92 research outputs found

    Parameterized (Modular) Counting and Cayley Graph Expanders

    Get PDF
    We study the problem #EdgeSub(?) of counting k-edge subgraphs satisfying a given graph property ? in a large host graph G. Building upon the breakthrough result of Curticapean, Dell and Marx (STOC 17), we express the number of such subgraphs as a finite linear combination of graph homomorphism counts and derive the complexity of computing this number by studying its coefficients. Our approach relies on novel constructions of low-degree Cayley graph expanders of p-groups, which might be of independent interest. The properties of those expanders allow us to analyse the coefficients in the aforementioned linear combinations over the field ?_p which gives us significantly more control over the cancellation behaviour of the coefficients. Our main result is an exhaustive and fine-grained complexity classification of #EdgeSub(?) for minor-closed properties ?, closing the missing gap in previous work by Roth, Schmitt and Wellnitz (ICALP 21). Additionally, we observe that our methods also apply to modular counting. Among others, we obtain novel intractability results for the problems of counting k-forests and matroid bases modulo a prime p. Furthermore, from an algorithmic point of view, we construct algorithms for the problems of counting k-paths and k-cycles modulo 2 that outperform the best known algorithms for their non-modular counterparts. In the course of our investigations we also provide an exhaustive parameterized complexity classification for the problem of counting graph homomorphisms modulo a prime p

    Domination Above r-Independence: Does Sparseness Help?

    Get PDF
    Inspired by the potential of improving tractability via gap- or above-guarantee parametrisations, we investigate the complexity of Dominating Set when given a suitable lower-bound witness. Concretely, we consider being provided with a maximal r-independent set X (a set in which all vertices have pairwise distance at least r+1) along the input graph G which, for r >= 2, lower-bounds the minimum size of any dominating set of G. In the spirit of gap-parameters, we consider a parametrisation by the size of the "residual" set R := V(G) N[X]. Our work aims to answer two questions: How does the constant r affect the tractability of the problem and does the restriction to sparse graph classes help here? For the base case r = 2, we find that the problem is paraNP-complete even in apex- and bounded-degree graphs. For r = 3, the problem is W[2]-hard for general graphs but in FPT for nowhere dense classes and it admits a linear kernel for bounded expansion classes. For r >= 4, the parametrisation becomes essentially equivalent to the natural parameter, the size of the dominating set

    The Geometry of Reachability in Continuous Vector Addition Systems with States

    Get PDF
    We study the geometry of reachability sets of continuous vector addition systems with states (VASS). In particular we establish that they are "almost" Minkowski sums of convex cones and zonotopes generated by the vectors labelling the transitions of the VASS. We use the latter to prove that short so-called linear path schemes suffice as witnesses of reachability in continuous VASS. Then, we give new polynomial-time algorithms for the reachability problem for linear path schemes. Finally, we also establish that enriching the model with zero tests makes the reachability problem intractable already for linear path schemes of dimension two

    An FPT Algorithm for Elimination Distance to Bounded Degree Graphs

    Get PDF
    In the literature on parameterized graph problems, there has been an increased effort in recent years aimed at exploring novel notions of graph edit-distance that are more powerful than the size of a modulator to a specific graph class. In this line of research, Bulian and Dawar [Algorithmica, 2016] introduced the notion of elimination distance and showed that deciding whether a given graph has elimination distance at most k to any minor-closed class of graphs is fixed-parameter tractable parameterized by k [Algorithmica, 2017]. They showed that Graph Isomorphism parameterized by the elimination distance to bounded degree graphs is fixed-parameter tractable and asked whether determining the elimination distance to the class of bounded degree graphs is fixed-parameter tractable. Recently, Lindermayr et al. [MFCS 2020] obtained a fixed-parameter algorithm for this problem in the special case where the input is restricted to K?-minor free graphs. In this paper, we answer the question of Bulian and Dawar in the affirmative for general graphs. In fact, we give a more general result capturing elimination distance to any graph class characterized by a finite set of graphs as forbidden induced subgraphs

    Modular Counting of Subgraphs: Matchings, Matching-Splittable Graphs, and Paths

    Get PDF
    We systematically investigate the complexity of counting subgraph patterns modulo fixed integers. For example, it is known that the parity of the number of kk-matchings can be determined in polynomial time by a simple reduction to the determinant. We generalize this to an nf(t,s)n^{f(t,s)}-time algorithm to compute modulo 2t2^t the number of subgraph occurrences of patterns that are ss vertices away from being matchings. This shows that the known polynomial-time cases of subgraph detection (Jansen and Marx, SODA 2015) carry over into the setting of counting modulo 2t2^t. Complementing our algorithm, we also give a simple and self-contained proof that counting kk-matchings modulo odd integers qq is Mod_q-W[1]-complete and prove that counting kk-paths modulo 22 is Parity-W[1]-complete, answering an open question by Bj\"orklund, Dell, and Husfeldt (ICALP 2015).Comment: 23 pages, to appear at ESA 202

    Counting Homomorphisms from Hypergraphs of Bounded Generalised Hypertree Width: A Logical Characterisation

    Get PDF

    From Linear to Additive Cellular Automata

    Get PDF
    This paper proves the decidability of several important properties of additive cellular automata over finite abelian groups. First of all, we prove that equicontinuity and sensitivity to initial conditions are decidable for a nontrivial subclass of additive cellular automata, namely, the linear cellular automata over \u207f, where is the ring \u2124/m\u2124. The proof of this last result has required to prove a general result on the powers of matrices over a commutative ring which is of interest in its own. Then, we extend the decidability result concerning sensitivity and equicontinuity to the whole class of additive cellular automata over a finite abelian group and for such a class we also prove the decidability of topological transitivity and all the properties (as, for instance, ergodicity) that are equivalent to it. Finally, a decidable characterization of injectivity and surjectivity for additive cellular automata over a finite abelian group is provided in terms of injectivity and surjectivity of an associated linear cellular automata over \u207f

    Computational Complexity of Synchronization under Regular Commutative Constraints

    Full text link
    Here we study the computational complexity of the constrained synchronization problem for the class of regular commutative constraint languages. Utilizing a vector representation of regular commutative constraint languages, we give a full classification of the computational complexity of the constraint synchronization problem. Depending on the constraint language, our problem becomes PSPACE-complete, NP-complete or polynomial time solvable. In addition, we derive a polynomial time decision procedure for the complexity of the constraint synchronization problem, given some constraint automaton accepting a commutative language as input.Comment: Published in COCOON 2020 (The 26th International Computing and Combinatorics Conference); 2nd version is update of the published version and 1st version; both contain a minor error, the assumption of maximality in the NP-c and PSPACE-c results (propositions 5 & 6) is missing, and of incomparability of the vectors in main theorem; fixed in this version. See (new) discussion after main theore

    Finding a Highly Connected Steiner Subgraph and its Applications

    Get PDF
    Given a (connected) undirected graph G, a set X ? V(G) and integers k and p, the Steiner Subgraph Extension problem asks whether there exists a set S ? X of at most k vertices such that G[S] is a p-edge-connected subgraph. This problem is a natural generalization of the well-studied Steiner Tree problem (set p = 1 and X to be the terminals). In this paper, we initiate the study of Steiner Subgraph Extension from the perspective of parameterized complexity and give a fixed-parameter algorithm (i.e., FPT algorithm) parameterized by k and p on graphs of bounded degeneracy (removing the assumption of bounded degeneracy results in W-hardness). Besides being an independent advance on the parameterized complexity of network design problems, our result has natural applications. In particular, we use our result to obtain new single-exponential FPT algorithms for several vertex-deletion problems studied in the literature, where the goal is to delete a smallest set of vertices such that: (i) the resulting graph belongs to a specified hereditary graph class, and (ii) the deleted set of vertices induces a p-edge-connected subgraph of the input graph
    • …
    corecore