65,641 research outputs found

    Purified plasma membranes inhibit polypeptide growth factor-induced DNA synthesis in subconfluent 3T3 cells.

    Get PDF
    Plasma membranes derived from NR-6 cells, a variant line of Swiss mouse 3T3 cells that does not have cell surface receptors for epidermal growth factor (EGF), inhibited EGF-induced stimulation of DNA synthesis by 50% in serum-starved, subconfluent 3T3 cells. Membranes derived from SV3T3 cells were much less effective in inhibiting EGF-induced DNA synthesis. This inhibition on DNA synthesis by NR-6 membranes was not a direct effect of membranes on EGF, nor could it be overcome by high concentrations of EGF. NR-6 membranes were most effective when added 3 h before EGF addition and had little effect when added 2 h or more after EGF. NR-6 membranes also reduced the stimulation of DNA synthesis induced by platelet-derived growth factor or fibroblast growth factor in serum-starved 3T3 cells. These findings indicate that membrane-membrane interactions between nontransformed cells may diminish their ability to proliferate in response to serum polypeptide growth factors

    Cell-cell communication between Mouse mammary epithelial cells and 3T3-L1 preadipocytes: effect on triglyceride accumulation and cell proliferation

    Get PDF
    Interaction between parenchyma and stroma is essential for organogenesis, morphogenesis, and differentiation. Mammary gland has being the chosen model for developmental biologist because the most striking changes in morphology and function take place after birth. We have demonstrated a regulation of triglyceride accumulation by protein factors synthesized by normal mouse mammary gland epithelial cells (NMMG), acting on a cell line, 3T3-L1, long used as a model for adipogenesis. In this paper, we demonstrate that this inhibitory effect seems to be shared by other cells of epithelial origin but not by other cell types. We found a regulation of cell proliferation when NMMG cells are cultured in the presence of conditioned media from Swiss 3T3 or 3T3-L1 cells. We found a possible point of regulation for the mammary factor on a key enzyme of the lipid metabolic pathway, the glycerol-3-phosphate dehydrogenase. The inhibitory factor seems to have an effect on this enzyme´s activity and reduces it. The results presented herein contribute to the understanding of cell-cell communication in a model of a normal mammary gland.Fil: Julianelli, Vanina Laura. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guerra, Liliana Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Calvo, Juan Carlos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    Similarities and differences between the E5 oncoproteins of bovine papillomaviruses type 1 and type 4: Cytoskeleton, motility and invasiveness in E5-transformed bovine and mouse cells

    Get PDF
    Bovine papillomaviruses (BPVs) are oncogenic viruses. In cattle, BPV-1/2 is associated with urinary bladder cancer and BPV-4 with upper GI tract cancer. BPV E5 is a small hydrophobic protein localised in the endoplasmic reticulum (ER) and Golgi apparatus (GA). E5 is the major transforming protein of BPVs, capable of inducing cell transformation in cultured mouse fibroblasts and, in cooperation with E7, in primary bovine cells. E5-induced cell transformation is accompanied by activation of several cellular protein kinases, including growth factor receptors, and alkalinisation of endosomes and GA. We have reported that BPV E5 causes swelling and fragmentation of the GA and extensive vacuolisation of the cytoplasm. We now show that E5 from both BPV-1 and BPV-4 disturbs the actin cytoskeleton and focal adhesions in transformed bovine cells, where these morphological and behavioural characteristics are accompanied by hyperphosphorylation of the cellular phosphotyrosine kinase c-src. Both BPV-1 and BPV-4 E5 increase the motility of transformed mouse cells, but only BPV-1 E5 causes transformed mouse cells to penetrate a matrigel matrix. BPV-1 transformed mouse cells, but not BPV-4 transformed mouse cells, have hyperhpsphorylated c-src

    Cell-free Embryonic Stem Cell Extract-mediated Derivation of Multi-potent Stem Cells from NIH3T3 Fibroblasts for Functional and Anatomical Ischemic Tissue Repair

    Get PDF
    The oocyte-independent generation of multipotent stem cells is one of the goals in regenerative medicine. We report that upon exposure to mouse ES cell (ESC) extracts, reversibly permeabilized NIH3T3 cells undergo de-differentiation followed by stimulus-induced re-differentiation into multiple lineage cell types. Genome-wide expression profiling revealed significant differences between NIH3T3 and ESC-extract treated NIH3T3 cells including re-activation of ESC specific transcripts. Epigenetically, ESC extracts induced CpG de-methylation of Oct4 promoter, hyper-acetylation of histones 3 and 4 and decreased lysine 9 (K-9) dimethylation of histone 3. In mouse models of surgically-induced hind limb ischemia (HLI) or acute myocardial infarction (AMI) transplantation of reprogrammed NIH3T3 cells significantly improved post-injury physiological functions and showed antomical evidence of engraftment and trans-differentiation into skeletal muscle, endothelial cell and cardiomyocytes. These data provide evidence for the generation of functional multi-potent stem like cells from terminally differentiated somatic cells without the introduction of trans-genes or ESC fusion

    Uptake and toxicity studies of poly-acrylic acid functionalized silicon nanoparticles in cultured mammalian cells

    Get PDF
    Poly-acrylic acid (PAAc) terminated silicon nanoparticles (SiNPs) have been synthesized and employed as a synchronous fluorescent signal indicator in a series of cultured mammalian cells: HHL5, HepG2 and 3T3-L1. Their biological effects on cell growth and proliferation in both human and mouse cell lines have been studied. There was no evidence of in vitro cytotoxity in the cells exposed to PAAc terminated SiNPS when assessed by cell morphology, cell proliferation and viability, and DNA damage assays. The uptake of the nanocrystals by both HepG2 and 3T3-L1 cells was investigated by confocal microscopy and flow cytometry, which showed a clear time-dependence at higher concentrations. Reconstructed 3-D confocal microscope images exhibited that the PAAc-SiNPs were evenly distributed throughout the cytosol rather than attached to outer membrane. This study provides fundamental evidence for the safe application and further modification of silicon nanoparticles, which could broaden their application as cell markers in living systems and in micelle encapsulated drug delivery systems
    corecore