3,588 research outputs found

    3D reconstruction and motion estimation using forward looking sonar

    Get PDF
    Autonomous Underwater Vehicles (AUVs) are increasingly used in different domains including archaeology, oil and gas industry, coral reef monitoring, harbour’s security, and mine countermeasure missions. As electromagnetic signals do not penetrate underwater environment, GPS signals cannot be used for AUV navigation, and optical cameras have very short range underwater which limits their use in most underwater environments. Motion estimation for AUVs is a critical requirement for successful vehicle recovery and meaningful data collection. Classical inertial sensors, usually used for AUV motion estimation, suffer from large drift error. On the other hand, accurate inertial sensors are very expensive which limits their deployment to costly AUVs. Furthermore, acoustic positioning systems (APS) used for AUV navigation require costly installation and calibration. Moreover, they have poor performance in terms of the inferred resolution. Underwater 3D imaging is another challenge in AUV industry as 3D information is increasingly demanded to accomplish different AUV missions. Different systems have been proposed for underwater 3D imaging, such as planar-array sonar and T-configured 3D sonar. While the former features good resolution in general, it is very expensive and requires huge computational power, the later is cheaper implementation but requires long time for full 3D scan even in short ranges. In this thesis, we aim to tackle AUV motion estimation and underwater 3D imaging by proposing relatively affordable methodologies and study different parameters affecting their performance. We introduce a new motion estimation framework for AUVs which relies on the successive acoustic images to infer AUV ego-motion. Also, we propose an Acoustic Stereo Imaging (ASI) system for underwater 3D reconstruction based on forward looking sonars; the proposed system features cheaper implementation than planar array sonars and solves the delay problem in T configured 3D sonars

    Omnidirectional underwater surveying and telepresence

    Get PDF
    Exploratory dives are traditionally the first step for marine scientists to acquire information on a previously unknown area of scientific interest. Manned submersibles have been the platform of choice for such exploration, as they allow a high level of environmental perception by the scientist on-board, and the ability to take informed decisions on what to explore next. However, manned submersibles have extremely high operation costs and provide very limited bottom time. Remotely operated vehicles (ROVs) can partially address these two issues, but have operational and cost constraints that restrict their usage. This paper discusses new capabilities to assist scientists operating lightweight hybrid remotely operated vehicles (HROV) in exploratory missions of mapping and surveying. The new capabilities, under development within the Spanish National project OMNIUS, provide a new layer of autonomy for HROVs by exploring three key concepts: Omni-directional optical sensing for collaborative immersive exploration, Proximity safety awareness and Online mapping during mission time.Peer Reviewe

    A Multi-Sensor Fusion-Based Underwater Slam System

    Get PDF
    This dissertation addresses the problem of real-time Simultaneous Localization and Mapping (SLAM) in challenging environments. SLAM is one of the key enabling technologies for autonomous robots to navigate in unknown environments by processing information on their on-board computational units. In particular, we study the exploration of challenging GPS-denied underwater environments to enable a wide range of robotic applications, including historical studies, health monitoring of coral reefs, underwater infrastructure inspection e.g., bridges, hydroelectric dams, water supply systems, and oil rigs. Mapping underwater structures is important in several fields, such as marine archaeology, Search and Rescue (SaR), resource management, hydrogeology, and speleology. However, due to the highly unstructured nature of such environments, navigation by human divers could be extremely dangerous, tedious, and labor intensive. Hence, employing an underwater robot is an excellent fit to build the map of the environment while simultaneously localizing itself in the map. The main contribution of this dissertation is the design and development of a real-time robust SLAM algorithm for small and large scale underwater environments. SVIn – a novel tightly-coupled keyframe-based non-linear optimization framework fusing Sonar, Visual, Inertial and water depth information with robust initialization, loop-closing, and relocalization capabilities has been presented. Introducing acoustic range information to aid the visual data, shows improved reconstruction and localization. The availability of depth information from water pressure enables a robust initialization and refines the scale factor, as well as assists to reduce the drift for the tightly-coupled integration. The complementary characteristics of these sensing v modalities provide accurate and robust localization in unstructured environments with low visibility and low visual features – as such make them the ideal choice for underwater navigation. The proposed system has been successfully tested and validated in both benchmark datasets and numerous real world scenarios. It has also been used for planning for underwater robot in the presence of obstacles. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle (AUV) Aqua2 in challenging underwater environments with poor visibility, demonstrate performance never achieved before in terms of accuracy and robustness. To aid the sparse reconstruction, a contour-based reconstruction approach utilizing the well defined edges between the well lit area and darkness has been developed. In particular, low lighting conditions, or even complete absence of natural light inside caves, results in strong lighting variations, e.g., the cone of the artificial video light intersecting underwater structures and the shadow contours. The proposed method utilizes these contours to provide additional features, resulting into a denser 3D point cloud than the usual point clouds from a visual odometry system. Experimental results in an underwater cave demonstrate the performance of our system. This enables more robust navigation of autonomous underwater vehicles using the denser 3D point cloud to detect obstacles and achieve higher resolution reconstructions

    Underwater Exploration and Mapping

    Get PDF
    This paper analyzes the open challenges of exploring and mapping in the underwater realm with the goal of identifying research opportunities that will enable an Autonomous Underwater Vehicle (AUV) to robustly explore different environments. A taxonomy of environments based on their 3D structure is presented together with an analysis on how that influences the camera placement. The difference between exploration and coverage is presented and how they dictate different motion strategies. Loop closure, while critical for the accuracy of the resulting map, proves to be particularly challenging due to the limited field of view and the sensitivity to viewing direction. Experimental results of enforcing loop closures in underwater caves demonstrate a novel navigation strategy. Dense 3D mapping, both online and offline, as well as other sensor configurations are discussed following the presented taxonomy. Experimental results from field trials illustrate the above analysis.acceptedVersio

    Advances in Simultaneous Localization and Mapping in Confined Underwater Environments Using Sonar and Optical Imaging.

    Full text link
    This thesis reports on the incorporation of surface information into a probabilistic simultaneous localization and mapping (SLAM) framework used on an autonomous underwater vehicle (AUV) designed for underwater inspection. AUVs operating in cluttered underwater environments, such as ship hulls or dams, are commonly equipped with Doppler-based sensors, which---in addition to navigation---provide a sparse representation of the environment in the form of a three-dimensional (3D) point cloud. The goal of this thesis is to develop perceptual algorithms that take full advantage of these sparse observations for correcting navigational drift and building a model of the environment. In particular, we focus on three objectives. First, we introduce a novel representation of this 3D point cloud as collections of planar features arranged in a factor graph. This factor graph representation probabalistically infers the spatial arrangement of each planar segment and can effectively model smooth surfaces (such as a ship hull). Second, we show how this technique can produce 3D models that serve as input to our pipeline that produces the first-ever 3D photomosaics using a two-dimensional (2D) imaging sonar. Finally, we propose a model-assisted bundle adjustment (BA) framework that allows for robust registration between surfaces observed from a Doppler sensor and visual features detected from optical images. Throughout this thesis, we show methods that produce 3D photomosaics using a combination of triangular meshes (derived from our SLAM framework or given a-priori), optical images, and sonar images. Overall, the contributions of this thesis greatly increase the accuracy, reliability, and utility of in-water ship hull inspection with AUVs despite the challenges they face in underwater environments. We provide results using the Hovering Autonomous Underwater Vehicle (HAUV) for autonomous ship hull inspection, which serves as the primary testbed for the algorithms presented in this thesis. The sensor payload of the HAUV consists primarily of: a Doppler velocity log (DVL) for underwater navigation and ranging, monocular and stereo cameras, and---for some applications---an imaging sonar.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120750/1/paulozog_1.pd

    DeepSurveyCam — A Deep Ocean Optical Mapping System

    Get PDF
    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor

    3D Recording and Interpretation for Maritime Archaeology

    Get PDF
    This open access peer-reviewed volume was inspired by the UNESCO UNITWIN Network for Underwater Archaeology International Workshop held at Flinders University, Adelaide, Australia in November 2016. Content is based on, but not limited to, the work presented at the workshop which was dedicated to 3D recording and interpretation for maritime archaeology. The volume consists of contributions from leading international experts as well as up-and-coming early career researchers from around the globe. The content of the book includes recording and analysis of maritime archaeology through emerging technologies, including both practical and theoretical contributions. Topics include photogrammetric recording, laser scanning, marine geophysical 3D survey techniques, virtual reality, 3D modelling and reconstruction, data integration and Geographic Information Systems. The principal incentive for this publication is the ongoing rapid shift in the methodologies of maritime archaeology within recent years and a marked increase in the use of 3D and digital approaches. This convergence of digital technologies such as underwater photography and photogrammetry, 3D sonar, 3D virtual reality, and 3D printing has highlighted a pressing need for these new methodologies to be considered together, both in terms of defining the state-of-the-art and for consideration of future directions. As a scholarly publication, the audience for the book includes students and researchers, as well as professionals working in various aspects of archaeology, heritage management, education, museums, and public policy. It will be of special interest to those working in the field of coastal cultural resource management and underwater archaeology but will also be of broader interest to anyone interested in archaeology and to those in other disciplines who are now engaging with 3D recording and visualization

    Homotopy Based Reconstruction from Acoustic Images

    Get PDF
    • …
    corecore