v1, u2), . . . , (uk, vk), (vk, w), (w, u1) all exist in G and hence there is a
copy of C2k+1 on vertices {u1, v1, u2, v2, . . . , uk, vk, w} in G. Note that under this definition
and our definition of #C2k+1, each copy of C2k+1 correspond to exactly one profile (e, w)
and vice versa. As such,

#C2k+1 =
∑

e∈~Ek

∑
w∈N(u∗e)

I
(

(e, w) forms a cycle C2k+1 in G
)
. (4)

Stars: We represent a potential occurrence of a star S` in G by (v,w) where v is the center
of the star and w = (w1, . . . , w`) are the ` petals. We refer to (v,w) as a profile of S` in G.
We say that “the profile (v,w) forms a star S` in G” iff (i) |w| > 1, or (ii) (` =) |w| = 1 and
v ≺ w1; in both cases there is a copy of S` on vertices v, w1, . . . , w`. Under this definition,
each copy of S` corresponds to exactly one profile (v,w). As such,

#S` =
∑
v∈V

∑
w∈N(v)`

I
(

(v,w) forms a star S` in G
)
. (5)

Arbitrary subgraphs: We represent a potential occurrence of H in G by an (o + s)-tuple
R := ((e1, w1), . . . , (eo, wo), (v1,w1), . . . , (vs,ws)) where (ei, wi) is a profile of the cycle Ci
in D(H) and (vj ,wj) is a profile of the star Sj . We refer to R as a profile of H and say
that “the profile R forms a copy of H in G” iff (i) each profile forms a corresponding copy
of Ci or Sj in D(H), and (ii) the remaining edges of H between vertices specified by R all
are present in G (note that by definition of the decomposition D(H), all vertices of H are
specified by R). As such,

#H =
∑
R

I
(

R forms a copy of H in G
)
· f(H), (6)

for a fixed constant f(H) depending only on H as defined below. Let π : VH → VH
be an automorphism of H. Let C1, . . . , Co, S1, . . . , Ss denote the cycles and stars in the
decomposition of H. We say that π is decomposition preserving if for every i = 1, . . . , o
cycle Ci is mapped to a cycle of the same length and for every i = 1, . . . , s star Si is mapped
to a star with the same number of petals. Let the number of decomposition preserving
automorphisms of H be denoted by Z, and define f(H) = 1/Z. Define the quantity
#̃H :=

∑
R I
(

R forms a copy of H in G
)
which is equal to #H modulo the scaling factor

of f(H). It is immediate that estimating #H and #̃H are equivalent to each other and hence
in the rest of the paper, with a slight abuse of notation, we use #H and #̃H interchangeably.

4 A Sublinear-Time Algorithm for Subgraph Counting

We now present our sublinear time algorithm for approximately counting number of any
given arbitrary subgraph H in an underlying graph G and prove Theorem 1. The main
component of our algorithm is an unbiased estimator random variable for #H with low
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variance. The algorithm in Theorem 1 is then obtained by simply repeating this unbiased
estimator in parallel enough number of times (based on the variance) and outputting the
average value of these estimators.

4.1 A Low-variance Unbiased Estimator for #H

We present a low-variance unbiased estimator for #H in this section. Our algorithm is a
sampling based algorithm. In the following, we first introduce two separate subroutines for
sampling odd cycles (odd-cycle-sampler) and stars (star-sampler), and then use these
components in conjunction with the decomposition we introduced in Section 3, to present our
full algorithm. We should right away clarify that odd-cycle-sampler and star-sampler
are not exactly sampling a cycle or a star, but rather sampling a set of vertices and edges (in
a non-uniform way) that can potentially form a cycle or star in G, i.e., they sample a profile
of these subgraphs defined in Section 3.2.

The odd-cycle-sampler Algorithm

We start with the following algorithm for sampling an odd cycle C2k+1 for some k ≥ 1. This
algorithm outputs a simple data structure, named the cycle-sampler tree, that provides a
convenient representation of the samples taken by our algorithm (see Definition 6 immediately
after the description of the algorithm). This data structure can be easily avoided when
designing a cycle counting algorithm, but will be quite useful for reasoning about the recursive
structure of our sampling algorithm for general graphs H.

Algorithm 1 odd-cycle-sampler(G,C2k+1).

1. Sample k directed edges e := (~e1, . . . , ~ek) uniformly at random (with replacement) from
G with the constraint that for ~e1 = (u1, v1), u1 ≺ v1.

2. Let u∗e := u1 and let d∗e := du∗e .
3. For i = 1 to te := dd∗e/

√
me: Sample a vertex wi uniformly at random from N(u∗e).

4. Let w := (w1, . . . , wte). Return the cycle-sampler tree T (e,w) (see Definition 6).

I Definition 6 (Cycle-Sampler Tree). The cycle-sampler tree T (e,w) for the tuple (e,w)
sampled by odd-cycle-sampler(G,C2k+1) is the following 2-level tree T :

Each node α of the tree contains two attributes: label[α] which consists of some of the
edges and vertices in (e,w), and an integer value[α].
For the root αr of T , label[αr] := e and value[αr] := (2m)k/2.
(value[αr] is equal to the inverse of the probability that e is sampled by odd-cycle-
sampler).
The root αr has te child-nodes in T for a parameter te = dd∗e/

√
me (consistent with

line 3 of odd-cycle-sampler(G,C2k+1) above).
For the i-th child-node αi of root, i ∈ [te], label[αi] := wi and value[αi] := d∗e
(value[αi] is equal to the inverse of the probability that wi is sampled by odd-cycle-
sampler, conditioned on e being sampled).

Moreover, for each root-to-leaf path Pi := (αr, αi) (for i ∈ [te]), define label[Pi] := label[αr]∪
label[αi] and value[Pi] := value[αr] · value[αi] ( label[Pi] is a profile of the cycle C2k+1 as
defined in Section 3.2).
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6:10 Sublinear-Time Counting of Arbitrary Subgraphs via Edge Sampling

odd-cycle-sampler can be implemented in our query model by using k edge-sample
queries (and picking the correct direction for e1 based on ≺ and one of the two directions
uniformly at random for the other edges) in Line (1), two degree queries in Line (2), and
one neighbor query in Line (3). This results in O(k) queries in total for one iteration of the
for-loop in Line (3). As such, the total query complexity of odd-cycle-sampler is O(te)
(recall that k is a constant). It is also straightforward to verify that we can compute the
cycle-sampler tree T of an execution of odd-cycle-sampler with no further queries and in
O(te) time. We bound the query complexity of this algorithm by bounding the expected
number of iterations in the for-loop. The proof is postponed to the full version [4].

I Lemma 7. For the parameter te in Line (3) of odd-cycle-sampler, E [te] = O(1).

We now define a process for estimating the number of odd cycles in a graph using the
information stored in the cycle-sampler tree and the odd-cycle-sampler algorithm. While
we do not use this process in a black-box way in our main algorithm, abstracting it out
makes the analysis of our main algorithm simpler to follow and more transparent, and serves
as a warm-up for our main algorithm.

Warm-up: An Estimator for Odd Cycles. Let T := odd-cycle-sampler(G,C2k+1) be
the output of an invocation of odd-cycle-sampler. Note that the cycle-sampler tree T
is a random variable depending on the randomness of odd-cycle-sampler. We define the
random variable Xi such that Xi := label[Pi] for the i-th root-to-leaf path iff label[Pi] forms
a copy of C2k+1 in G and otherwise Xi := 0 (according to the definition of Section 3). We
further define Y := 1

te
·
∑te
i=1 Xi (note that te is also a random variable). Our estimator

algorithm can compute the value of these random variables using the information stored in
the tree T plus additional O(k) = O(1) queries for each of the te root-to-leaf path Pi to
detect whether (e, wi) forms a copy of H or not. Thus, the query complexity and runtime of
the estimator is still O(te) (which in expectation is O(1) by Lemma 7). The expectation and
variance of the estimator can be bounded as follows (the proof is in the full version [4]).

I Lemma 8. For the random variable Y associated with odd-cycle-sampler(G,C2k+1),

E [Y ] = (#C2k+1), Var [Y ] ≤ (2m)k
√
m · E [Y ] .

The star-sampler Algorithm
We now give an algorithm for sampling a star S` with ` petals. Similar to odd-cycle-sampler,
this algorithm also outputs a simple data structure, named the star-sampler tree, that
provides a convenient representation of the samples taken by our algorithm (see Definition 9,
immediately after the description of the algorithm). This data structure can be easily avoided
when designing a star counting algorithm, but will be quite useful for reasoning about the
recursive structure of our sampling algorithm for general graphs H.

I Definition 9 (Star-Sampler Tree). The star-sampler tree T (v,w) for the tuple (v,w)
sampled by star-sampler(G,S`) is the following 2-level tree T (with the same attributes as
in Definition 6) with only two nodes:

For the root αr of T , label[αr] := v and value[αr] := 2m/dv.
(value[αr] is equal to the inverse of the probability that v is sampled by star-sampler).
The root αr has exactly one child-node αl in T with label[αl] = w = (w1, . . . , w`) and
value[αl] =

(
dv
`

)
.

(value[αl] is equal to the inverse of the probability that w is sampled by star-sampler,
conditioned on v being sampled).
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Algorithm 2 star-sampler(G,S`).

1. Sample a vertex v ∈ V chosen with probability proportional to its degree in G (i.e., for
any vertex u ∈ V , Pr (u is chosen as the vertex v) = du/2m).

2. Sample ` vertices w := (w1, . . . , w`) from N(v) uniformly at random (without replace-
ment).

3. Return the star-sampler tree T (v,w) (see Definition 9).

Moreover, for the root-to-leaf path P := (αr, αl), we define label[P] := label[αr] ∪ label[αl]
and value[P ] := value[αr] · value[αl]. ( label[P ] is a representation of the star S` as defined in
Section 3.2).

star-sampler can be implemented in our query model by using one edge-sample query
in Line (1) and then picking one of the endpoints uniformly at random, a degree query to
determine the degree of v, and ` neighbor queries in Line (2), resulting in O(`) queries in
total. It is also straightforward to verify that we can compute the star-sampler tree T of an
execution of star-sampler with no further queries and in O(1) time.

We again define a process for estimating the number of stars in a graph using the
information stored in the star-sampler tree and the star-sampler algorithm, as a warm-up
to our main result in the next section.

Warm-up: An Estimator for Stars. The star-sampler tree T is a random variable depending
on the randomness of star-sampler. We define the random variable X such that X :=
value[P] for the root-to-leaf path of T iff label[P] forms a copy of S` in G and otherwise
X := 0. Our estimator algorithm can compute the value of this random variable using only
the information stored in the tree T with no further queries to the graph (by simply checking
if all wi’s in w are distinct). As such, the query complexity and runtime of the estimator
algorithm is still O(1). The proof of the following lemma is postponed to the full version [4].

I Lemma 10. For the random variable X associated with star-sampler(G,S`),

E [X] = (#S`), Var [X] ≤ 2m` · E [X] .

The Estimator Algorithm for Arbitrary Subgraphs
We now present our main estimator for the number of occurrences of an arbitrary subgraph
H in G, denoted by (#H). Recall the decomposition D(H) := {C1, . . . , Co,S1, . . . ,Ss} of H
introduced in Section 3. Our algorithm creates a subgraph-sampler tree T (a generalization
of cycle-sampler and star-sampler trees in Definitions 6 and 9) and use it to estimate (#H).
We define the subgraph-sampler tree T and the algorithm subgraph-sampler(G,H) that
creates it simultaneously:

Subgraph-Sampler Tree. The subgraph-sampler tree T is a z-level tree for z := (2o+ 2s)
returned by subgraph-sampler(G,H). The algorithm constructs T as follows.

Sampling Odd Cycles. In subgraph-sampler(G,H), we run odd-cycle-sampler(G, C1)
and initiate T to be its output cycle-sampler tree. For every (current) leaf-node α of T ,
we run odd-cycle-sampler(G, C2) independently to obtain a cycle-sampler tree Tα (we say
that α started the sampling of Tα). We then extend the tree T with two new layers by
connecting each leaf-node α to the root of Tα that started its sampling. This creates a
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6:12 Sublinear-Time Counting of Arbitrary Subgraphs via Edge Sampling

4-level tree T . We continue like this for o steps, each time appending the tree obtained by
odd-cycle-sampler(G, Cj) for j ∈ [o], to the (previous) leaf-node that started this sampling.
This results in a (2o)-level tree. Note that the nodes in the tree T can have different degrees
as the number of leaf-nodes in the cycle-sampler tree is not necessarily the same always
(not even for two different trees associated with one single Cj through different calls to
odd-cycle-sampler(G, Cj)).

Sampling Stars. Once we iterated over all odd cycles of D(H), we switch to processing
stars S1, . . . ,Ss. The approach is identical to the previous part. Let α be a (current) leaf-node
of T . We run star-sampler(G,S1) to obtain a star-sampler tree Tα and connect α to Tα to
extend the levels of tree by 2 more. We continue like this for s steps, each time appending
the tree obtained by star-sampler(G,Sj) for j ∈ [s], to the (former) leaf-node that started
this sampling. This results in a z-level tree T . Note that all nodes added when sampling
stars have exactly one child-node (except for the leaf-nodes) as by Definition 9, star-sampler
trees always contain only two nodes.

Labels and Values. Each node α of T is again given two attributes, label[α] and value[α],
which are defined to be exactly the same attributes in the corresponding cycle-sampler or
star-sampler tree that was used to define these nodes (recall that each node of T is “copied”
from a node in either a cycle-sampler or a star-sampler tree). Finally, for each root-to-
leaf path P in T , we define label[P] :=

⋃
α∈P label[α] and value[P] :=

∏
α∈P value[α]. In

particular, label[P] := ((e1, w1), . . . , (eo, wo), (v1,w1), . . . , (vs,ws)) by definition of labels of
cycle-sampler and star-sampler trees. As such label[P ] is a representation of the subgraph H
as defined in Section 3.2. By making O(1) additional pair-queries to query all the remaining
edges of this representation of H we determine if label[P] forms a copy of H.

This concludes the description of subgraph-sampler(G,H) and its output subgraph-
sampler tree T . We bound the query complexity of the algorithm in the following lemma
(the proof is postponed to the full version [4]).

I Lemma 11. The expected query complexity/ running time of subgraph-sampler is O(1).

We are now ready to present our estimator algorithm using subgraph-sampler and the
subgraph-sampler tree T it outputs.

An Estimator for Arbitrary Subgraphs. Note that as before the subgraph-sampler tree
T itself is a random variable depending on the randomness of subgraph-sampler. For
any root-to-leaf path Pi := α1, . . . , αz of T , we define the random variable Xi such that
Xi := value[Pi] iff label[Pi] forms a copy of H in G and otherwise Xi := 0. We further
define Y := ( 1

t

∑t
i=1 Xi), where t is the number of leaf-nodes of T (which itself is a random

variable). These random variables can all be computed from T and subgraph-sampler with
at most O(1) further pair-queries per each root-to-leaf path P of the tree to determine if
indeed label[P ] forms a copy of H in G or not. As such, query complexity and runtime of this
algorithm is proportional to subgraph-sampler (which in expectation is O(1) by Lemma 11).
In the following two lemmas, we show that Y is a low-variance unbiased estimator of (#H).

Notation. For any node α in T , we use Tα to denote the sub-tree of T rooted at α. For a
leaf-node α, we define a random variable Yα which is value[α] iff for the root-to-leaf path P
ending in α, label[P ] forms a copy of H in G and otherwise Yα is 0. For an internal node α in
T with t child-nodes α1, . . . , αt, we define Yα = value[α] ·

(
1
t ·
∑t
i=1 Yi

)
. It is easy to verify

that Yαr for the root αr of T is the same as the estimator random variable Y defined earlier.
Furthermore, for a node α in level ` of T , we define Lα := (label[α1], label[α2], . . . , label[α`−1]),
where α1, . . . , α`−1 forms the path from the root of T to the parent of α.
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We analyze the expected value and the variance of the estimator.

I Lemma 12. For Y in subgraph-sampler(G,H), E [Y ] = (#H).

Proof. We prove this inductively by showing that for any node α in an odd layer of T ,
E [Yα | Lα] = (#H | Lα), where (#H | Lα) denotes the number of copies of H in G that
contain the vertices and edges specified by Lα (according to the decomposition D(H)).
E [Yα | Lα] measures the value of Yα after we fix the rest of the tree T and let the sub-tree
Tα be chosen randomly as in subgraph-sampler.

The base case of the induction, i.e., for vertices in the last odd layer of T follows exactly
as in the proofs of Lemmas 8 and 10 (as will also become evident shortly) and hence we do
not repeat it here. We now prove the induction hypothesis. Fix a vertex α in an odd layer `.
We consider two cases based on whether ` < 2o (hence α is root of a cycle-sampler tree) or
` > 2o (hence α is root of a star-sampler tree).
Case of ` < 2o. In this case, the sub-tree Tα in the next two levels is a cycle-sampler tree,

E [Yα | Lα] =
∑

e

Pr (label[α] = e) · value[α] ·
(

1
te

te∑
i=1

E [Yαi | Lα, e]
)

(here, αi’s are child-nodes of α)

=
∑

e

1
te

te∑
i=1

E [Yαi | Lα, e]

(as by definition, value[α] = Pr (label[α] = e)−1)

Note that each αi has exactly one child-node, denoted by βi. As such,

E [Yα | Lα] =
∑

e

1
te

te∑
i=1

E [Yαi | Lα, e]

=
∑

e

1
te

te∑
i=1

∑
w

Pr (label[αi] = w) · value[αi] · E [Yβi | Lα, e, w]

=
∑

e

1
te

te∑
i=1

∑
w

E [Yβi | Lβi ]

(by definition value[αi] = Pr (label[αi] = w)−1 and Lβi = Lα, (e, w))

=
∑

e

1
te

te∑
i=1

∑
w

(#H | Lβi) =
∑

e

1
te

te∑
i=1

∑
w

(#H | Lα, (e, w))

(by induction hypothesis for odd-layer nodes βi’s)

=
∑

e

∑
w

(#H | Lα, (e, w)) = (#H | Lα).

This concludes the proof of induction hypothesis in this case.
Case of ` > 2o. In this case, the sub-tree Tα in the next two levels is a star-sampler tree.

By the same analogy made in the proof of the previous part and Lemma 8, the proof of
this part also follows directly from the proof of Lemma 10 for star-sampler trees.

We can now finalize the proof of Lemma 12, by noting that for the root αr of T , Lαr is
the empty-set and hence, E [Y ] = E [Yαr | Lαr ], which by induction is equal to (#H). J
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I Lemma 13. For Y in subgraph-sampler(G,H), Var [Y ] = O(mρ(H)) · E [Y ].

Proof. We bound Var [Y ] using a similar inductive proof as in Lemma 12. Recall the
parameters ρC1 , . . . , ρCo and ρS1 , . . . , ρSs associated respectively with the cycles C1, . . . , Co and
stars S1, . . . ,Ss of the decomposition D(H). For simplicity of notation, for any i ∈ [o+ s],
we define ρi+ as follows:

for all i ≤ o, ρi+ :=
o∑
j=i

ρCj +
s∑
j=1

ρSj , for all o < i ≤ o+ s, ρi+ :=
s∑

j=i−o
ρSj .

We inductively show that, for any node α in an odd layer 2`− 1 of T ,

Var [Yα | Lα] ≤ 22z−2` ·mρ`+ · (#H | Lα),

where (#H | Lα) denotes the number of copies of H in G that contain the vertices and edges
specified by Lα (according to the decomposition D(H)).

The induction is from the leaf-nodes of the tree to the root. The base case of the induction,
i.e., for vertices in the last odd layer of T follows exactly as in the proofs of Lemmas 8 and 10
(as will also become evident shortly) and hence we do not repeat it here. We now prove the
induction hypothesis. Fix a vertex α in an odd layer 2`− 1. We consider two cases based
on whether ` ≤ o (hence α is root of a cycle-sampler tree) or ` > o (hence α is root of a
star-sampler tree).
Case of ` ≤ o. In this case, the sub-tree Tα in the next two levels is a cycle-sampler tree

corresponding to the odd cycle C` of D(H). Let the number of edges in C` be (2k + 1)
(i.e., C` = C2k+1) Let e denote the label of the α. By the law of total variance in Eq. (1)

Var [Yα | Lα] = E [Var [Yα | e] | Lα] + Var [E [Yα | e] | Lα] . (7)

We start by bounding the second term in Eq. (7) which is easier. By the inductive proof
of Lemma 12, we also have, E [Yα | Lα, e] = (#H | Lα, e). As such,

Var [E [Yα | e] | Lα] = Var [(#H | Lα, e) | Lα] ≤ E
[
(#H | Lα, e)2 | Lα

]
=
∑

e

Pr (label[α] = e) · (#H | Lα, e)2 = 1
mk

∑
e

(#H | Lα, e)2

(Pr (label[α] = e) = 1/mk by definition of odd-cycle-sampler)

≤ 1
mk

(∑
e

(#H | Lα, e)
)2

= 1
mk

(#H | Lα)2

≤ mρ`+ · (#H | Lα). (8)

The reason behind the last equality is that (#H | Lα) is at most equal to the number of
copies of the subgraph of H consisting of C`, . . . , Co,S1, . . . ,Ss, which by Lemma 5 is at
most mρ`+ by definition of ρ`+. We now bound the first and the main term in Eq. (7),

E [Var [Yα | e] | Lα] =
∑

e

Pr (label[α] = e) · Var [Yα | e,Lα]

=
∑

e

1
mk
·m2k · 1

t2e
·
te∑
i=1

Var [Yαi | e,Lα] ,

(here αi’s are child-nodes of α)
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where the final equality holds because Yαi ’s are independent conditioned on e,Lα and
since Yα is by definition mk times the average of Yαi ’s. Moreover, note that distribution
of all Yαi ’s are the same. Hence, by canceling the terms,

E [Var [Yα | e] | Lα] = mk ·
∑

e

1
te
· Var [Yα1 | e,Lα] , (9)

We thus only need to bound Var [Yα1 | e,Lα]. Recall that α1 corresponds to a leaf-node
in a cycle-sampler tree and hence its label is a vertex w from the neighborhood of u∗e
as defined in odd-cycle-sampler. We again use the law of total variance in Eq. (1) to
obtain,

Var [Yα1 | e,Lα] = E [Var [Yα1 | w] | e,Lα] + Var [E [Yα1 | w] | e,Lα] (10)

For the first term,

E [Var [Yα1 | w] | e,Lα] =
∑

w∈N(u∗e)

Pr (label[α1] = w) · Var [Yα1 | w, e,Lα]

=
∑
w

1
d∗e
· (d∗e)2 · Var [Yβ1 | w, e,Lα] ,

where β1 is the unique child-node of α1 and so Yα1 = value[α1] · Yβ1 , while conditioned
on e, value[α1] = d∗e. Moreover, as Lβ1 = (Lα, e, w), and by canceling the terms,

E [Var [Yα1 | w] | e,Lα] =
∑
w

d∗e · Var [Yβ1 | Lβ1 ]

≤
∑
w

d∗e · 22z−2`−2 ·mρ(`+1)+ · (#H | Lβ1), (11)

where the inequality is by induction hypothesis for the odd-level node β1. We now bound
the second term in Eq. (10) as follows,

Var [E [Yα1 | w] | e,Lα] ≤ E
[(

E [Yα1 | w]
)2
| e,Lα

]
=
∑
w

Pr (label[α1] = w) ·
(
E [Yα1 | w, e,Lα]

)2

=
∑
w

1
d∗e
· (d∗e)2 ·

(
E [Yβ1 | w, e,Lα]

)2

=
∑
w

d∗e ·
(
E [Yβ1 | Lβ1 ]

)2
=
∑
w

d∗e · (#H | Lβ1)2

≤
∑
w

d∗e ·mρ(`+1)+ · (#H | Lβ1). (12)

Here, the second to last equality holds by the inductive proof of Lemma 12, and the
last equality is because (#H | Lβ1) ≤ mρ(`+1)+ by Lemma 5, as (#H | Lβ1) is at most
equal to the total number of copies of a subgraph of H on C`+1, . . . , Co,S1, . . . ,Ss (and
by definition of ρ(`+1)+). We now plug in Eq. (11) and Eq. (12) in Eq. (10),

Var [Yα1 |e,Lα] ≤
∑
w

d∗e ·
(
22z−2`−2 ·mρ(`+1)+ · (#H | Lβ1) +mρ(`+1)+ · (#H | Lβ1)

)
.

ITCS 2019



6:16 Sublinear-Time Counting of Arbitrary Subgraphs via Edge Sampling

We now in turn plug this in Eq. (9),

E [Var [Yα | e] | Lα]

≤ mk
∑

e

1
te

∑
w

d∗e ·
(
22z−2`−2 ·mρ(`+1)+ · (#H | Lβ1) +mρ(`+1)+ · (#H | Lβ1)

)
≤ mk

√
m ·

∑
e

∑
w

22z−2`−1 ·mρ(`+1)+ · (#H | Lβ1) (as te ≥ d∗e/
√
m)

≤ 22z−2`−1 ·mρ`+ ·
∑

e

∑
w

(#H | Lβ1)

(as ρC` = k + 1/2 and ρ`+ = ρC` + ρ(`+1)+ by definition)
= 22z−2`−1 ·mρ`+ · (#H | Lα). (as Lβ1 = (Lα, e, w))

Finally, by plugging in this and Eq. (8) in Eq. (7),

Var [Yα | Lα] = 22z−2`−1 ·mρ`+ · (#H | Lα) +mρ`+ · (#H | Lα)
≤ 22z−2` ·mρ`+ · (#H | Lα),

finalizing the proof of induction step in this case. We again remark that this proof closely
followed the proof for the variance of the estimator for cycle-sampler tree in Lemma 8.

Case of ` > o. In this case, the sub-tree Tα in the next two levels is a star-sampler tree. By
the same analogy made in the proof of the previous case and Lemma 8, the proof of this
part also follows the proof of Lemma 10 for star-sampler trees. We hence omit the details.

To conclude, we have that Var [Y ] = Var [Yαr | Lαr ] = O(mρ(H))·(#H) = O(mρ(H))·E [Y ]
as Y = Yαr for the root αr of T , Lαr = ∅, (#H) = E [Y ] by Lemma 12, and z = O(1). J

4.2 An Algorithm for Estimating Occurrences of Arbitrary Subgraphs
We now use our estimator algorithm from the previous section to design our algorithm for
estimating the occurrences of an arbitrary subgraph H in G. In the following theorem, we
assume that the algorithm has knowledge of m and also a lower bound on the value of #H;
these assumptions can be lifted easily as we describe afterwards.

I Theorem 14. There exists a sublinear time algorithm that uses degree, neighbor, pair, and
edge sample queries and given a precision parameter ε ∈ (0, 1), an explicit access to a constant-
size graph H(VH , EH), a query access to the input graph G(V,E), the number of edges m in
G, and a lower bound h ≤ #H, with high probability outputs a (1± ε)-approximation to #H
using O

(
min

{
m, m

ρ(H)

h · logn
ε2

})
queries and O

(
mρ(H)

h · logn
ε2

)
time, in the worst-case.

Proof. Fix a sufficiently large constant c > 0. We run subgraph-sampler(G,H) for k :=
c·mρ(H)

ε2·h time independently in parallel to obtain estimates Y1, . . . , Yk and let Z := 1
k

∑k
i=1 Yi.

By Lemma 12, E [Z] = (#H). Since Yi’s are independent, we also have

Var [Z] = 1
k2

k∑
i=1

Var [Yi] ≤
1
k
·O(mρ(H)) · E [Z] ≤ ε2

10 · E [Z]2 ,

by Lemma 13, and by choosing the constant c sufficiently larger than the constant in the
O-notation of this lemma, together with the fact that h ≤ (#H) = E [Z]. By Chebyshev’s
inequality (Proposition 2), Pr (|Z − E [Z]| ≥ ε · E [Z]) ≤ Var[Z]

ε2·E[Z]2 ≤ 1
10 , by the bound above

on the variance. This means that with probability 0.9, this algorithm outputs a (1 ± ε)-
approximation of #H. Moreover, the expected query complexity and running time of this
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algorithm is O(k) by Lemma 11, which is O(m
ρ(H)

ε2 ) (if k ≥ m, we simply query all edges of
the graph and solve the problem using an offline enumeration algorithm). To extend this
result to a high probability bound and also making the guarantee of query complexity and
run-time in the worst-case, we simply run this algorithm O(logn) times in parallel and stop
each execution that uses more than 10 times queries than the expectation. J

The algorithm in Theorem 14 assumes the knowledge of h which is a lower bound on
(#H). However, this assumption can be easily removed by making a geometric search on
h starting from mρ(H)/2 which is (approximately) the largest value for (#H) all the way
down to 1 in factors of 2, and stopping the search once the estimates returned for a guess of
h became consistent with h itself. This only increases the query complexity and runtime of
the algorithm by polylog(n) factors. As this part is quite standard, we omit the details and
instead refer the interested reader to [16, 18]. This concludes the proof of our main result in
Theorem 1 from the introduction.

4.3 Extension to the Database Join Size Estimation Problem

The database join size estimation for binary relations can be modeled by the subgraph
estimation problem where the subgraph H and the underlying graph G are additionally
edge-colored and we are only interested in counting the copies of H in G with matching colors
on the edges. In this abstraction, the edges of the graph G correspond to the entries of the
database, and the color of edges determine the relation of the entry.

We formalize this variant of the subgraph counting problem in the following. In the
colorful subgraph estimation problem, we are given a subgraph H(VH , EH) with a coloring
function cH : EH → N and query access to a graph G(V,E) along with a coloring function
cG : E → N. The set of allowed queries to G contains the degree queries, pair queries,
neighbor queries, and edge-sample queries as before, with a simple change that whenever we
query an edge (through the last three types of queries), the color of the edge according to cG
is also revealed to the algorithm. Our goal is to estimate the number of copies of H in G
with matching colors, i.e., the colorful copies of H.

It is immediate to verify that our algorithm in this section can be directly applied to the
colorful subgraph estimation problem with the only difference that when testing whether a
subgraph forms a copy of H in G, we in fact check whether this subgraph forms a colorful
copy of H in G instead. The analysis of this new algorithm is exactly as in the case of
the original algorithm with the only difference that we switch the parameter #H to #Hc

that only counts the number of copies of H with the same colors in G. To summarize, we
obtain an algorithm with O∗(m

ρ(H)

#Hc ) query and time complexity for the colorful subgraph
counting problem, which can in turn solves the database join size estimation problem for
binary relations.

5 Lower Bounds

We present two lower bounds that demonstrate the optimality of Theorem 1 in different
scenarios. Our first lower bound establishes tight bounds for counting odd cycles.

I Theorem 15. For any k ≥ 1, any algorithm A that can output any multiplicative-
approximation to the number of copies of the odd cycle C2k+1 in a given graph G(V,E) with
probability at least 2/3 requires Ω( mk+ 1

2
#C2k+1

) queries to G.

ITCS 2019
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Theorem 15 implies that in addition to cliques (that were previously proved [19]; see
also [16, 18]), our algorithm in Theorem 1 also achieve optimal bounds for odd cycles.

Our next lower bound targets the more general problem of database join size estimation
for which we argued that our Theorem 1 continues to hold. We show that for this more
general problem, our algorithm in Theorem 1 is in fact optimal for all choices of subgraph H.

I Theorem 16. For any subgraph H(VH , EH) which contains at least one edge, suppose
A is an algorithm for the colorful subgraph estimation problem that given H, a coloring
cH : EH → N, and query access to G(V,E) with m edges and coloring function cG : E → N,
can output a multiplicative-approximation to the number of colorful copies of H in G with
probability at least 2/3. Then, A requires Ω(m

ρ(H)

#Hc ) queries, where #Hc is the number of
colorful copies of H in G. The lower bound continues to hold even if the number of colors
used by cH and cG is at most two.

The proofs of Theorems 15 and 16 are postponed to the full version of the paper [4].
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