13 research outputs found

    Optical code-division multiple access system and optical signal processing

    Get PDF
    This thesis presents our recent researches on the development of coding devices, the investigation of security and the design of systems in the optical cod-division multiple access (OCDMA) systems. Besides, the techniques of nonlinear signal processing used in the OCDMA systems fire our imagination, thus some researches on all-optical signal processing are carried out and also summarized in this thesis. Two fiber Bragg grating (FBG) based coding devices are proposed. The first coding device is a superstructured FBG (SSFBG) using ±π/2-phase shifts instead of conventional 0/π-phase shifts. The ±π/2-phase-shifted SSFBG en/decoders can not only conceal optical codes well in the encoded signals but also realize the reutilization of available codes by hybrid use with conventional 0/π-phase-shifted SSFBG en/decoders. The second FBG based coding device is synthesized by layer-peeling method, which can be used for simultaneous optical code recognition and chromatic dispersion compensation. Then, two eavesdropping schemes, one-bit delay interference detection and differential detection, are demonstrated to reveal the security vulnerability of differential phase-shift keying (DPSK) and code-shift keying (CSK) OCDMA systems. To address the security issue as well as increase the transmission capacity, an orthogonal modulation format based on DPSK and CSK is introduced into the OCDMA systems. A 2 bit/symbol 10 Gsymbol/s transmission system using the orthogonal modulation format is achieved. The security of the system can be partially guaranteed. Furthermore, a fully-asynchronous gigabit-symmetric OCDMA passive optical network (PON) is proposed, in which a self-clocked time gate is employed for signal regeneration. A remodulation scheme is used in the PON, which let downstream and upstream share the same optical carrier, allowing optical network units source-free. An error-free 4-user 10 Gbit/s/user duplex transmission over 50 km distance is reazlied. A versatile waveform generation scheme is then studied. A theoretical model is established and a waveform prediction algorithm is summarized. In the demonstration, various waveforms are generated including short pulse, trapezoidal, triangular and sawtooth waveforms and doublet pulse. ii In addition, an all-optical simultaneous half-addition and half-subtraction scheme is achieved at an operating rate of 10 GHz by using only two semiconductor optical amplifiers (SOA) without any assist light. Lastly, two modulation format conversion schemes are demonstrated. The first conversion is from NRZ-OOK to PSK-Manchester coding format using a SOA based Mach-Zehnder interferometer. The second conversion is from RZ-DQPSK to RZ-OOK by employing a supercontinuum based optical thresholder

    Advanced optical modulation and fast reconfigurable en/decoding techniques for OCDMA application

    Get PDF
    With the explosive growth of bandwidth requirement in optical fiber communication networks, optical code division multiple access (OCDMA) has witnessed tremendous achievements as one of the promising technologies for optical access networks over the past decades. In an OCDMA system, optical code processing is one of the key techniques. Rapid optical code reconfiguration can improve flexibility and security of the OCDMA system. This thesis focuses on advanced optical modulations and en/decoding techniques for applications in fast reconfigurable OCDMA systems and secure optical communications. A novel time domain spectral phase encoding (SPE) scheme which can rapidly reconfigure the optical code and is compatible with conventional spectral domain phase en/decoding by using a pair of dispersive devices and a high speed phase modulator is proposed. Based on this scheme, a novel advanced modulation technique that can simultaneously generate both the optical code and the differential-phase-shift-keying (DPSK) data using a single phase modulator is experimentally demonstrated. A symmetric time domain spectral phase encoding and decoding (SPE/SPD) scheme using a similar setup for both the transmitter and receiver is further proposed, based on which a bit-by-bit optical code scrambling and DPSK data modulation technique for secure optical communications has been successfully demonstrated. By combining optical encoding and optical steganography, a novel approach for secure transmission of time domain spectral phase encoded on-off-keying (OOK)/DPSK-OCDMA signal over public wavelength-division multiplexing (WDM) network has also been proposed and demonstrated. To enable high speed operation of the time domain SPE/SPD scheme and enhance the system security, a rapid programmable, code-length variable bit-by-bit optical code shifting technique is proposed. Based on this technique, security improvements for OOK/DPSK OCDMA systems at data rates of 10Gb/s and 40Gb/s using reconfigurable optical codes of up to 1024-chip have been achieved. Finally, a novel tunable two-dimensional coherent optical en/decoder which can simultaneously perform wavelength hopping and spectral phase encoding based on coupled micro-ring resonator is proposed and theoretically investigated. The techniques included in this thesis could be potentially used for future fast reconfigurable and secure optical code based communication systems

    Power Control In Optical CDMA

    Get PDF
    Optical CDMA (OCDMA) is the multiplexing technique over the fiber optics medium to increase the number of users and this is a step towards all optical Passive Optical Networks (PON). Optical OFDM, WDM and Optical TDM have also been studied in this thesis which are also candidates to all optical passive optical networks. One of the main features of Optical CDMA over other multiplexing techniques is that it has smooth capacity. The capacity of OCDMA is constrained by the interference level. Hence, when some users are offline or requesting less data rates, then the capacity will be increased in the network. Same feature could be obtained in other multiplexing techniques, but they will need much more complicated online organizers. However, in OCDMA it is critical to adjust the transmission power to the right value; otherwise, near-far problem may greatly reduce the network capacity and performance. In this thesis Power control concepts are analyzed in optical CDMA star networks. It is applied so that the QoS of the network get enhanced and all users after the power control have their desired signal to interference (SIR) value. Moreover, larger number of users can be accommodated in the network. Centralized power control algorithm is considered for this thesis. In centralized algorithm noiseless case and noisy case have been studied. In this thesis several simulations have been performed which shows the QoS difference before and after power control. The simulation results are validated also by the theoretical computation.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    High Dimensional Modulation and MIMO Techniques for Access Networks

    Get PDF
    Exploration of advanced modulation formats and multiplexing techniques for next generation optical access networks are of interest as promising solutions for delivering multiple services to end-users. This thesis addresses this from two different angles: high dimensionality carrierless amplitudephase (CAP) and multiple-input multiple-output (MIMO) radio-over-fiber (RoF) systems. High dimensionality CAP modulation has been investigated in optical fiber systems. In this project we conducted the first experimental demonstration of 3 and 4 dimensional CAP with bit rates up to 10 Gb/s. These results indicate the potentiality of supporting multiple users with converged services. At the same time, orthogonal division multiple access (ODMA) systems for multiple possible dimensions of CAP modulation has been demonstrated for user and service allocation in wavelength division multiplexing (WDM) optical access network. 2 x 2 MIMO RoF employing orthogonal frequency division multiplexing (OFDM) with 5.6 GHz RoF signaling over all-vertical cavity surface emitting lasers (VCSEL) WDM passive optical networks (PONs). We have employed polarization division multiplexing (PDM) to further increase the capacity per wavelength of the femto-cell network. Bit rate up to 1.59 Gbps with fiber-wireless transmission over 1 m air distance is demonstrated. The results presented in this thesis demonstrate the feasibility of high dimensionality CAP in increasing the number of dimensions and their potentially to be utilized for multiple service allocation to different users. MIMO multiplexing techniques with OFDM provides the scalability in increasing spectral effciency and bit rates for RoF systems. High dimensional CAP and MIMO multiplexing techniques are two promising solutions for supporting wired and hybrid wired-wireless access networks

    Noise Suppression in OCDMA Networks using Nonlinear Optical Devices

    Get PDF
    Optical code division multiple access (OCDMA) is a multiplexing technique that has a number of inherent advantages that make it suitable for use in passive optical networks, such as allowing subscribers to transmit information in an asynchronous fashion over a single optical fibre. This form of multiplexing can provide a higher degree of flexibility and simplicity in comparison to other techniques. However, due to the asynchronous nature of transmission, OCDMA networks suffer from multiple access interference (MAI) and optical beat noise which severely impairs system performance. A number of solutions have been proposed to mitigate these noise sources. Increasing the optical code lengths used can reduce the level of optical beat noise, however this is generally at the expense of transmission speed and increased transmitter complexity. MAI suppression can be achieved through the use fibre-based nonlinear thresholders or optical time-gating. One problem with these solutions is the requirement of long lengths of nonlinear fibre that are susceptible to changes in environmental conditions. Therefore, this thesis focuses on the development and testing of a nonlinear optical receiver based on semiconductor devices for the suppression of noise in OCDMA systems. The nonlinear optical process of two-photon absorption (TPA) in a commercially available 1.3 micron Fabry-P´erot laser is investigated as a method for optical thresholding in an OCDMA system. It is shown that the use of a saturable absorber (SA) directly before the TPA-based detector can provide additional suppression of MAI noise. However, the level of beat noise that is present on the optical signal can be increased due to the nonlinear responses of both devices. As a result, a gain-saturated semiconductor optical amplifier (SOA) is demonstrated as a method for the reduction of optical beat noise. It is shown that error-free performance can be achieved in an optical testbed designed to simulate an OCDMA system using an SA-SOA-TPA-based receiver. The performance improvement due to the suppression of MAI and beat noise using an SA-SOA receiver is examined in relation to a current fibre-based thresholding technique; a Mamyshev filter. It is shown that the SA-SOA receiver can offer a similar level of improvement when compared to the performance of a Mamyshev filter

    Convergencia de tecnologías ópticas y Ethernet en LAN, MAN y SAN: nuevas arquitecturas, análisis de prestaciones y eficiencia energética

    Get PDF
    Mención Internacional en el título de doctorThe development of Information Technologies in the last decades, especially the last two, together with the introduction of computing devices to the mainstream consumer market, has had the logical consequence of the generalisation of the Internet access. The explosive development of the smartphone market has brought ubiquity to that generalisation, to the point that social interaction, content sharing and content production happens all the time. Social networks have all but increased that trend, maximising the diffusion of multimedia content: images, audio and video, which require high network capacities to be enjoyed quickly. This need for endless bandwidth and speed in information sharing brings challenges that affect mainly optical Metropolitan Area Networks (MANs) and Wide Area Networks (WANs). Furthermore, the wide spreading of Ethernet technologies has also brought the possibility to achieve economies of scale by either extending the reach of Ethernet Local Area Networks (LANs) to the MAN and WAN environment or even integrating them with Storage Area Networks (SANs). Finally, this generalisation of telecommunication technologies in every day life has as a consequence an important rise in energy consumption as well. Because of this, providing energy efficient strategies in networking is key to ensure the scalability of the whole Internet. In this thesis, the main technologies in all the fields mentioned above are reviewed, its core challenges identified and several contributions beyond the state of the art are suggested to improve today’s MANs andWANs. In the first contribution of this thesism, the integration between Metro Ethernet and Wavelength Division Multiplexion (WDM) optical transparent rings is explored by proposing an adaptation architecture to provide efficient broadcast and multicast. The second contribution explores the fusion between transparent WDM and OCDMA architectures to simplify medium access in a ring. Regarding SANs, the third contribution explores the challenges in SANs through the problems of Fibre Channel over Ethernet due to buffer design issues. In this contribution, analysis, design and validation with FCoE traces and simulation is provided to calculate buffer overflow probabilities in the absence of flow control mechanisms taking into account the bursty nature of SAN traffic. Finally, the fourth and last contribution addresses the problems of energy efficiency in Plastic Optical Fibres (POF), a new kind of optical fibre more suitable for transmission in vehicles and for home networking. This contribution suggests two packet coalescing strategies to further improve the energy effiency mechanisms in POFs.El desarrollo de las Tecnologías de la Información en las últimas décadas, especialmente las últimas dos, junto con la introducción de dispositivos informáticos al mercado de masas, ha tenido como consecuencia lógica la generalización del acceso a Internet. El explosivo desarrollo del mercado de teléfonos inteligentes ha añadido un factor de ubicuidad a tal generalización, al extremo de que la interacción social, la compartición y producción de contenidos sucede a cada instante. Las redes sociales no han hecho sino incrementar tal tendencia, maximizando la difusión de contenido multimedia: imágenes, audio y vídeo, los cuales requieren gran capacidad en las redes para poder obtenerse con rapidez. Esta necesidad de ancho de banda ilimitado y velocidad en la compartición de información trae consigo retos que afectan principalmente a las Redes de Área Metropolitana (Metropolitan Area Networks, MANs) y Redes de Área Extensa (Wide Area Networks, WANs). Además, la gran difusión de las tecnologías Ethernet ha traído la posibilidad de alcanzar economías de escala bien extendiendo el alcance de Ethernet más allá de las Redes de Área Local (Local Area Networks, LANs) al entorno de las MAN y las WAN o incluso integrándolas con Redes de Almacenamiento (Storage Area Networks, SANs). Finalmente, esta generalización de las tecnologías de la comunicación en la vida cotidiana tiene también como consecuencia un importante aumento en el consumo de energía. Por tanto, desarrollar estrategias de transmisión en red eficientes energéticamente es clave para asegurar la escalabilidad de Internet. En esta tesis, las principales tecnologías de todos los campos mencionados arriba serán estudiadas, sus más importantes retos identificados y se sugieren varias contribuciones más allá del actual estado del arte para mejorar las actuales MANs y WANs. En la primera contribución de esta tesis, se explora la integración entre Metro Ethernet y anillos ópticos transparentes por Multiplexión en Longitud de Onda (Wavelength Division Multiplex, WDM) mediante la proposición de una arquitectura de adaptación para permitir la difusión y multidifusión eficiente. La segunda contribución explora la fusión entre las arquitecturas transparentes WDM y arquitecturas por Accesso Dividido Múltiple por Códigos Ópticos (OCDMA) para simplificar el acceso en una red en anillo. En lo referente a las SANs, la tercera contribución explora los retos en SANs a través de los problemas de Fibre Channel sobre Ethernet debido a los problemas en el diseño de búferes. En esta contribución, se provee un análisis, diseño y validación con trazas FCoE para calcular las probabilidades de desbordamiento de buffer en ausencia de mecanismos de control de flujo teniendo en cuenta la naturaleza rafagosa del tráfico de SAN. Finalmente, la cuarta y última contribución aborda los problemas de eficiencia energética en Fibras Ópticas Plásticas (POF), una nueva variedad de fibra óptica más adecuada para la transmisión en vehículos y para entornos de red caseros. Esta contribución sugiere dos estrategias de agrupamiento de paquetes para mejorar los mecanismos de eficiencia energética en POFs.Programa Oficial de Posgrado en Ingeniería TelemáticaPresidente: Luca Valcarenghi.- Secretario: Ignacio Soto Campos.- Vocal: Bas Huiszoo

    Monitoring of passive optical networks utilising an optical coding technique

    Get PDF
    Passive Optical Networks (PONs) have become the most popular fibre based access networks over the last decade. They are widely deployed for use in Fibre-to-the-Premises (FTTP) scenarios. PON is a point-to-multipoint connection (P2MP) between an optical line terminal (OLT) located at the central office (CO) and multiple optical network units (ONU) at the customer premises. The next generation of PONs (NG-PON) are likely to deploy a ring-and-spur long reach PON (LR-PON). NG-PON aims to accommodate more ONUs, extend the network coverage out to 100 km, minimize complexity and improve operational outcomes. An all fibre access network, operating over extended distances, presents a reliability risk, thereby increasing the need for a reliable and cost-effective monitoring system to enhance protection and reduce restoration time. Among existing monitoring techniques, attention is focused on approaches that use optical code division multiplexing (OCDM), also known as optical coding (OC). The OC is applied to a signal that is sent from the network management system (NMS) to the ONUs. The monitoring signal is transmitted onto a fibre and split into a number of sub-signals that are equal in number to the ONUs. Each one of the ONUs receives a sub-signal, encodes it, and then reflects it back to the NMS. The NMS has the capability to identify faulty ONUs by examining the code received from the ONUs. A review of the literature has shown that the use of OCs does improve system performance, especially in the timely detection of faults. Many of the studies, found in the literature, focus on how to implement optical spreading codes that are used in OCDM Access (OCDMA) systems and currently the optical orthogonal code (OOC) is the dominant code implemented for time-domain coding. Although the OOC code performs well, its construction is relatively complex. The available code-words (cardinality) that are offered by OOC are proportional to the code length. Implementing OOC in a high capacity PON requires a long code length causes an inevitable degradation of system performance. Therefore, an improved optical coding technique for PONs should provide code-words that conform to PON split ratios. The main objective of the research was to develop an optical spreading code, based on a prime code family for OCDMA systems, that has the capability to accommodate different PON split ratios and with characteristics that improve transmission system performance when compared to existing prime code families. The novel code presented in this thesis is identified as the extended grouped new modified prime code (EG-nMPC). The number of code-words generated by the proposed codes are substantially higher than those generated by the existing code families and more compatible to the different PON splitting ratios. In addition, with a low code weight, both power consumption and hardware complexity decreases. The code performance was evaluated using mathematical models for two transmission formats - pulse position modulation (PPM) and on-off keying (OOK) modulation. The performance of EG-nMPC was compared to other prime codes, and the results show that the proposed code improves the performance of OCDMA in terms of bit-error rate (BER). As PON is a point-to-multipoint connection oriented access network, downstream traffic is encrypted and broadcast to all ONUs, while the unencrypted upstream traffic from each ONU terminal occurs in a burst mode. The OLT carries out a ranging process to determine transmission delays between ONUs, to prevent collisions between the burst mode traffic from each of the ONUs. In this research, the burst mode traffic ranging process has been replicated in the monitoring system, with this replication providing a fixed equalization delay time for the monitoring transmissions. To investigate the ring-and-spur LR-PON reliability several protection architectures were evaluated, in term of cost and availability, to determine the optimal protection architecture. In this thesis, the reliability parameter Failure Impact Robustness (FIR), has been used to calculate the failure impact of the different components in ring-and-spur LR-PON, hence selecting the optimal protection scheme. A PON-based optical communication system model was developed and the proposed EG-nMPC code was incorporated. Fibre split ratios of 32, 64 and 128, were considered in this study. The simulation results show that the EG-nMPC code improves the performance, efficiency and accuracy of the PON transmission monitoring system. To conclude, this research aims to enhance the PON performance by a fast detection of the fault and quick restoration. This research has contributed to knowledge by identifying a new and novel spreading code that is compatible with the different PON splitting ratios for OC monitoring techniques. By using the ranging process, a fixed equalization delay time has been assigned to each ONU to manage the upstream burst traffic. The spreading code has been implemented in a real-time simulation to show the status of each fibre link. The implementation was carried out based on 1-D tree topology system. However, the proposed EG-nMPC can be exploited to enable network monitoring that is based on hybrid 1D/2D coding. This coding is complementary with the structure of LR-PON as explained in section ‎8.2.3. In addition, with the use of the FIR parameter for the different components in the ring-and-spur architecture, an optimal protection scheme for both OLT and the ring (feeder fibre), has been nominated. This protection scheme ensures that protection, availability and cost are at their optimal values

    Security performance and protocol consideration in optical communication system with optical layer security enabled by optical coding techniques

    Get PDF
    With the fast development of communication systems, network security issues have more and more impact on daily life. It is essential to construct a high degree of optical layer security to resolve the security problem once and for all. Three different techniques which can provide optical layer security are introduced and compared. Optical chaos can be used for fast random number generation. Quantum cryptography is the most promising technique for key distribution. And the optical coding techniques can be deployed to encrypt the modulated signal in the optical layer. A mathematical equation has been derived from information theory to evaluate the information-theoretic security level of the wiretap channel in optical coding schemes. And the merits and limitation of two coherent optical coding schemes, temporal phase coding and spectral phase coding, have been analysed. The security scheme based on a reconfigurable optical coding device has been introduced, and the corresponding security protocol has been developed. By moving the encryption operation from the electronic layer to the optical layer, the modulated signals become opaque to the unauthorised users. Optical code distribution and authentication is the one of the major challenges for our proposed scheme. In our proposed protocol, both of the operations are covered and defined in detail. As a preliminary draft of the optical code security protocol, it could be a useful guidance for further research
    corecore