395 research outputs found

    主消点操作による4次元空間インタラクションに関する研究

    Get PDF
    早大学位記番号:新7647早稲田大

    Physically Interacting With Four Dimensions

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2009People have long been fascinated with understanding the fourth dimension. While making pictures of 4D objects by projecting them to 3D can help reveal basic geometric features, 3D graphics images by themselves are of limited value. For example, just as 2D shadows of 3D curves may have lines crossing one another in the shadow, 3D graphics projections of smooth 4D topological surfaces can be interrupted where one surface intersects another. The research presented here creates physically realistic models for simple interactions with objects and materials in a virtual 4D world. We provide methods for the construction, multimodal exploration, and interactive manipulation of a wide variety of 4D objects. One basic achievement of this research is to exploit the free motion of a computer-based haptic probe to support a continuous motion that follows the \emph{local continuity\/} of a 4D surface, allowing collision-free exploration in the 3D projection. In 3D, this interactive probe follows the full local continuity of the surface as though we were in fact \emph{physically touching\/} the actual static 4D object. Our next contribution is to support dynamic 4D objects that can move, deform, and collide with other objects as well as with themselves. By combining graphics, haptics, and collision-sensing physical modeling, we can thus enhance our 4D visualization experience. Since we cannot actually place interaction devices in 4D, we develop fluid methods for interacting with a 4D object in its 3D shadow image using adapted reduced-dimension 3D tools for manipulating objects embedded in 4D. By physically modeling the correct properties of 4D surfaces, their bending forces, and their collisions in the 3D interactive or haptic controller interface, we can support full-featured physical exploration of 4D mathematical objects in a manner that is otherwise far beyond the real-world experience accessible to human beings

    A Descriptive Framework for Temporal Data Visualizations Based on Generalized Space-Time Cubes

    Get PDF
    International audienceWe present the generalized space-time cube, a descriptive model for visualizations of temporal data. Visualizations are described as operations on the cube, which transform the cube's 3D shape into readable 2D visualizations. Operations include extracting subparts of the cube, flattening it across space or time or transforming the cubes geometry and content. We introduce a taxonomy of elementary space-time cube operations and explain how these operations can be combined and parameterized. The generalized space-time cube has two properties: (1) it is purely conceptual without the need to be implemented, and (2) it applies to all datasets that can be represented in two dimensions plus time (e.g. geo-spatial, videos, networks, multivariate data). The proper choice of space-time cube operations depends on many factors, for example, density or sparsity of a cube. Hence, we propose a characterization of structures within space-time cubes, which allows us to discuss strengths and limitations of operations. We finally review interactive systems that support multiple operations, allowing a user to customize his view on the data. With this framework, we hope to facilitate the description, criticism and comparison of temporal data visualizations, as well as encourage the exploration of new techniques and systems. This paper is an extension of Bach et al.'s (2014) work

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    A Smart Products Lifecycle Management (sPLM) Framework - Modeling for Conceptualization, Interoperability, and Modularity

    Get PDF
    Autonomy and intelligence have been built into many of today’s mechatronic products, taking advantage of low-cost sensors and advanced data analytics technologies. Design of product intelligence (enabled by analytics capabilities) is no longer a trivial or additional option for the product development. The objective of this research is aimed at addressing the challenges raised by the new data-driven design paradigm for smart products development, in which the product itself and the smartness require to be carefully co-constructed. A smart product can be seen as specific compositions and configurations of its physical components to form the body, its analytics models to implement the intelligence, evolving along its lifecycle stages. Based on this view, the contribution of this research is to expand the “Product Lifecycle Management (PLM)” concept traditionally for physical products to data-based products. As a result, a Smart Products Lifecycle Management (sPLM) framework is conceptualized based on a high-dimensional Smart Product Hypercube (sPH) representation and decomposition. First, the sPLM addresses the interoperability issues by developing a Smart Component data model to uniformly represent and compose physical component models created by engineers and analytics models created by data scientists. Second, the sPLM implements an NPD3 process model that incorporates formal data analytics process into the new product development (NPD) process model, in order to support the transdisciplinary information flows and team interactions between engineers and data scientists. Third, the sPLM addresses the issues related to product definition, modular design, product configuration, and lifecycle management of analytics models, by adapting the theoretical frameworks and methods for traditional product design and development. An sPLM proof-of-concept platform had been implemented for validation of the concepts and methodologies developed throughout the research work. The sPLM platform provides a shared data repository to manage the product-, process-, and configuration-related knowledge for smart products development. It also provides a collaborative environment to facilitate transdisciplinary collaboration between product engineers and data scientists

    A Review of Temporal Data Visualizations Based on Space-Time Cube Operations

    Get PDF
    International audienceWe review a range of temporal data visualization techniques through a new lens, by describing them as series of op- erations performed on a conceptual space-time cube. These operations include extracting subparts of a space-time cube, flattening it across space or time, or transforming the cube's geometry or content. We introduce a taxonomy of elementary space-time cube operations, and explain how they can be combined to turn a three-dimensional space-time cube into an easily-readable two-dimensional visualization. Our model captures most visualizations showing two or more data dimensions in addition to time, such as geotemporal visualizations, dynamic networks, time-evolving scatterplots, or videos. We finally review interactive systems that support a range of operations. By introducing this conceptual framework we hope to facilitate the description, criticism and comparison of existing temporal data visualizations, as well as encourage the exploration of new techniques and systems

    Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    Get PDF
    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era

    Seismic attribute expression of fluvial-deltaic and turbidite systems

    Get PDF
    Much of the world's conventional oil and gas production comes from uvial deltaic and turbidite reservoirs. The ability to accurately interpret the architectural elements comprising these systems greatly reduces the risk in exploration and development in these environments. In addition to clastic environments, turbidites can also occur in carbonate environments, and formations of this type pose signi cant unanswered questions. In this dissertation, I demonstrate methods for using attributes to improve the interpretation in fluvial deltaic using data from Middle Pennsylvanian age Red Fork Formation of Oklahoma and the Oligecene-Miocene age Frio Formation of south Texas. I show how spectral phase and magnitude attributes can be effectively combined using an HSV color map to produce images that have considerable interpretational value. I develop an interactive method using the skill of the interpreter to blend attributes dynamically. I also apply a statistical technique to integrate multiple attributes in a non-linear manner. Incorporating my methods in the interpretation process has the potential to improve the exploration and development in these systems. I also look at the problem of mapping channel-forms the hybrid carbonate turbidite Oliogence age Mandu Formation in the Carnarvon Basin of Australia. I show how attributes tie to the geological features of the architectural elements. I demonstrate the capability to extract in 3-D the associated channel-forms. Further analysis using these methods has the potential to increase our understanding of how turbidites form in carbonate environments

    International Perspectives on the Teaching and Learning of Geometry in Secondary Schools

    Full text link
    A collection of 19 papers developed after the presentations at Topic Study Group 13 during the 13th International Congress on Mathematical Education, July 24 to August 1, 2016https://deepblue.lib.umich.edu/bitstream/2027.42/140744/1/International Perspectives on Secondary Geometry.pdfDescription of International Perspectives on Secondary Geometry.pdf : Main Articl
    corecore