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Abstract 

 
Autonomous Underwater Vehicles (AUVs) are increasingly used in different domains 

including archaeology, oil and gas industry, coral reef monitoring, harbour’s security, 

and mine countermeasure missions. As electromagnetic signals do not penetrate 

underwater environment, GPS signals cannot be used for AUV navigation, and optical 

cameras have very short range underwater which limits their use in most underwater 

environments. 

Motion estimation for AUVs is a critical requirement for successful vehicle recovery 

and meaningful data collection. Classical inertial sensors, usually used for AUV motion 

estimation, suffer from large drift error. On the other hand, accurate inertial sensors are 

very expensive which limits their deployment to costly AUVs. Furthermore, acoustic 

positioning systems (APS) used for AUV navigation require costly installation and 

calibration. Moreover, they have poor performance in terms of the inferred resolution.  

Underwater 3D imaging is another challenge in AUV industry as 3D information is 

increasingly demanded to accomplish different AUV missions. Different systems have 

been proposed for underwater 3D imaging, such as planar-array sonar and T-configured 

3D sonar. While the former features good resolution in general, it is very expensive and 

requires huge computational power, the later is cheaper implementation but requires 

long time for full 3D scan even in short ranges. 

In this thesis, we aim to tackle AUV motion estimation and underwater 3D imaging by 

proposing relatively affordable methodologies and study different parameters affecting 

their performance. We introduce a new motion estimation framework for AUVs which 

relies on the successive acoustic images to infer AUV ego-motion. Also, we propose an 

Acoustic Stereo Imaging (ASI) system for underwater 3D reconstruction based on 

forward looking sonars; the proposed system features cheaper implementation than 

planar array sonars and solves the delay problem in T configured 3D sonars.  
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Chapter 1  

Introduction 

 

1.1 Motivation and challenges 

Sea turtles usually migrate long distances across entire oceanic basins for mating, 

nesting, and food; when displaced from their area, they often home to the site of 

capture. In fact, sea turtles set an example for true autonomy while performing their 

activities underwater; they show astonishing navigational capabilities by travelling long 

journeys (~8000km) depending on their own “navigational senses” [1]. Many research 

centres and commercial companies are striving to achieve similar autonomy in 

Autonomous Underwater Vehicles (AUVs) that are designed to perform different 

underwater missions such as coral reef monitoring, ship hull inspection, harbour 

patrolling, mine counter-measures, pipeline survey, dam inspection, and seabed 

mapping. 

Advances in battery capacity and the advent of hydrogen fuel cells enabled AUVs to 

accomplish long missions over an extended period of time [2][3][4]. These 

developments demanded accurate navigational sensors and algorithms to serve long 

AUV missions. An AUV navigational system is an indispensable component for 

successful vehicle recovery. In addition, it is a critical factor for precise data collection 

over the path of the mission. As GPS signals are not available underwater, motion 

estimation for AUVs is an active research topic, many methods and sensors have been 

proposed to solve the problem such as inertial sensors and acoustic positioning systems 

(APS). 

Classical inertial sensors, usually used for AUV motion estimation, estimate the vehicle 

ego-motion by using accelerometers and gyroscopes to measure linear acceleration and 

angular velocity of the vehicle respectively; these measured parameters are used in dead 

reckoning to estimate the current vehicle position; however, they usually suffer from 

large drift error over extended AUV missions. On the other hand, accurate inertial 

sensors are expensive which limit their deployment to costly AUVs. 



Introduction 

 

 
2 

 
  

 

Acoustic positioning systems (APS), such as super short base line (SSBL) systems, are 

used to infer the AUV position by using acoustic signals between the vehicle and a 

supporting platform (mother ship, buoy .. etc ). For example, in the SSBL system, the 

mother ship is equipped with an acoustic transmitter and a receiver array, and the AUV 

is equipped with an acoustic transponder. The mother ship calculates the position of the 

AUV by measuring the time of flight (TOF) and direction of arrival (DOA) of the 

acoustic signal returned from the AUV. As the AUV’s position is measured on the ship, 

the calculated position of the AUV incurs a considerable delay in the measurement. In 

short, acoustic positioning systems (APS) require costly installation and calibration. 

Moreover, they have poor performance in terms of the inferred resolution. Above all, 

using APS methodologies raises the question about the autonomy of the supported 

AUV. 

Underwater 3D imaging is another challenge in the AUV industry as 3D information is 

increasingly demanded to accomplish many AUV missions including dam and bridge 

inspection, bathymetric mapping, search and recovery, subsea metrology, and iceberg 

monitoring. Underwater 3D imaging can be defined as the whole process of visualizing 

the surrounding environment in 3D using optical and/or acoustic devices. In this sense, 

underwater 3D reconstruction is the first stage of underwater 3D imaging which 

includes subsequent visualization and modelling stages. Different systems have been 

proposed for underwater 3D imaging, such as planar-array sonars and T-configured 3D 

sonars. While the former features fast 3D scan, it is expensive and requires huge 

computational power, the later is a cheaper implementation but requires a long time for 

full 3D scan even for short ranges.  

In this thesis, we focus on the aforementioned two challenges: 1) Underwater 3D 

reconstruction and 2) motion estimation for AUV. In both domains, we depend on two 

sonar views of the surrounding environment to infer the required information; in 3D 

reconstruction, we use two sonar views from two sonars with known geometric 

configuration between them to infer 3D coordinates of the insonified objects. In a 

similar manner, for motion estimation, we use consecutive views from one sonar to 

infer the geometric relation between these views. In motion estimation for AUVs, we 

only have one sonar insonifying the environment in two different positions representing 

a virtual stereo system. Using sonar views for motion estimation enhances the vehicle 
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autonomy as it uses its “own sensors” with no support from other platforms; this 

procedure reduces the cost of the AUV operation compared with other systems 

requiring a supporting platform (ship, buoys … etc).  

Both domains i.e. 3D reconstruction and motion estimation in AUVs answer the same 

question “where am I” in two different ways (see Figure  1.1); 3D reconstruction gives 

3D coordinates of all landmarks sensed by the AUV while motion estimation gives 3D 

motion vector relative to another position in the AUV path. 

 

Figure  1.1: Motion estimation and 3D reconstruction answers for “where am I” question 

 

The remaining part of this Chapter will develop the points introduced in this section. 

First, section  1.2 describes forward looking sonars which we use for 3D reconstruction 

and motion estimation. Section  1.3 introduces the proposed acoustic stereo system for 

underwater 3D reconstruction. Section  1.4 presents our methodology for motion 

estimation using acoustic images. Section  1.5 discusses image registration as a 

prerequisite to solve motion estimation and 3D reconstruction. Section  1.6 outlines our 

main contributions. Finally, section  1.7 explains the structure of the thesis and 

demonstrates its plan. 
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1.2 Forward looking sonar 

AUVs are commonly equipped with forward looking sonars as a tool for obstacle 

avoidance, object identification and inspection. Forward Looking Sonar acts as a gap 

filler in front of the AUV which is usually equipped with side scan sonar. The Dual-

Frequency Identification Sonar (DIDSON) is a good example of forward looking 

sonars; it can easily replace optical systems in turbid waters as it features high 

resolution and rapid refresh rate. The acoustic lenses in DIDSON, which are made of 

polymethylpentene plastic, form a set of divergent beams for transmitting/receiving the 

acoustic signals. As the middle lens moves between the other two lenses, the focus 

changes from 0.42m to its maximum range. DIDSON, as the name suggests, operates at 

two frequencies, 1.8 MHz or 1.1 MHz, and forms 96 beams spaced 0.3° apart, or 48 

beams spaced 0.6° apart respectively [5][6].   It is relatively compact which makes it 

suitable for AUVs. Also, it consumes 25 Watts which is important to AUVs with a 

power budget. Figure  1.2 illustrates DIDSON 300 and its rectangular lenses;  Appendix 

A lists DIDSON’s technical specifications. 

 

Figure  1.2: DIDSON 300 sonar 

In addition to DIDSON, we have used BlueView P900 for motion estimation and 3D 

reconstruction. BlueView P900-130 is a multibeam sonar with wide field of view (130°) 

as it emits 768 beams with 0.18° beam spacing, it operates at 900 KHz frequency and 

features low power consumption and lightweight head which makes it perfect for AUVs 

[7]. Figure  1.3 illustrates BlueView P900-130 sonar head.  Appendix B lists its technical 

specifications. 
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Figure  1.3: BlueView 900-130 sonar head 

1.3 3D Reconstruction using Acoustic Stereo Imaging (ASI) 

 In this thesis, the design and assessment of a real time underwater 3D reconstruction 

system depending on multiple sonar views are presented. The new system which is 

dubbed Acoustic Stereo Imaging (ASI) consists of two relatively inexpensive acoustic 

sensors situated in specific geometric configurations. The acoustic sensors are multi-

beam, high resolution sonars. The ASI vertical configuration suggests two sonars 

situated above one another and assumes that all beams of the first sonar are aligned with 

the corresponding beams in the second sonar. We have derived the ASI geometry which 

alleviates the well known correspondence problem in all stereo systems.  

 ASI geometry turns searching for correspondences between two sonar images into very 

small regions, thus each point in the first image can be located in a well defined region 

in the second image. Furthermore, the ASI geometry increases the chance to use image 

registration techniques in real time, since they will be applied in small regions. We have 

simulated the ASI system to study different parameters affecting the system 

performance; these parameters represent fundamental configurations like the distance 

between the two sonars and the angle between them. 

1.4 Motion estimation using acoustic imaging 

2-D Imaging systems, e.g., optical or acoustic, encode rich visual cues about the 

geometry of the world that is imaged and the position of the sensor relative to the world. 

In motion vision applications dealing with robotics platforms, one of the objectives is to 

determine the trajectory of a mobile system from the variations in the 2-D scene 

imagery. While this problem has been addressed extensively for numerous terrestrial 

applications [8][9][10] and to some extend in underwater by optical imaging [11] [12], 
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less than a handful of earlier studies have explored application to 2-D sonar imaging 

systems [13][14]. 

In this thesis, a new framework for the analysis of 2-D sonar video image is presented, 

comprising the principles of Modified Discrete Uniform Distribution (MDUD), sonar 

projection function (SPF) and sonar arc sampling. These concepts are applied to address 

the problem of motion estimation using successive acoustic images. This will facilitate 

various routine tasks of ROVs/AUVs, including the inspection of various subsea 

structures, autonomous navigation, and target localization and classification.  

Furthermore, we examine an earlier motion estimation framework [14] which employs 

an iterative method based on a maximum likelihood (ML) paradigm to compute 3-D 

motion from a pair of 2-D sonar views. We identify certain factors that affect the 

accurate estimation of 3-D motion. These primary factors include the inherent low 

signal-to-noise ratio (SNR) of 2-D sonar imagery, limited number of features that can 

be detected and matched in a motion sequence, and the horizontal field of view (FOV) 

of the acoustic cameras. We study the significance of each factor based on the variances 

of the estimated motion parameters. We analyze the results from a large number of 

numerical simulations with random data, and the typical parameters of existing 2-D 

sonar imaging systems. Our results offer quantitative measures, collectively in 

agreement with earlier observations and conjecture on the role of each parameter. In 

addition, we also present various results from an experiment with a real data set, where 

we apply different measures to establish ground truth for the quantitative assessment of 

the motion estimation accuracy. The results highlight some advantages offered in the 

estimation of 3-D motion by sonar imaging. 

1.5 Acoustic image registration as a prerequisite 

 Image registration is an indispensable component in computer vision; it represents the 

core problem in many tasks like motion estimation, 3D reconstruction, medical image 

analysis, mosaicing and stereo-matching, to name a few. The problem can be easily 

described as the task of assigning correspondences for a set of points in the first image 

to their counterparts in the second image. In other words, the problem is to find the 

transformation which maps the first set of points into the other. The problem may look 
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trivial for humans but it is not for computers. This fact justifies the opulent literature in 

the topic [15] which introduced many methods to solve the problem for optical images. 

Acoustic image registration is a requirement for 3D reconstruction and motion 

estimation. Unfortunately, common image registration techniques used for optical 

images normally fail in acoustic image registration [16]. In this thesis we review some 

important work in image registration and point matching algorithms. Also, we develop a 

new algorithm, named Sorting the Correspondence Space, to tackle acoustic image 

registration. 

1.6 Main contributions  

The main contributions of the thesis can be outlined in the following points: 

• Novel approach for underwater 3D reconstruction; the proposed ASI system 

features cheaper implementation than array-based sonars and solves the time 

delay problem in the T–configured 3D sonars. 

• New motion estimation framework for AUVs using forward looking sonar 

images; the introduced framework transforms onboard acoustic camera to a 

motion sensor. 

• Detailed performance and accuracy study on an earlier motion estimation 

algorithm for AUVs [14]. 

• Novel, fast, and robust algorithm for affine point matching. The algorithm, 

named Sorting the Correspondence Space (SCS), was specially designed to 

tackle acoustic image registration as it is the core problem in motion estimation 

and 3D reconstruction alike. 

1.7 Thesis structure 

The thesis is organized as follows: Chapter 2 is a literature review on three major topics: 

underwater 3D imaging, motion estimation for AUVs, and image registration 

techniques. Chapter 3 explains the proposed Acoustic Stereo System in detail and study 

different parameters affecting its performance. Chapter 4 presents new motion 

estimation framework based on sonar arc sampling and Modified Discrete Uniform 
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Distribution (MDUD). Chapter 5 studies different aspects affecting the performance of 

an earlier motion estimation algorithm [14] [17]. Chapter 6 introduces a new algorithm 

for point matching; the algorithm is called sorting the correspondence space which can 

be used for acoustic image registration. Conclusions and further work is presented in 

Chapter 7. Figure  1.4 illustrates the hierarchical structure of the thesis. 

 

 

 

Figure  1.4: Hierarchical Structure of the thesis 
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Chapter 2    

Underwater 3D Reconstruction and Motion Estimation  

2.1 Introduction 

In this chapter, we review different methodologies for underwater 3D reconstruction 

and motion estimation for AUVs, also, we discuss the correspondence problem between 

two acoustic images as it is the core problem in 3D reconstruction and motion 

estimation alike.   

Underwater 3D reconstruction is reviewed from two main perspectives: 1) 3D sonar 

systems and 2) Algorithms for 3D reconstruction using 2D optical and/or acoustic 

images. Moreover, we discuss motion estimation for AUVs which is usually 

implemented in two main stages: 1) using motion estimation sensors, including the 

inertial navigation systems, Doppler Velocity Log (DVL), and acoustic beacon 

technologies; and 2) Motion estimation algorithms such as Kalman filters and particle 

filters. Image registration is a prerequisite to accomplish both 3D reconstruction and 

motion estimation using successive sonar views, thus the important methodologies for 

image registration is reviewed, mainly, SIFT (Scale Invariant Feature Transform), 

RANSAC (RANdom Sample And Consensus) and their descendants. 

2.2 3D sonar systems 

In most 3D acoustic systems, the scene is insonified with an acoustic pulse and the 

backscattered signals are collected using 2D sensors array. Many references emphasize 

that “a 2D sensors array is mandatory to obtain a 3D image” [18][19][20]. In this 

section, we review acoustic systems that use 2D array of sensors. They are categorized 

in three major kinds depending on the signal processing methodology, including: 

beamforming systems, holographic systems and acoustic lens-based systems. Moreover, 

we discuss the problems shared between all of these methodologies and point out the 

attempts to resolve them. Furthermore, T-configured 3D sonars that use two crossed 

linear arrays are reviewed as well as the lens concentrator systems that use mechanical 

methods to steer the acoustic beam. Also, interferometric sonar is discussed briefly.  

Finally, real and commercial 3D sonars are presented. 
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2.2.1 Beamforming systems 

A beamforming system receives the backscattered signals using a 2D array of sensors 

and processes these signals so the signal which is coming from the steering direction is 

amplified and all other signals are largely attenuated. As a result, 3D data can be 

inferred in the steering direction and a complete 3D image can be constructed by 

repeating this process with adjacent steering directions similar to the raster scan method. 

The beam pattern in the beam forming systems is illustrated in Figure  2.1, it can be 

written in a closed form if the sensors are equispaced with the distance d and centred in 

the coordinate origin as follows [20]:  

 CADEF(G, H, $) = sin[GK'(sin H − sin $)/2L]sin[G'(sin H − sin $)/2L]  ( 2.1) 

 

Where K is the number of sensors; $ is the steering direction; ' is the distance between 

two adjacent sensors; G = 2MN angular frequency; N frequency; L sound velocity in the 

medium, H ∈ [−PQRS, PQRS], and 2PQRS is the angular vertical coverage of the sonar. 

The beam pattern is an important tool to evaluate the system performance; it acquaints 

us with two important key points: main lobe shape and sidelobes’ level. The width of 

the main lobe represents the angular resolution which is mentioned as the lateral 

resolution in some references [21]. The side lobe level affects the noise level in the final 

output, reducing the side lobe level decreases the artifacts in the generated image, this is 

achieved by applying Adaptive Beamforming algorithms and Optimized Simulated 

Annealing Algorithms to solve this problem  [22] [19], basically, these algorithms use 

sparse arrays rather than fully sampled arrays to reduce hardware cost and curtail 

computational burden, these requirements are achieved by: 1) optimize the sensors’ 

positions with fixed weights to get the required beam pattern, or 2) fix the sensors’ 

positions and optimize their weights, or 3) optimize the positions and weights 

concurrently. However, reducing the side lobe level increases the width of the main lobe 

which means reducing the angular resolution, trade-off solutions is proposed in [23] 

[24] [25]. 
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Figure  2.1: beam pattern of 64-element array with 1.5 mm spacing, steering θ = 30° 

frequency = 300 KHz 

The beam pattern equation in ( 2.1) deals with a linear array of sensors, this is to 

simplify the equation at first instance; however, a linear array is not sufficient to 

produce 3D image in terms of the beam forming methodology. To produce a 3D image 

we need to steer the beam in 3D space and extend our equations to the 3D space, we can 

write the beam pattern equation in 3D space if we have a square array with equispaced 

sensors as follows: 

 CA⋄D(G, HU , HV , $U , $V) = 	CADEF(G, HU , $U)CADEF(G, HV , $V) ( 2.2) 

 

Where $U and $V are the azimuth and elevation steering angles respectively; Figure  2.2 

illustrates the beam pattern in 3D space produced from an array of transducers with the 

steering angels: $V = 0°	, $R = 30°  
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Figure  2.2: beam pattern of 2D array with 15x15 elements with λ/2	spacing, steering 

angles θW0°	, θX = 30° frequency = 300 KHz 

2.2.2 Holographic systems 

There are two types of holographic algorithms, the first one use Fourier/Fresnel 

approximation in the narrow band systems; the second type of holographic algorithms 

use singular value decomposition to estimate the scene reflectivity in the wide band 

systems [20] as implemented in the Echoscope sonar [26]. 

In the holographic narrow band systems the algorithm phase-shift the signals collected 

from the 2D sensors and apply discrete Fourier transform to move from the index of the 

sensors Y = 1…K to the index of the spatial frequencies Z [27]. The derived beam 

pattern from this algorithm can be written as follows [20]: 

 CA[\](G, H, Z) = sin ^GK'2L _sin H − 2MZLGK'`a
sin ^G'2L _sin H − 2MZLGK'`a  

( 2.3) 
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Where K is the number of sensors; Z is the index of the spatial frequencies; ' is the 

distance between two adjacent sensors; G = 2MN angular frequency; N frequency; L 

sound velocity in the medium, H ∈ [−PQRS, PQRS], and 2PQRS is the angular vertical 

coverage of the sonar. 

It is clear that equation ( 2.3) is identical to the beam pattern equation ( 2.1) in the beam 

forming systems, so the relation between the Z index and the steering direction $ can be 

written as follows [28]: 

 sin $ = 2MZLGK'  
( 2.4) 

Thus, all drawbacks and limitations of the Beamforming systems are applicable on the 

holographic systems using narrow band frequencies. These include the side lobe 

problem, the aliasing problem when ' > c/2	  ('	is the distance between two adjacent 

sensors; c is the wave length), and the imperfect focusing. Again, lots of algorithms are 

applied to optimize sensors deployment in the planer arrays such as Monte Carlo 

simulation (MC), Simulated Annealing (SA), Intra-Block Monte Carlo method (IBMC), 

and combined SA-IBMC algorithm [29]. The beam pattern in this case is identical to the 

one illustrated in the Figure  2.1. 

In the second type of the holographic systems, the problem is re-formulated into matrix 

equations. The pressure field is denoted by d(G, e)  as K	 × 1 vector where N is the 

number of sensors placed in eg and Y = 1…K; the hi × 1 vector L(G, �) contains the 

reflectivity of each resolution cell in the imaged space (see Figure  2.3), the relation 

between these matrixes is depicted as follows: 

 d(G, e) = j(G, e, �)L(G, �)			 ( 2.5) 

Where j(G, e, �) is an K × h′ transfer matrix, in ( 2.5) the whole imaging problem is 

turned into estimating the vector L(G, �) given the transfer matrix j(G, e, �) and the 

measured vector d(G, e). Singular value decomposition (SVD) [30] is utilized here to 

solve for the pseudo-inverse matrix of j(G, e, �) so the estimated L̃(G, �) vector is 

defined as follows: 
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Figure  2.3: representation of the matrixes in the holographic methodology for one beam, 

the figure represents linear array only, in 3D sonars the sensors are situated in 2D array. 

 

 L̃(G, �) = 	j[(j. j[)ld ( 2.6) 

Where 	[ is the complex conjugate and transpose; 		l is the pseudo-inverse of the 

matrix. It worth mentioning that ( 2.6) is usually written for each layer in the imaged 

space which is divided to many concentric spherical layers to minimize the size of the 

computed matrixes. 

2.2.3 Acoustic lens systems 

Acoustic lens systems work in a similar way to the optical ones, basically, an acoustic-

lens system consists of an acoustic lens to focus the backscattered signals on a 2D retina 

of sensors [31]. Each sensor receives a signal that represents the echo from a well-

defined direction. Measuring the time of flight for these signals gives us the opportunity 

to build 3D image rather than 2D image as in the optical systems. 

The phase shift which is implemented computationally in the holographic systems 

happens naturally in the acoustic lens when the signals pass through them. In the 

acoustic-lens systems the sensed field is limited to the aperture of the lens, so it can be 

calculated using the following equation: 

d(G, e)	 	K:1	mnL(o� 

L(G, �) hi × 1 vector  
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pi(G, )) = 	 qp(G, ))nrsSt/;uF		 																														− �/2	 ≤ ) ≤ �/20,																																																															o(ℎn�x�dn										 	y ( 2.7) 

Where F is the focal length of the lens; � is the aperture of the lens; the beam pattern of 

the acoustic lens is defined as follows [20]: 

 CAgV@z(G, H, $) = 2 sin[G�(sin H + sin $)/2L]G�(sin H + sin $)/2L  ( 2.8) 

The beam pattern in the acoustic lens systems and the beam forming systems is very 

similar; however, acoustic lens systems suffer some drawbacks according to the 

physical nature of the lens i.e. reducing sidelobes is not achievable through ad hoc 

weight coefficients as in the beamforming systems [32] [33] . Moreover, regulating the 

focusing distance to make it close to the scatterer distance requires complex mechanical 

arrangement. Above all, the phase shift performed by the lens is applicable only in 

Fresnel approximation zone. These problems are tackled in [34] [35] [27] [36]. Next we 

discuss the problems of the aforementioned planar array methodologies. 

2.2.4 Problems of acoustic 3D imaging using planar arrays 

Developing 3D acoustic imaging system by using planar array is hindered by two main 

factors: first of all, the cost of building the planar array which is composed of huge 

number of acoustic sensors [37]; secondly, the computational load to process the signals 

obtained from the acoustic sensors. These two linked problems are shared between all 

three systems explained earlier i.e. Beamforming system, Holographic system, and 

Acoustic-lens system, in the later one the computational load is abated at the cost of 

adding the acoustic lens, moreover, it requires dense retina as each sensor  correspond to 

one direction only in one-to-one relation, obviously, this is not the case in the 

Beamforming and Holographic systems where the number of sensors is a little bit 

smaller than the number of beams; however, Beamforming and Holographic systems 

require more computational power and large storage capabilities compared to lens based 

systems. 

Designing the planar array have to be accomplished by considering the aliasing 

problem, this means that the space between the acoustic sensors should not exceed a 
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given value expressed in terms of the wave length	(λ/2). On the other hand, obtaining a 

fine resolution requires an array with wide spatial extension. As a result, the planar 

array will be composed of thousands of acoustic sensors to meet these requirements. To 

solve this problem, 3D imaging by sparse array has been presented [19] [38]. The 

problem of designing the planar array is turned into an optimization problem to reduce 

the number of acoustic sensors in the planar array and to find optimum positions and 

weights for them; the objectives of the optimization problem here are to lower the 

sidelobe level, narrow the main lobe width, and to avoid grating lobe in the beam 

pattern. This procedure reduces the cost of the planar array and truncates the 

computational burden required to produce 3D map. 

3D underwater imaging inherits most problems of the 2D underwater imaging, namely, 

the speckle noise, specular reflections and spatial and temporal coherences of the 

insonified medium. Speckle noise is caused by the interference of the backscattered 

signals from rough surfaces, it can be reduced by using adaptive filtering [39] or by 

using the statistical components of the noisy signal [40]. On the other hand, specular 

reflection tends to exist while imaging man-mad objects, these objects tend to have 

smooth surfaces where acoustic signals bounce back to produce images with poor 

details and high contrast. Finally, the spatial and temporal properties of the medium 

distort the images in long-range scans; they can be safely neglected herein as we are 

focusing on short range systems only. 

2.2.5 T - Configuration  

Many sonar systems accomplish 3D-scan of the scene by using successive horizontal 

beamforming transmission and vertical beamforming reception. In other words, a 

vertical transmitting array insonifies a thin slice in elevation, then a horizontal receiving 

array collects the signals from different azimuth angles across each emitted slice. This 

arrangement is called the “T Configuration” or “Mill’s Cross Configuration”; its main 

advantage is the small number of transducers and transceiver channels which means 

cheaper and simpler systems, on the other hand, it has a critical disadvantage, the time 

to scan the 3D scene is very long compared to the 2D array systems, for example to get 

128x128 points in 100m range by using the T configuration, the system needs to emit 

128 successive pulses  with 0.13s minimum delay between each pulse, therefore the 
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system needs 17.06 s for complete 3D scan of the scene. Consequently, these systems 

are useful only for very short ranges. 

2.2.6 Concentrator lens 

Concentrator-lens systems can be considered as the mechanical version of the Acoustic-

lens systems mentioned in a previous section, in the concentrator-lens systems,  

underwater 3D data can be deduced using one 2D Sonar equipped with concentrator 

Lens to form pencil-like beams (like DIDSON), by rotating this sonar 45⁰ degrees we 

can  perform full 3D scan in the field of view [41]. The lens’ concentrator reduces the 

vertical beamwidth from the default 14⁰ degrees to either 3⁰ degrees or 1⁰ degree 

depending on the concentrator type [6]. This procedure was implemented in Yamanaka 

lake-Japan to get full 3D image of the aquatic plants, the methodology requires GPS and 

motion sensors with heading, rolling, and pitching angles to compensate for slight 

DIDSON movements; as it uses mechanical rotation system,  this methodology requires 

more time to scan the field of view compared to all other systems, one of the first 

articles which explains this methodology can be seen in [42]. 

2.2.7 Bathymetric systems 

Multibeam echosounder (MBES) is typically used to generate bathymetric maps of the 

sea floor. The sonar’s swath is produced from hundreds of narrow adjacent beams in 

fan-like form, see Figure  2.4. 3D bathymetric map can be generated as a result of the 

movement of the mounting platform. To generate 3D bathymetric map, the mounting 

platform may move in a linear path or simply rotate the sonar head to acquire 3D map 

of the dome under the sonar. 

 There are two ways to process the acquired data from MBES to generate 3D seafloor 

maps. The first approach filters data points to remove outliers and smooth the generated 

surfaces by gridding the surviving data points. In other words, interpolation is 

performed on the filtered data points to produce digital terrain model of the insonified 

area. Different algorithms have been proposed within the circle of this approach 

including utilizing band pass filter for outliers removal, and applying wavelets and 

quad-tree data structures to build surfaces [43]. The second approach models the 
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seafloor terrain using Triangulated Irregular Network (TIN) [44]. This approach filters 

the acquired data as the previous approach but uses the filtered data directly with no 

gridding. Triangulated Irregular Network algorithm presents better details in the 

modelled terrain than the gridding approach at the cost of complex implementation [45]. 

 

 
 

Figure  2.4: 3D bathymetric map can be generated using multibeam echosounders 

mounted on a moving AUV or a rotating platform. 

2.2.8 Interferometric Systems 

Interferometric sonar utilizes phase measurement at each receiving element to estimate 

the angle of the scatterer which reflected the acoustic pulse. The receiving elements, 

placed at known distances, allow determining the angle $ of the scatter by calculating 

the phase offsets of the acoustic return.  Interferometric sonar doesn’t depend on 

beamforming technology, but rather on the accurate measurement of the phase at each 

receiving element, it can produce bathymetric maps by combining the range 

measurement and the calculated $ angle. Interferometric sonar has been used for 

decades, in its early days, ambient and internal noise were the main problems facing its 

development. In addition, the problem of resolving multiple angles of arrival 

(simultaneous returns from different angles) and the shifting footprint effect (where 

acoustic returns from close parts of the seabed being received at different receiving 

elements simultaneously) were considered as significant problems affecting phase 

fluctuations in interferometric sonar data [46]. However, interferometers have been 
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significantly improved with the advent of new technologies in electronics and 

transducer manufacturing, in addition to different algorithms serving the phase-

measurement of the acoustic returns.   

2.2.9 Real acoustic 3D imaging systems 

Echoscope 3D Sonar is one of the remarkable 3D sonars available off-the-shelf, the 

sonar was designed and developed by a Bergen-based company called OmniTech which 

was acquired by CodaOctopus in 2002. Currently, the 3D camera consist of 128x128 

beams (16,384 total) with 50°x50° Angular Coverage and 0.39° beam spacing, they use 

375kHz frequency which allows for up to 150m maximum range [26] [47]. The first 

version of the Echoscope started with 40x40 beams only, it follows the holographic 

approach presented in the section ( 2.2.2) which avoids Fresnel Approximation, Figure 

 2.5 shows one image from the Echoscope.  

 

Figure  2.5: Real-time 3D image of the MV GB Church [48] 

Cheaper 3D sonars follow the T configuration at the cost of longer scan times, two 

commercial sonars from this category are Eclipse from Tritech International Limited, 

and Pin-Point 3D intruder detection sonar from Marine Electronics Ltd. 

Eclipse is 3D imaging sonar with 3-dimensional measurement capability. A single 

housing contains an orthogonal pair of dual transmit and receive multi-beam arrays, see 

Figure  2.6; it has 256 beams operating at 240kHz with a range of up to 120 meters [49]. 

Eclipse scans a 3D volume with 120 by 45 degrees. By electronically steering the 
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horizontal or vertical transmit beam, a volume is illuminated in front of the sonar. This 

is converted into full 3-dimensional image. 3D Volume Visualization provides a 

realistic graphical representation of scanned objects. 

 

 

Figure  2.6: Eclipse sonar head demonstrating the T configuration 

 

The pin-point intruder detection sonar is another forward-looking active sonar that 

follows the T configuration to provide a 3D display of an area, see Figure  2.7. The Pin-

Point scans both horizontally and vertically to produce a three dimensional 

representation of the area in front of the sonar with a minimum range equal to 20 meters 

and a maximum range of 500m. The “T configuration” transducer array can be either 

fixed or vessel mounted and connected by cable to the electronics processing unit which 

is controlled from the operating PC via an ethernet connection [50]. The sonar scans a 

horizontal sector of 90° to a 1.5° resolution and a vertical sector of 20° to a 1° resolution 

for every “ping” of the transmitter. It has 32 transmitter beams and 64 receiver beams. 
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Figure  2.7: Pin-Point Intruder detection sonar as an example of the T Configuration 

 

Another type of the 3D sonar systems is the moving multibeam sonar, these are sonars 

which generate multibeam swath and depend on the rotating head to generate full 3D 

scan, other variations of this methodology rely on the movement of the mounting 

platform to generate 3D bathymetric map. 3D Profiling Sonar 2001 from Marine 

Electronics Ltd stand as an example of the 3D sonars with rotating multibeam head, its 

acoustic transducer scans a horizontal swath and is then rotated by a small angle and 

another swath captured until a complete circular area underneath the sonar dome is 

covered [51], it operates with 1MHz frequency with 1.8° transducer beamwidth and 

varying swath angles of 30°, 60°, 90°, 120°, 150° and180° , see Figure  2.8. BlueView’s 

BV5000-1350 and BV5000-2250 are other examples of the 3D mechanical scanning 

sonars which depend on the same technology with slight differences, they feature 256 

beams with 1°x1° beamwidth and 0.18 beams spacing, their field of view is 45° [52]. 

BlueView’s MB1350-45 and MB2250-45 multibeam sonars deliver bathymetry data 

depending on the movement of the mounting platform (AUV, ROV…), they have 256 

beams with 1°x1° beamwidth and 0.18° beam spacing, their swath angle is 45°. These 

two sonars feature low power consumption as they operate with 15 watts only. 
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Figure  2.8: 3D Profiling Sonar 2001 from Marine Electronics Ltd 

2.3 Algorithms for underwater 3D reconstruction  

In this section we discuss three categories to perform underwater 3D reconstruction 

using 2D images obtained from optical or acoustic cameras.  

2.3.1  3D reconstruction using shadows in acoustic images 

Deriving a shadow model for objects imaged by forward-looking sonar is of 

considerable importance. The conventional method for object reconstruction using 

shadows in sonar images is to segment the sonar image into three regions: background, 

shadow, and objects [53]. Thereafter, the shadow and the object segments are used to 

estimate the elevation of each object individually. Merging these estimates give the 

desired 3D map. In a similar approach [54], the Markov Random Fields (MRF) method 

has been used to segment sonar images to three kinds of regions, namely, echo, shadow 

and background.  The proposed scheme uses shadow regions to infer the elevation map. 

Also, it uses echo regions to infer a reflection map. These maps are merged in a final 

stage to build the 3D reconstructed scene, the main drawback of this methodology that it 

uses GPS information to estimate the motion between acquisition view points. 

 Another approach was implemented for 3D object recognition and reconstruction by 

exploiting the shadow data in DIDSON Images [55]. This method depends on a 

supposed DIDSON model and on the shadow data of the objects. Mainly, it uses 

correlation to measure the similarity between the actual shadow and the predicted 
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shadow (predefined one). However, this method can be used with simple shapes only 

(cube, cone, and cylinder) so it cannot be utilized in real environments. 

2.3.2 3D reconstruction using underwater optical images 

Computer vision techniques commonly applied for 3D reconstruction in land have 

found the way to underwater applications [56][57][58][59]. Recently, significant 

attempts have been accomplished to perform 3D reconstruction from optical images 

acquired from moving AUV/ROV [60][61][62]. In [63] the authors proposed a 

framework to build large 3D maps based on AUV optical surveys. The first stage in the 

framework uses modified Harris corner detector [64] and Tuytelaars method [65] for 

feature extraction.  These features are used in RANSAC-based algorithm to search for 

the essential matrix which best describes the transform between two successive images. 

Next the transform is used to infer 3D features that can be interpolated to obtain 3D 

sup-map in the reference frame. Finally, the sub-maps are matched using RANSAC and 

Horn’s algorithm [66] to build global 3D map of the surveyed terrain. In addition, the 

framework exploits navigation data from inertial sensors to limit the search space and 

expedite the execution time in RANSAC phase. 

There are fundamental problems in implementing 3D reconstruction based on 

underwater optical images, particularly the significant light attenuation and backscatter 

[67]. In fact, finding correspondences between the stereo views is required to 

accomplish 3D reconstruction. This problem is already challenging in air and it is even 

more challenging underwater as the image quality degrades significantly with severe 

light attenuation and backscatter from suspended particles. Moreover, the distances 

between the object and the stereo cameras are not the same which makes the surface 

radiance different in each view.  These factors make the task of finding correspondences 

between two underwater optical views more challenging. Thus, applying the methods 

designed for open-air applications in underwater environment is limited to good 

visibility condition [68]. In practice, these methods often fail in low visibility conditions 

[69]. Furthermore, in lowlight condition, artificial light is needed which adds different 

shadow patterns to the views. Therefore, it increases the difficulty to find 

correspondences and adds additional burden in terms of the power budget in the AUV. 
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2.3.3 3D reconstruction using optic-acoustic images 

There are some papers tackling underwater 3D reconstruction using optic-acoustic 

cameras, S. Negahdaripour has derived the epipolar geometry for optic acoustic-camera 

configuration in [70]. The author ended up with three solutions called the range 

solution, the azimuth solution and the third one is derived by expressing points’ 

coordinates in the sonar reference frame using the rigid transformation between the 

sonar reference frame and the camera reference frame. The aim of these solutions is to 

calculate the missing Z-coordinate of a point in the real world. Obviously, these 

solutions give the same results in the virtual world (while modelling the sonar and 

camera).  However, they will give different results in the real world because of the 

different distortions caused by the optical and acoustic sensors and all sorts of noise 

which affect the images. Another cause of these differences is the models adopted while 

deriving the epipolar geometry of the optic-acoustic cameras. These models (The pine-

hole model for the optical camera and the polar- coordinate scan for the acoustic sensor) 

are approximated models of the real world.  

The supposed epipolar geometry turns the search for the pair points in the sonar and 

optical images into one dimension search. Thus, if we have a point in the sonar image e = ($, %)	we can search for its corresponding point in the optical image by searching 

on the corresponding epipolar curve in the optical image. According to [70], these 

curves are ellipsis or hyperbolas curves.  Whatever the case, this method does not give 

acceptable results due to the causes mentioned earlier. In other words, the complex 

correspondence problem remains to be the main impediment that hinders this 3D 

reconstruction approach to evolve. 

Recently, S. Negahdaripour et al. have proposed a method to get around the 

correspondence problem to integrate the motion cues in optical and sonar videos for 3D 

positioning [71]. This method can be considered as the first step to solve the 

correspondence problem; simply it deals with each sensor alone without requiring 

matches between the sonar and the optical camera. Instead of searching for matches in 

the two images, it processes the sequences of images from each sensor individually, and 

deduces the 3D points from these sequences. The last step in this method is to optimize 

the 3D parameters of the deduced structure (or feature points). Clearly, this method does 
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not apply the epipolar geometry but utilizes some of its results. As we have just 

mentioned, this method can be the initial step to solve the correspondence problem by 

reprojecting the optical pairs to the sonar image to obtain their matches (and repeating 

the same thing with the sonar pairs), these matches can be considered as the starting 

points (seeds) to propagate from and calculate other matches. 

 It has been noted that the epipolar geometry of the optic-acoustic stereo imaging has a 

theoretical nature [71]. In addition to that, we know that this system will only work in 

the perfect or very good conditions in terms of visibility and illumination. The optic-

acoustic configuration depends on the optical sensor as well as the acoustic one. Thus, it 

cannot work in dark and/or turbid waters. This is preventing it from being applied in 

most applications ranged from surveillance to monitoring fish behaviour near the rivers’ 

mouths where the turbidity is very high. In other applications, applying a synthetic light 

may affect the experiment/application itself.  

Finally, we know that the optical sensors work within a metre or a fraction of a metre in 

turbid waters [5], this means that there is a little intersection between the FOV of the 

acoustic camera and the FOV of the optical one. For example, if we assume that the 

visibility is within 3 meters (which is considerably a good condition and it is not the 

case in most harbours) and by recalling that the range of the DIDSON Sonar is from 1m 

to 12m while working in the high resolution mode (1.8 MH) [72], then the intersection 

between these two FOVs is merely from 1m to 3m range. This intersection represents 

18.18 % of the DIDSON’s FOV. In the low resolution mode the measured range is 1m 

up to 40m, so the intersection is merely 5.12 % of the DIDSON’s FOV. Obviously, 

these percentages speak for themselves which drives us far away from adopting the 

optic-acoustic configuration. 

2.4 Motion estimation systems 

In this section, we cover dominant methodologies and different sensors used to 

implement motion estimation systems for AUVs. Motion estimation for AUVs is a wide 

topic and can be viewed from different perspectives; our aim here is to present the 

bigger picture of the field rather than focusing on our specific methodology. In fact, in 

our motion estimation research, we concentrate on utilizing forward looking sonar as a 
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motion sensor for the AUV; in other words, our aim is to feed the adopted filtering 

methodology on the AUV platform with motion measurements derived from the 

subsequent acoustic images obtained from the sonar. Filtering methods are not in the 

core of the conducted research herein; however, we review them briefly for the 

completeness of the work and to give an overall picture for navigational systems for 

AUVs. 

2.4.1 Motion estimation using inertial sensors 

Inertial sensors are mainly gyroscopes to detect the acceleration of the AUV, they can 

be the classic low-cost micro-electro-mechanical (MEMS) gyroscopes [73], the 

advanced and expensive Fibre Optic Gyroscopes (FOG) [74], or Ring Laser Gyroscopes 

(RLG) [75], in AUVs, these sensors are usually accompanied with Doppler Velocity 

Log (DVL) which can measure the AUV velocity near the sea bottom. Also, Acoustic 

Doppler Current Profiler (ADCP) is usually combined with the inertial navigation 

systems (INS) to correct for the drift in the estimated position especially if the AUV 

follow linear path or move slowly [76]. 

Figure  2.9 shows the KN-6050 INS/DVL/GPS combined sensor which is based on 

Kearfott’s Monolithic Ring Laser Gyro (MRLG), the Teledyne RDI Doppler Velocity 

Log (DVL), and internal GPS receiver [77]. An extensive study in [78] presented the 

performance of these sensors in the Arctic at latitudes exceeding 80°. Figure  2.10 

illustrates HG1700 three Ring Laser Gyroscopes from Honeywell, it is widely used in 

UAVs (Unmanned Air Vehicles), and AUVs. 
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Figure  2.9: Kearfott integrated INS/GPS/DVL 

 

All inertial navigation systems suffer from integration drift of different magnitudes 

depending on technology and methodology, as the error of the estimated position 

increase rapidly over time, inertial navigation systems require a fix from external 

reference systems such as GPS or APS (Acoustic Positioning System). Numerous 

studies presented algorithms to combine INS and GPS data in different robotics and/or 

control applications such as those in [75][79][80][81], a notable study, conducted in 

Japan Agency for Marine-earth Science and Technology (JAMSTEC), to fix the INS 

data in AUVs has been introduced in [82], the study presented two algorithms based on 

Kalman Filter (KF) and Extended Kalman Filter (EKF) to integrate super short baseline 

(SSBL) and INS methods, a similar approach is adopted in [83].  

Improving the INS performance has a great impact on the robotic industries in air, land 

and sea as the INS systems feature complete autonomy compared with other 

navigational methodologies, a simple and effective way to enhance INS performance 

has been presented in [84] based on hardware redundancy followed by wavelet analysis 

to detect drift errors in INS sets; however, it has been widely noted that INS systems 

require regular fixes from an external reference system [82][83]. 
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Time of Flight (TOF) and Direction of Arrival (DOA) of the signal to determine the 

vehicle’s position. In other words, the position of the AUV will be estimated on the 

mother ship and transmitted to the AUV using SSBL acoustic signal so the AUV will 

determine its self-position and fix any INS drift error. 

In the inverted SSBL (ISSBL), the vehicle and the mother ship exchange roles, i.e. the 

transponder will be attached to the mother ship and the AUV will be equipped with a 

transmitter and a receiver array. In this scenario, the AUV will be able to estimate its 

absolute self-position based on the GPS data transmitted from the mother ship to the 

vehicle using the ISSBL acoustic signal [87]. The inverted SSBL is preferred over 

normal SSBL when the area of interest contains multiple AUVs at the same time. the 

main disadvantage in SSBL and ISSBL is the requirement for the mother ship which 

has to be in close proximity to the vehicles, this increases operation’s cost and even 

raises the question about the autonomy of the vehicle, in fact, vehicles with  SSBL 

navigation systems are described as untethered rather than autonomous [88].   

Floating acoustic buoys systems have been introduced and studied by several authors 

[89][90][91][92][93]; the buoys are equipped with acoustic receivers/emitters, GPS 

receivers, and radio interconnection between them. Each buoy in the system determines 

the distance to the vehicle by listening to the acoustic ping sent from the synchronized 

vehicle, the master buoy then collects the data from the buoys using the radio 

connection and infers the vehicle position using simple triangulation, then the inferred 

position is sent to the vehicle using acoustic communication channel. This system, 

dubbed GPS Intelligent Buoy (GIB) system [94], has a major advantage of being able to 

serve multiple vehicles at once by differentiating their pings based on time, frequency, 

or pseudo-random code. However, its main disadvantage is the delay incurred in 

receiving the acoustic pings from the vehicle and sending the inferred position back 

using the acoustic channel.  

In another approach, the buoys act as GPS satellites by broadcasting their GPS positions 

in regular times through acoustic pings. Using time-of-flight measurements of the 

received pings, the synchronized vehicle determines its absolute ego-position in a 

similar manner to those in GPS receivers. The system has been described in an early 

study in [95]. 
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2.4.3 Motion estimation using geophysical features 

Geophysical navigation systems use geophysical features in the terrain to estimate the 

AUV’s position. Geophysical features may refer to magnetic, bathymetric, and 

gravitational features. 

 These systems can be grouped in two sub-categories; the first one is the Terrain Based 

Navigation (TBN) systems where the estimation is performed by providing the AUV 

with an existing map of the area and searching for the best match between the observed 

features and the provided map, a good survey on this approach can be seen in [96]. The 

second category in the geophysical navigation systems perform the estimation with no 

prior knowledge of the map, basically, they depend on feature registration in the 

subsequent observed acoustic/optical images. The latter category introduces more 

autonomy to the vehicle and enables it to explore new areas where the maps are not 

available. 

The performance of the geophysical navigation system is largely affected by the number 

of features in the scanned scene and by the ability to extract them from the background, 

in fact, the challenging task of automatic feature extraction and feature registration 

using optic and/ or acoustic images is the main problem of the geophysical navigation 

systems. This is due to the low resolution of the sonar images, the high attenuation of 

light underwater, and the scarcity of features in the sea floor [85].  

AUV navigation based on magnetic or gravitational variations has been proposed in 

earlier studies [97][98]. Passive gravity navigation utilizes gravity gradient 

measurements and compares it with gravity abnormality database, the system is 

proposed to be combined with other technologies using Kalman filter scheme. The 

performance of these systems has not been published. Other geophysical features 

include the tidal inlets and hydrothermal vents, however they are rarely encountered in 

real AUV missions [85].   
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2.5 Motion estimation algorithms 

From methodologies point of view, we may consider two different techniques to 

estimate AUV positions based on measurements from the aforementioned sensors: 

2.5.1 Kalman Filter (KF) and Extended Kalman Filter (EKF) 

The Kalman filter estimates the AUV state position by using predict-update cycle; first 

of all, the filter estimates the state position of the vehicle depending on a proposed 

model and the control data, then it updates the predicted state based on the obtained 

feedback in the form of noisy measurements. In other words, the equations for the 

Kalman filter fall into two groups: time update equations and measurement update 

equations [99].  

If the system is Markovian and linear, and the noise can be modelled as Gaussian, then 

Kalman filter is an optimal Bayesian estimator [100]; however, the AUV physical 

model is highly nonlinear, which makes the Extended Kalman Filter (EKF) more 

suitable for estimating the position of the vehicle [101]. In the EKF, the first-order 

Taylor series is used to approximate the nonlinear model of the vehicle, in fact, the 

Jacobian matrix is used to linearize the model while the predict-update cycle survive in 

the EKF. Calculating the Jacobian matrices requires nontrivial operations and increases 

the complexity of the system. Furthermore, the EKF often underestimate the covariance 

of the state in the highly nonlinear problems which incurs large inaccuracies. Different 

studies concluded that the EKF achieve good results for AUV navigation with an INS 

and DVL if the vehicle obtains regular updates from the GPS [85]; however, the 

performance of this system will deteriorate significantly if the GPS signal is not 

available [73]. EKF evolved rapidly to serve AUV navigation and other applications, 

one can notice different flavours of the EKF, notably, the two-stage extended Kalman 

filter (TEKF) [102], adaptive two-stage extended Kalman filter (ATEKF) [79], 

unscented Kalman filter (UKF) [103], sigma-point unscented Kalman filter (SP-UKF) 

[104], and fuzzy adaptive federated Kalman filter (FAFKF) [105]. 
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2.5.2 Particle Filters (PF) 

The particle filter approach infers the current AUV position (referred as ‘state’ in the 

literature) by using a large number of weighted particles (or samples in the state space) 

to estimate the probability distribution of the state variable. The algorithm utilizes the 

observed history over the path of the AUV along with its control history; also, it 

assumes full or partial knowledge of the operation environment [106][107]. 

The particle filter approach is capable of estimating nonlinear systems, also, it doesn’t 

assume Gaussian model for the noise as KF and EKF [108]. Moreover, it doesn’t 

require initial position or orientation for the vehicle [109]. However, these advantages 

come at the cost of high demand for computational power resulting from the huge 

number of particles required to cover the state space. Another issue to mention here is 

the sample impoverishment problem induced by concentric particles in a small region of 

the state space, this problem represents a kidnapped vehicle in a wrong estimated 

position similar to the local minima problem in the optimization literature. In an 

analogous way to the simulated annealing algorithm, it has been suggested to dedicate a 

number of the particles to be randomly distributed in the state space regardless of the 

update process using the Sampling Importance Resampling (SIR) algorithm [106][107]; 

this arrangement avoids the sample impoverishment problem and guarantee to recover 

from a wrongly estimated position. 

It is important to mention that there is no standard methodology to implement motion 

estimation for AUVs, researchers have always blended different methodologies and 

used full range of sensors to develop AUV navigational modules; this is mainly due to 

the complex nature of the problem and to the diversity of the employed applications in 

the AUV industry. For example, the authors in [106] suggested using particle filter to 

get an initial estimation and used extended Kalman filter after that, in an emergency 

situation, particle filter will take control again to re-estimate the position and give 

control back to Kalman filter. Also, federated Kalman filter based on the back-

propagation neural network (BPNN) was used to implement the AUV navigation 

system [100]. Simultaneous Localization And Mapping (SLAM) is closely related to the 

field, dominant SLAM techniques utilize extended Kalman filter and/or particle filter 

[103]. SLAM received much attention in the last decade, nevertheless, SLAM is beyond 
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the scope of the thesis, interested reader may refer to outstanding studies in [110] 

[111][112].  

Using acoustic images to infer motion measurements has the same prerequisite as 3D 

reconstruction starting from the acoustic images, namely, image registration for the 

acquired images; next we review important algorithms prominent in optical and medical 

image registration domains. 

2.6 Image registration techniques 

Image registration is the problem of finding the transform function between two images 

to map points from the first image to same points in the second one. In other words, it 

can be described by raising a simple question: given two images for the same objects 

taken from different viewpoints, for each point in the first image where are their 

correspondences in the second image? This question can be easily answered by humans; 

unfortunately, it is not the case for computers! Figure  2.11 illustrates this problem. 

 

Figure  2.11: Image registration is the problem of finding T 

This problem is well-known as the correspondence problem in the computer vision 

literature; it is faced in many applications where we have two or more sensors scanning 

the same objects or just one sensor moving while scanning objects of interest. 3D 

reconstruction, motion estimation, camera calibration, image mosaicing and object 

recognition are all hindered by this problem; to name but a few. 

Image registration is a heavily studied problem, yet there is no complete solution which 

satisfies all applications where we face it. However, we can roughly set a general 

platform which all methods can fall into it. Figure  2.12 shows the general structure of 

the image registration methods. Next, we discuss local based techniques, feature based 

techniques, and point matching algorithms. 
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Figure  2.12: Structure of the image registration methods [113] 

 

2.6.1 Local based techniques 

2.6.1.1 Mutual Information (MI) 

 

Mutual Information (MI) was originally introduced by Shannon [114] in 1948. There 

have been lots of applications for the MI, including basic statistics, communications 

theory, and complexity analysis [115]. Viola and Collignon separately used the MI to 

measure pixels similarities in 1995. They used the MI as a similarity metric to register 

multi-modal medical images such as computed tomography (CT) and magnetic 

resonance (MR)  images [116].  

Mutual Information depends on the entropy and the joint entropy of two random 

variables. In the context of the correspondences, the image pixels will form the random 

variables. Pixel values X can be considered as discrete random values with discrete 

density P so that the entropy H can be defined as follows: 

 H(X) 	= 	−Ex[log(P(X))]	 ( 2.9) 
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The joint entropy is defined in a similar manner for two random variables X and Y by 

using the joint probability function P(X, Y). Mutual Information can be defined as 

follows: 

 MI(X, Y) = E�,� �log	( P(X, Y)P(X)P(Y))� = H(X) + H(Y) − H(X, Y) ( 2.10) 

 

The minimum value of the Mutual information is 0 which means that X and Y are 

completely independent, where the maximum value of the MI is equal to min	(MI(X, X),MI(Y, Y)) which occur when both variables are identical or there is a one 

to one mapping T between both of them, this is because MI(X, X) = MI�X, T(X)� and 

this justifies why the MI is a good similarity metric.  

Mutual Information works well with different lightning conditions, even while using 

two sensors with different spectral responses. However, it cannot measure similarities 

between two regions if there is a considerable amount of Gaussian noise in one of the 

samples. Moreover Mutual Information is computationally expensive if compared with 

the typical convolution since it includes a step to estimate the probability density 

function of the variables. 

2.6.2 Feature based techniques 

2.6.2.1 SIFT 

Scale Invariant Feature Transform (SIFT), introduced by David Lowe [117], is a very 

robust method to match features in different images with high confidence. SIFT can 

perform very well against affine distorted images with added noise and some 

differences in illumination.  SIFT features exist in spatial and frequency domains which 

give them strong immunity from clutter, noise and occlusion. Large numbers of SIFT 

features can be extracted from typical image, they are highly distinctive which makes 

them suitable for many applications ranging from 3D reconstruction, stereo 

correspondence, motion tracking, image indexing and mosaicing  to list but a few. 
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Generating SIFT features can be divided to four filtering-stages where the expensive 

operations are applied on locations after they pass an initial test. Lowe describes the 

main steps to extract image features in [118]  with the following steps: 

a. Scale-space extrema detection  

In the first stage, keypoints are detected in all locations that are invariant to scale. This 

is achieved by searching all possible scales using the scale space function. Lindeberg 

shows in [119] that this function cannot be other than the Gaussian function. Therefore, 

detecting keypoints can be implemented efficiently by searching for the scale-space 

extrema in the DoG (difference-of-Gaussian). In other words, the image is convolved 

with the Gaussian kernel repeatedly with different σ (see equations ( 2.11), ( 2.12)). The 

first time the convolution is done with σ and the second time with kσ, and the third with k;σ and so on until we have doubled the σ (this will be called one octave). Then the 

produced images will be clustered in pairs and subtracted from each other to generate 

the DoGs, each DoG represents one scale in the scale space. Before going to the next 

octave, down sampling is performed on the last produced image (in the convolution 

process) with a factor of 2, then the same procedure is repeated again. 

If we define the convolved image with Gaussian kernel with the equation: 

 L(x, y, σ) = G(x, y, σ) ∗ I(x, y) ( 2.11) 

Where  I(x, y) is the input image and: 

 G(x, y, σ) = 12πσ; e��tl�t;�t  ( 2.12) 

Then we can easily get the images in the scale space with the equation: 

 D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) ( 2.13) 

Searching for the extrema in the scale space is performed by comparing each pixel in 

the DoG to its 26 neighbours (that is 8 pixels in the same scale, 9 pixels in the up-scale 
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and 9 pixels in the down-scale). The pixel will be considered as a candidate only if it is 

smaller than all of them or larger than all of them.  

There are two important parameters to be determined in this stage, the frequency of 

sampling in the scale domain and the frequency of sampling in the spatial domain. In 

the scale domain, Lowe shows in [118] that the best results can be obtained by sampling 

3 scales per octave. While his study in the spatial domain suggests that the larger the σ 

the better the performance, but this comes at the cost of increased computational 

operations.  σ = 1.6 can be considered as a trade-off between performance and 

efficiency.  

b. Keypoint localization 

There are three goals for this stage; the first one is to determine accurately the sub-pixel 

locus of the extrema in the scale space, the second one is to reject all keypoints with low 

contrast, and the third is to reject points along edges. 

The first implementation of SIFT suggested that keypoints are positioned in the centre 

of the sample point, Brown in [120] developed a method to calculate the interpolated 

locus of the extrema using Taylor expansion of the scale-space function D(x, y, σ).   
 D(x, y, σ) = D + ∂D�∂x + 12 x� ∂;D∂x; x ( 2.14) 

The location of the extrema is determined by taking the derivative of D(x, y, σ)and 

setting it to zero, the equation yields: 

 x� = −∂;D�<∂x; ∂D∂x  ( 2.15) 

The derivates are approximated using the differences of the neighbour points, and the x� 

value can be calculated. If x� is larger than 0.5 in any direction then the extrema is 

positioned in another pixel. 
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All keypoints with low contrast are sensitive to noise; to reject these keypoints, the 

function value D(x�) is estimated. If this value is less than a fixed threshold then the 

keypoint will be rejected.  To reject keypoints along the edges, we calculate the Hessian 

matrix for D and get the ratio of its eigenvalues (which is proportional to the squared 

trace of H divided by its determinant). This ratio should be less than a threshold; 

otherwise the keypoint will be rejected. 

c. Orientation assignment  

For each detected keypoint in the scale σ1 the magnitude and orientation is calculated 

for each sample point in the smoothed image L(x, y) in the scale σ1. Again, the 

magnitude and the orientation are approximated using the pixel differences around the 

sample point, they are calculated depending on the following equations: 

m(x, y) = ��L(x + 1, y) − L(x − 1, y)�; + �L(x, y + 1) − L(x, y − 1)�; ( 2.16) 

 θ(x, y) = tan�< ��L(x, y + 1) − L(x, y − 1)��L(x + 1, y) − L(x − 1, y)�  ( 2.17) 

Each calculated orientation around the keypoint is weighted with its gradient magnitude 

and by a Gaussian weighted circular with σ2 = 1.5 ∗ 	σ1 the result is inserted to 36-bins 

histogram covering the 360 degrees. All orientations within 80% of the highest peak in 

the histogram are used to create a keypoint corresponding to that orientation. 

d. Keypoint descriptor  

The keypoint descriptor is formed from 16x16 sample points around the keypoint, the 

orientations and gradients for the entire sample points are calculated and inserted to 4x4 

regions descriptor. In each region an 8-bin histogram is built to accommodate all 

orientations in that region. Each orientation (or bin) in the histogram is weighted by the 

sum of the gradient magnitudes within that orientation. The SIFT descriptor will be 

4x4x8 = 128 elements. Figure  2.13 shows the keypoint descriptor as illustrated in [118]. 
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Figure  2.13: Keypoint descriptor as depicted in [118]. 

 

Figure  2.14 shows the results of matching two images using SIFT-128 (based on Lowe 

implementation), it is clear that SIFT doesn’t suit acoustic images here as the number of 

correct matches is very small, we will discuss these results in details in Chapter 6. 

 

Figure  2.14: Matching two BlueView images using SIFT-128 

 

 

Image gradients 
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2.6.2.2 Speeded Up Robust Features (SURF) 

 

SURF was introduced by Herbert Bay and his colleagues in [121] as a new detector-

descriptor scheme. The SURF detector is defined based on the Hessian matrix which is 

approximated by using box filters and integral images. Due to this approximation, the 

scale space can be produced by applying box filters with different sizes, rather than 

applying Gaussian smoothing repeatedly. Interest points are detected by applying non-

maximum suppression in the produced scale space.  

SURF descriptor is generated in two main steps. First of all, the interest point 

orientation is estimated, this is done by calculating the wavelet responses in the 

neighbourhood of the interest point and weighting this responses with a Gaussian mask 

centred at the interest point, these responses are represented with vectors in the x and y 

directions and they are used to estimate the dominate orientation in a sliding window 

covering  
¡¢ . The interest point will be associated with the most dominate orientation 

among all windows. The second step is to form the SURF descriptor; this is 

implemented by taking a square region in the centre of the interest point and aligning it 

with its orientation, then the square is divided to 4x4 sub-regions. The wavelet 

responses in the x and y directions are recalled within each sub-region, then they are 

weighted with a Gaussian mask. For each sub-region a vector descriptor is formed by 

summing the responses in the x and y directions along with their absolute values. This 

generates four elements for each sub-region so the total elements in the SURF 

descriptor will be 4x4x4 = 64 elements which is called SURF-64. The length of the 

SURF descriptor can be varied between 36 elements resulting from 3x3 sub-regions, or 

it can be 128 elements by summing negative and positive responses separately. 

However, SURF-64 gives the best results in terms of performance and efficiency. 

Figure  2.15 shows two BlueView sonar images before matching, Figure  2.16 shows the 

results of matching both of them using SURF (based on the Open SURF Library), the 

algorithm found 27 matches from which there are 12 mismatches; we will discuss these 

results in details in Chapter 6. 
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Figure  2.15: Two BlueView images before matching 

 

Figure  2.16: Matching two BlueView images using SURF, the algorithm found 27 

matches from which there are 12 mismatches  

2.6.3 Point matching algorithms  

Point matching algorithms can be used to estimate the transform matrix between two 

sets of points, to accomplish image registration using point matching algorithms, the 

points are extracted from the images as a candidate features using fast and simple 

procedures, then point matching algorithms search for the best transform matrix to fit 

the first set into the other. We may categorize point matching algorithms in three 

groups; spectral, Iterative, and probabilistic methods. 

 Spectral methods are non iterative methods which depend on the eigenvector analysis 

of the proximity matrix, Scott and Longuet in [122] introduced one of the most cited 

algorithms in this category, their algorithm works well with translation, scaling and 
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shearing; however, it fails rapidly with rotation and affine transformations. In [123], Li 

and Hartley introduced another spectral method based on Newton-Schulz factorization 

of the proximity matrix, Xiabi et al presented an algorithm in [124] based on Scott and 

Longuet framework but used Hausdorff distance between shape context patterns to 

build the proximity matrix. Practically, spectral methods suffer from large 

computational burden especially with large sets of points; moreover they require a rich 

proximity matrix where useful features can be extracted to solve for correspondences. 

Iterative methods can be all grouped under the ICP (Iterative Closest Point) umbrella, 

the ICP algorithm presented by Besl and Mckay [125] is a standard algorithm in this 

category, it iteratively pairs correspondences based on the closest distance criterion and 

computes a rigid/affine transformation between the point sets in least-squares terms, 

when it reaches a local minima, it stops to provide the calculated transformation. 

Copious variations have been presented to enhance the ICP performance as in [126] and 

[127]. In general, ICP methods do not guarantee convergence to the right solution even 

with noiseless data, furthermore, they require the initial position of the point sets to be 

sufficiently close [128]. 

Probabilistic methods extend the binary correspondence assignments in ICP to the soft-

assignment of correspondences based on some probability, Robust Point Matching 

(RPM) algorithm presented by  Gold et al. [129] is an important algorithm in this 

category, it uses Levenberg-Marquardt optimizer to minimize the registration error, the 

algorithm has many descendants as in [130], [131],  other methods use the EM 

(Expectation maximization) algorithm  to optimize the likelihood function as in [132], 

[133],[134] and [135]. Generally speaking, probabilistic methods outperform 

conventional ICP especially with noisy inputs. Next we review in details RANSAC 

algorithm which is one of the most used point matching algorithms in computer vision 

literature. 

2.6.3.1 Random Sample and Consensus (RANSAC) 

RANSAC can be used to find the transformation between two related images. Usually, 

features’ points are extracted from both images to form a reference point set from the 

reference image and sensed point set from the sensed (second) image [136]. RANSAC 
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randomly selects correspondences to determine a hypothesized transformation >. The 

correctness of this transformation can be inferred depending on how well it transforms 

the sensed point set to the reference point set. If it doesn’t transform enough points from 

the sensed point set to the reference point set, other random correspondences are 

selected to test another transformation. A point A in the sensed point set is considered to 

be transformed to the reference point set if the point Ai = >A  falls within a small 

distance £ from another point in the reference point set. 

Depending on the hypothesized transformation type, the required number of 

correspondences varies. If the transformation is translation only, one pair of 

correspondence points is enough to infer the transformation. If the transformation is 

rotation and translation, two pairs of correspondences is required. The affine 

transformation contains six parameters thus it requires three pairs of points to be 

inferred from six equations obtained from their 2D coordinates.  

RANSAC performance is affected by three parameters: the maximum number of 

iterations K to select random correspondences, the distance tolerance £ to consider a 

point in the sensed point set is transformed to the reference point set, and the threshold � 

to consider that the transformation has transformed enough points from the sensed to the 

reference point sets. When K is small, the likelihood to find the correct transformation 

is small. If K is large, the algorithm requires more time to finish, but the likelihood to 

find the correct transformation is higher. The distance tolerance £ should reflect the 

noise in the points coordinates, so £ must be high if the noise is high and vice-versa. 

Similarly, the threshold � should reflect the inliers ratio in the point sets. Next, we 

summarise the algorithm steps after defining the used notation:  

Notation: 

• m: the number of points in the reference point set A′. 
• n: the number of points in the sensed point set A. 

• T: is the transformation which maps the sensed point set to the reference point 

set, e is the number of parameters in this transformation. 

•  £ is the distance tolerance to consider two points corresponding to each other, 

i.e. the distance between the transformed sensed point and its corresponding 
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point should be less than £. £ should be less than half of the smallest distance 

between two points in the reference point set. 

• r : is the minimum ratio of number of correspondences found and the number of 

points in the sensed set to consider the transformation correct. 

• K is the maximum number of iterations. 

• ¤¥ the iteration number. 

• ¤¦ the largest number of correspondences obtained up to the current iteration ¤¥. 
 

RANSAC algorithm can be outlined in the following steps: 

1) Initialize ¤¥ = 0 and ¤¦ = 0 

2) Select a random subset from each point set, the subset size is § = e/2. 

3) For each possible correspondence arrangement between these subsets, do the 

following steps:  

a) Determine the transformation >¥ from the § correspondences selected in step 

2. 

b) Transform all sensed points A to the reference point set, if ‖A′g − >¥A©‖ ≤ £ 

then A′g is the correspondence point for A© where (Y = 1…ª	; Z = 1…¤) 
c) If the number of true correspondences is 	( and ( > ¤¦ then assign ¤¦ = ( 

and save the obtained transformation >¬ = >¥ as the best transformation so 

far. If ¤¦/¤	 ≥ � then go to set 5. 

4) Increase ¤¥ by one and loop to step 2 if ¤¥ < K 

5) Use all pair points that satisfy the condition: ‖Ag − >¬A©‖ ≤ 	£ to infer new 

transformation >z	by the least-squares method like SVD.  

6) Return >z as a solution and determine correspondences by using it to transform 

the sensed point set to the reference point set.  

 

If the transformation between the sensed set and the reference set is the similarity 

transformation, then the number of selected pairs is two. Using these pairs, four 

equations can be inferred to determine four parameters in the supposed similarity 

transformation. In this case, the number of average iterations required to select two pairs 

is on the order of  ¤;. It becomes on the order of ¤¢ if the transformation is affine as 
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three pairs are required to solve for six parameters in the affine transformation. Clearly, 

RANSAC cannot handle large point sets as the required number of iterations becomes 

very large. 

There are lots of approaches to enhance RANSAC performance, for example, 

randomized RANSAC (R-RANSAC) has been suggested to expedite the performance 

of the error function [137]. Basically, the supposed transformation is not validated 

against the whole point set directly, but first it is validated against small random subset 

of the point set, if the transformation is valid for that subset then it will be validated 

against the whole subset. The subset size can be changed dynamically while the 

algorithm is running [138]. This methodology is very useful in rejecting unlikely 

transformation in a fast approach. It is particularly useful when the point sets are 

considerably large.  

In a similar approach to the R-RANSAC, an early bail-out test has been introduced to 

enhance the RANSAC performance [139]. The algorithm uses a random subset of the 

point set to test the supposed transformation, if the percentage of inliers is considerably 

smaller than the best percentage obtained so far then the transformation is rejected. 

Again, the used percentage and the size of the subset depend on the size of the original 

point set and different RANSAC parameters.  

Another approach to speed up RANSAC is based on the hierarchical search [140], in its 

essence, this approach searches for local transformation between two points and their k-

nearest neighbours. If the local transformation is good locally then it will be promoted 

to the next stage of validating it against the whole point set. Optimal k depends on the 

size of the point sets and the error tolerance distance £. A similar approach has been 

suggested based on cluster matching [141]. 

Preemptive RANSAC has been suggested as well to decrease the computational burden 

in searching for the optimum transformation [142]. The algorithm suggests predefined 

transformations and initializes a scoring system to select the best one. Each randomly 

selected pair of points increases the transformation score if the pair is considered inlier 

by that transformation. After selecting a large number of random pairs, the 
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transformation with the highest score is selected as the best transformation. The main 

drawback of this algorithm is the difficulty of suggesting a small number of 

transformations at the first place. 

In another trend to speed up RANSAC, additional features are used to increase the 

likelihood of selecting true correspondences. This procedure is adapted in the Maximum 

likelihood estimation sample consensus (MLESAC) [143] and in the guided sampling 

[144]. The basic principle of these algorithms is to select the pairs with similar features 

so they are more likely to be true correspondences [145]. This concept is further 

developed in the Progressive Sample Consensus (PROSAC) by selecting a small subsets 

with the most similar features and increasing the size of the subset progressively to 

cover the whole point set [146]. 

The aforementioned methods attempt to reduce the computational burden of RANSAC 

without solving the problem behind its overwhelming computational load. The main 

disadvantage of RANSAC is the fact of selecting samples randomly without any kind of 

sorting or ordering the space of possible solutions. Although this nature adds immunity 

against outliers and noise to RANSAC, it exponentially increases its load with 

increasing size of point sets and increasing number of parameters in the sought-after 

transformation. Furthermore, there is no guarantee in RANSAC for convergence to the 

right solution as the space of possible solutions cannot be tested completely. These 

problems are tackled in the new algorithm dubbed Sorting the Correspondence Space 

(SCS) which is presented in  Chapter 6, Some of its results are illustrated in Figure  2.17. 
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a) Before matching 

  

b) After matching 

Figure  2.17 : Two acoustic images successfully registered using the SCS algorithm 

presented in  Chapter 6, there is no mismatch as the algorithm search for the best 

transformation. 
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2.7 Conclusion 

In this chapter, we presented various methods of underwater 3D imaging and discussed 

their weak and strong points; also, we have reviewed state of the art 3D sonars and 

discussed their technologies. Motion estimation for AUVs was reviewed from two main 

perspectives, firstly, motion estimation sensors serving the AUV industry, including the 

inertial navigational units, Doppler Velocity Log (DVL), and acoustic beacon 

technologies. Secondly, motion estimation algorithms such as Kalman filters and 

particle filters. Image registration is a prerequisite to accomplish both 3D reconstruction 

and motion estimation using successive sonar views, thus the important methodologies 

for image registration was examined, including RANSAC, SIFT and SURF. 



 

49 

Chapter 3   

Acoustic Stereo Imaging (ASI) System 

 

3.1 Introduction 

 

3D Reconstruction can be achieved using two multibeam sonars using the ASI vertical 

configuration. In the ASI vertical configuration the sonars are situated above one 

another with known distance between them (D). The obvious advantage of this 

configuration is that pairs of beams from the two sonars are aligned in the same vertical 

plane, this makes the ASI geometry suitable to solve the correspondence problem 

incurred in classical stereo systems.    

In this chapter, our goal is to derive the ASI geometry for the ASI vertical configuration 

and to study the effects of the system parameters on the 3D reconstruction of the 

scanned scene. In the vertical configuration the well known correspondence problem is 

alleviated significantly compared with the correspondence problem in the optic-acoustic 

configuration discussed in the section  2.3.3. Figure  3.1 illustrates how to calculate the 

elevation E for a suggested point P after being matched in both sonar images. 

 

Figure  3.1: ASI sketch 

 Andrea Trucco in [147] has proposed a similar method using just one forward-scan 

sonar installed on a ship, the method uses the well known ship positions to calculate the 

elevation of a tracked feature using simple triangulation. Kalman filter was used for 

feature tracking in the sequence of sonar images. This method is too sensitive to the 
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errors while determining the ship’s position which is obtained from the GPS. As we can 

determine the position up to an acceptable resolution using the GPS, this method gives 

satisfactory results. Unfortunately, we cannot determine the AUV position with the 

same accuracy as the GPS signal doesn’t penetrate underwater environments. 

Synchronization problem has to be solved while using two sonars, because these two 

sonars cannot scan the same Field Of View (FOV) simultaneously without conflict and 

interference between the two signals transmitted by the first and the second sonar. This 

problem can be solved by using simple software and/or inexpensive compact hardware 

which can trigger both sonars in a successive manner. Alternatively, we may have two 

acoustic cameras scanning the same FOV simultaneously with different frequencies (in 

this case the shorter range should be considered). Figure  3.2 illustrates the ASI Vertical 

Configuration and the beams generated by the sonars. 

 

Figure  3.2: The ASI vertical configuration. 

 

ASI vertical configuration resembles the T configuration discussed in the section  2.2.5. 

In fact, ASI vertical configuration has the same advantages of the T configuration, 

namely, cheaper implementation; furthermore, it solves the time delay disadvantage 

incurred in the T configuration as a result of using many transmit/receive cycles to 

insonify 3D volume. Recall that to get 128x128 points in 100m range by using the T 

configuration, the system needs to emit 128 successive pulses with 0.13s minimum 

delay between each pulse, therefore the system needs 17.06 s for complete 3D scan of 

the scene. In contrast, the ASI system requires 2 transmit/receive cycles only to scan the 

scene, which means 0.26 s to scan the same scene. (In some cases, it requires 4 
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transmit/receive cycles depending on the sonar technology and working frequency, 

which is the case in DIDSON while working in the short range). 

3.2 ASI system architecture 

The ASI system consists of three main modules: the sonar controller, pairs matcher, and 

3D builder. All of these modules are configurable via an XML configuration file. The 

sonar controller is responsible for triggering the sonars at suitable times and feeding 

sonar images along with their time stamps to the pairs matcher. Moreover it determines 

the mode of the sonars (long range or short range). 

 Basically, the pairs matcher module is an implementation of the matching algorithm 

tuned to accommodate the ASI geometry. This module feeds the 3D builder module 

with candidate points to produce the final output of the system which is a 3D model of 

the scanned scene. The 3D builder utilizes RANSAC functionality or any other filter to 

fit points in smooth surfaces and reject outliers. Figure  3.3 shows the ASI structure. 

 

Figure  3.3: ASI structure 

 

3.3 ASI vertical configuration 

The vertical configuration suggests two sonars situated above one another and assumes 

that all beams of the first sonar are aligned to the corresponding beams in the second 

sonar. The distance between these two sonars is D. This is the simplest configuration 

which can be used to infer the actual 3D-coordinates of the POI (Point Of Interest) 

using two acoustic images. Other configurations could be useful as well, like the 90˚ 
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ASI configuration and ASI horizontal configuration (both sonars on the X axis). Figure 

 3.4 shows the beam alignment in the vertical configuration and the XYZ directions used 

in this chapter. 

 

Figure  3.4: Beams alignment in the ASI vertical configuration. 

 

In the ASI vertical configuration we associate local coordinates with each pair of beams, 

these are 2D-coordinates where the y axis matches the Y axis in the 3D- coordinates and 

the local x axis forms angle θ with the X axis in the 3D coordinates (the local x axis lies 

in the X-Z plane). If we know the 2D-coordinates of a POI in the local coordinates, then 

we can easily infer the 3D-coordinates of that point. 

3.4 Notation 

In the following sections, we use the following symbols in the local beam coordinate: 

• R: The Sonar maximum range in the current mode (R≈14m in the 1.8 MHz 

mode of the DIDSON sonar [6]) 

• D: The distance between the two sonars, where the first is situated at the origin 

and the second is situated at the point (0, D). 

• ¯<: The angle between the x axis and the centre of the �°± beam from the first 

sonar, see Figure  3.5. 
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• ¯;: The angle between the x axis and the centre of the �°± beam from the second 

sonar (�	 = 	� as the beams are aligned).  

• 2γ: The horizontal beam width (γ is 0.15˚ for the DIDSON). 

• 2β: The vertical beam width (β=7˚ for the DIDSON). 

• N: the number of beams in the current working mode (96 beams in 1.8MHz 

mode of the DIDSON) 

• i: the index of the beams in the first sonar. 

• j: the index of the beams in the second sonar. 

 

Note that: α1 and α2 are equivalent to the depression/elevation angle for each sonar. In 

the global coordinates, we use the symbols $� and $�, these are the angles between the 

local x axis and the global X axis. 

 

 

Figure  3.5:  ASI system parameters and the FOV Area (FOVA) is shaded in the local 

beam-pair coordinate system 
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3.5 ASI field of view 

In all stereo systems the FOV is one of the important factors which affects the system 

performance; the FOV in the stereo system has to be as wide as possible without 

reducing the resolution. In this section the FOV Area (FOVA) which is the common 

area between two beams is calculated. The ASI vertical configuration suggested 

previously is considered here.  

Figure  3.5 illustrates the ����(�, �) in the ASI system. The ����(�, �) corresponds to 

the intersection of two beams (�, �) from both sonars. Using the aforementioned 

notation, the whole FOV volume (FOVV) is given in the equation ( 3.1):  

 FOVV ≈ ¶ FOVA(i, j)¹
º»¼»< ∗ ½ D cos(α2 − β)sin(α1 − α2 + 2β) + RÁ ∗ tan γ ( 3.1) 

In the equation ( 3.1), we use the average beam width which can be calculated as 

follows: 

 
2R tan γ + 2	OAÃÃÃÃ tan γ2 = 	 ½ D cos(α2 − β)sin(α1 − α2 + 2β) + RÁ ∗ tan γ ( 3.2) 

Where 2R tan γ is the maximum beam width and 2	OAÃÃÃÃ tan γ is the minimum beam 

width at range’s window-start, see Figure  3.6 . 

 

Figure  3.6: The horizontal beam width. 
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Next, we draw the statement for FOVA(i, j), from Figure  3.5 we can infer from  
∆ÅÆÇ: 

 OFÃÃÃÃ = D	;		AOFÈ = OÉ = 	π2 − (α1 + 	β) = π2 − α1 − 	β ( 3.3) 

 OFAÈ = FÊ = 	π2 + α2 − β ( 3.4) 

 FAOÈ = AÉ = 	π − OÉ − FÊ = α1 − α2 + 2	β ( 3.5) 

 OAÃÃÃÃ = OFÃÃÃÃ sin FÊsin AÉ = D sin(π2 + α2 − β)sin(α1 − α2 + 2β) ( 3.6) 

 ABÃÃÃÃ = R − OAÃÃÃÃ = R − D. cos(α2 − β)sin(α1 − α2 + 2β) ( 3.7) 

Also, from Figure  3.5 we can infer from  
∆ÅÇÌ : 

 OCÃÃÃÃ = R ( 3.8) 

 OAÃÃÃÃ = D cos(α2 − β)sin(α1 − α2 + 2β) ( 3.9) 

 OACÈ = AÎÉ = π − OAFÈ = π − α1 + 2α2 − 2β							 
⟹					 sin AÉ = sin AÎÉ 

( 3.10) 

 R; = ACÃÃÃÃ; + OAÃÃÃÃ; − 2ACÃÃÃÃ. OAÃÃÃÃ. cos AÎÉ ( 3.11) 

 ACÃÃÃÃ = OAÃÃÃÃ. cos(AÎÉ) ± �R; − OAÃÃÃÃ;sin;(AÉ) ( 3.12) 
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 ACÃÃÃÃ = −D. cos(α2 − β) . cot(α1 − α2 + 2β)
+ ÑR; − D;cos;(α2 − β) 

( 3.13) 

 S = 12 . ACÃÃÃÃ. ABÃÃÃÃ sin(AÉ) ≈ FOVA(i, j) ( 3.14) 

From ( 3.7) and ( 3.13) we can approximate the FOV Area (FOVA) as follows: 

S = 12 . ^ÑR; − D;cos;(α2 − β) − D. cos(α2 − β) . cot(α1 − α2 + 2β)a. 
[R. sin(α1 − α2 + 2β) − D. cos(α2 − β)] ≈ FOVA(i, j) 

( 3.15) 

 

Intuitively, the FOVA is reduced while we increase the distance (�) between the 

sonars; the shorter the distance between the sonars the more compact the ASI system is. 

However, reducing the distance affects the system performance as we will show later 

on. Figure  3.7 illustrate the relationship between the FOVA and the distance between 

the sonars (D).  
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Figure  3.7: The relationship between the ����(�, �) and � 

 

 

3.6 ASI blind areas 

All areas where there is no intersection between both beams are considered as blind 

areas in terms of the 3D imaging. The designer of the ASI system in the vertical 

configuration should maximize the FOVA and minimize blind areas. In other worlds, 

we have to determine the ASI system parameters carefully to maximize the FOVA and 

the system accuracy. The ASI system parameters which affect the FOVA are: D, α1, 

and α2. Figure  3.8 illustrates the blind areas. 
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Figure  3.8:  ASI blind areas 

3.7 ASI geometry 

ASI Geometry aims to reduce the search space for correspondences in both sonar 

images, so each point in the first image has a line segment in the second image where 

the corresponding point lies.  

3.7.1  Sonar to sonar mapping 

If we know rº which is the distance between the first sonar and the point of interest then 

we want to know the possible positions of the same point in the second sonar image. 

Figure  3.9 illustrates the possible places of the POI in the second image. r¼ is the actual 

distance between the POI and the second sonar, obviously  R< ≤ r¼ ≤ R; 
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Figure  3.9: R1 and R2 Range 

 

Our goal here is to calculate R<and R; for each POI in the first image. This procedure 

enables us to determine the possible positions in the second image for all points in the 

first image within the joint FOV. In this approach searching for correspondences 

between the two images is a really small search space. First of all, the search benefits 

from the ASI vertical configuration and assumes that all points in the beam θº in the 

first image correspond to all points in the beam θ¼ in the second image. Secondly, for 

each point in the first image, its correspondence point in the second image lies between %< and R;. We can calculate R<and R;as follows: 

3.7.1.1 Calculating	 R1 

From Figure  3.5 we can calculate R1 and R2 by applying simple triangulations, from 

the imaginary triangle 
∆OFH we can write 

 OHÃÃÃÃ = rº				; 			OFÃÃÃÃ = D			; 		FHÃÃÃÃ = R<		 ( 3.16) 

 HOFÓ = π2 − α1 − β ( 3.17) 
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 R<; = FHÃÃÃÃ; = rº; + D; − 2rºD cos(π2 − α1 − β)		 ( 3.18) 

 R< = �rº; + D; − 2rºDsin(α1 + β) ( 3.19) 

 

3.7.1.2 Calculating	R2 

In Figure  3.5 we can infer from the imaginary triangle  
∆ÅÆÔ : 

 LFOÈ = π2 + α2 − β			; 			OLÃÃÃÃ = rº				; 				OFÃÃÃÃ = D			; 			FLÃÃÃ = R;	 ( 3.20) 

 rº; = R;; + D; − 2R;D cos _π2 + α2 − β` ( 3.21) 

 R; = �rº; − D;cos;(α2 − β) − D sin(α2 − β) 
( 3.22) 

 

The difference between R; and R< specifies the size of the search width which is 

dependent on the point position, Figure  3.10 illustrates the maximum difference 

between R; and R< with change in D. It is clear that the smaller the difference the better 

the performance of the matching algorithm, since it will search a smaller region. 
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Figure  3.10: The relationship between the search width and the distance D 

 
 

3.7.2 Determining the point coordinates depending on ri , rj 

After searching for r¼ in the range [R<, R;] then we can calculate the point’s coordinates 

as follows:  

 xÕ = rº cos(π2 − POFÈ ) 			⇒ 		 xÕ = rº sin�POFÈ � ( 3.23) 

 yÕ = rº sin _π2 − POFÈ ` 	⇒ 	 yÕ = rº cos(POFÈ )		 ( 3.24) 

 cos�POFÈ � = rº; + D; − r¼;2rºD  ( 3.25) 
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 yÕ = rº; − r¼;2D + D2 ( 3.26) 

 xÕ; = rº; − yÕ; ( 3.27) 

 xÕ = ×rº; − (rº; + D; − r¼;2D ); 

( 3.28) 

So far we have calculated the POI coordinates in the local coordinates associated with 

the beams in θº =	θ¼. The 3D-coordinates of the POI are: 

 XÕ = xÕ cos θº ( 3.29) 

 YÕ = yÕ ( 3.30) 

 ZÕ = xÕ sin θº ( 3.31) 

 

3.8 ASI simulation 

An ASI Simulation has been implemented to study the errors generated while 

reconstructing points from two sonar images. Simulation along with real data shows a 

good reconstruction using the ASI geometry. The ASI system has to be tuned to satisfy 

the FOV requirement and the maximum error which can be accepted in each axis.  

In the following simulation we have studied the error generated in 3 dimensions while 

reconstructing random points uniformly distributed over the FOV of the ASI system. In 

Figure  3.11 the ASI system parameters are D = 0.5m, α1 = 19.75°, α2 = 17°, this 

figure shows the relationship between the error produced in 3 axes and the range. The 

maximum Y error is 0.4m. It is clear that the error on the Y axis increases as the range 

of the points increases. 
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Figure  3.11: The relationship between the error and Range, the figure illustrates the 

error generated in 3 dimensions while reconstructing random points uniformly 

distributed over the FOV of the ASI system. Used parameters:  D = 0.5m; α1 = 19.75°; 

and α2 = 17° 

 
 

 

By changing the distance between the sonars from 0.5m to 1m the maximum error on 

the y axis is halved. Figure  3.12 shows the errors in an ASI system similar to the 

previous one but with distance D = 1m (max Y error is 0.2m). It is worth noticing that 

the FOVA starts at 3m in Figure  3.12 while it starts at 2m in Figure  3.11 depending on 

the used angles α1 = 19.75°, α2 = 17°.  
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Figure  3.12: The relationship between the error and Range,  D = 1m 

 

3.8.1 The distance effect on the ASI system 

 

Figure  3.11 and Figure  3.12 raise a question about the effects of the distance on the 

system performance. As we have seen earlier, the FOVA decreases while increasing the 

distance between the two sonars which can be considered as a disadvantage. Here, we 

would like to investigate the effects of the distance on the error generated while 

reconstructing points in the FOV. In this simulation we have increased the distance 

starting from 0.5m to 5.5m,  α2 is fixed at 17° while α1 has been changed to maximize 

the FOVA (so α1 is calculated depending on the current distance). Each time we 

increase the distance by 0.05m, the simulator generates 1000 points uniformly 

distributed over the FOV. The reconstructed points are calculated and the errors are 

calculated on each axis separately. In this experiment we assume that the matching 

algorithm is 100% accurate. The mean error and the standard deviation of the errors are 

calculated for each new distance. Figure  3.13 shows the relationship between the 

distance and the mean error generated in three axes. 



Acoustic Stereo Imaging System 

 

 
65 

 
  

 

 

Figure  3.13: Mean Error in 3D reconstructed points with changing D starting from 0.5m 

to 5.5m.  α2 is fixed at 17° while α1 has been changed to maximize the FOVA. The 

simulator generates 1000 points uniformly distributed over the FOV and the 

reconstructed points are calculated to find the errors on each axis separately.  

As we can see from Figure  3.13, errors generated while calculating Z coordinates are 

flat and they are not affected by the distance. This is not surprising since Z coordinates 

can be calculated from just one image and they are only dependent on the horizontal 

beam width. Errors in X coordinates are acceptable if the distance is more than or equal 

to 1m. The issue here is the Y coordinates; the Y-mean error curve is very steep in the 

area between 0.5m and 1m. Increasing the distance will improve the performance in 

calculating the Y coordinates; however, increasing the distance will decrease the FOVA 

which is not desirable and it will increase the search width (the difference between %; 

and %<) which has a negative effect on the matching algorithm. Building the ASI system 

requires finding the right balance between the FOV, the size of the search region, and 

the maximum error generated in the reconstructed points. Figure  3.14 shows the 

standard deviation of the errors in the previous experiment. 
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Figure  3.14: Standard deviation of the errors with changing D starting from 0.5m to 

5.5m.  α2 is fixed at 17° while α1 has been changed to maximize the FOVA. The 

simulator generates 1000 points uniformly distributed over the FOV and the 

reconstructed points are calculated to find the errors on each axis separately. 

 

If the matching algorithm is 90% accurate so that 10% of the points are mismatched in 

the region between%; and %<. Then errors in X and Y are significantly increased Figure 

 3.15 shows the mean error in 3 axes with 10% mismatch. 
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Figure  3.15: Mean Error in ASI reconstructed points while having 10% mismatch  

3.8.2 The range bins effect on the ASI system 

We have seen in Figure  3.12 the relation between errors in 3 axes and the range.  In that 

simulation, the distance was 1m and the range was quantized with 512 bins as in the 

DIDSON sonar [6]. Increasing the number of bins will improve the accuracy of 

measuring �¥ and �r and this will improve the reconstructed Y coordinates significantly. 

Given the same parameters as the experiment in Figure  3.12 and adjusting the bins 

number to 1024, the maximum error will be halved compared with the same system but 

with 512 bins. This effect is similar to increasing the distance between the sonars to 

gain better performance. In other words, if we have a D = 0.5m ASI system we can 

obtain the performance of  a D = 1m ASI system by doubling the range bins number, 

yet with bigger FOVA and smaller search width. Figure  3.16 shows the errors in 3 axes 

if we have the same parameters in Figure  3.12 but with doubled range bins number. If 

we have 100% accurate measurement of ri and rj then no errors will be produced in 

calculating Y coordinates and all errors in Z coordinates will be positive and all errors 

in X coordinates will be negative. Figure  3.17 shows this case. 
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Figure  3.16: Errors will be halved if we double the Range Bins – see  Figure  3.12 

 

Figure  3.17: Y coordinates will be accurate if we have accurate measures for �¥ and �r  
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3.9 Results 

We have conducted real experiments in an indoor tank in Heriot-Watt University, 

Edinburgh, UK, to prove the validity of the ASI Geometry and to show the feasibility of 

building a complete ASI system. To reconstruct 3D coordinates for some points we 

have used manual matching at this stage of the project. (Automatic matching is 

discussed in  Chapter 6). To generate the images in Figure  3.18 and 3.19  we have used 

multi-beam sonar from Blue View, the ProViewerE P900E-20. We have one sonar only, 

so we moved the sonar from the first position to the second and assumed that both 

images are taken in a very short time. This assumption is valid since in the controlled 

tank environment when scanning stationary objects. The distance D between the two 

positions is 1m; α1 = 30°, α2 = 10°, and β = 10°. (β	is a parameter of the sonar itself 

which is half of the vertical beam width in P900E-20 sonar). 

Figure  3.20 shows the first image obtained in the first position. The intersection 

between the red-dashed circle and the red-dashed line determine the point of interest 

which we would like to calculate its 3D coordinates (especially the Y coordinate). The 

real Y coordinate of that reflective point (which is a small ball in the middle of the tank) 

is 2.31m. Figure  3.21 shows the image obtained in the second position, again, the 

intersection between the red dashed circle and the red dashed line determine the same 

point of interest in the first image.  

 From Figure  3.20 and 3.21 we can get ri = 3.34m and rj = 2.90m. From these values we 

have calculated the Y coordinate for the point of interest which is 2.34m. In this case the 

error is within 3cm. we have tried many positions for the ball within the FOV as well as 

different D values, Table  3.1 shows these results. In most of these experiments results 

were consistent with the ASI simulation, some results are erroneous (number 2 and 9 in 

the table) due to the imperfection of the measuring tools and non-uniformity of the 

beams of the sonar.    

The point of interest lies within the range between %; and %< which is shown in green 

dashed-dotted circles in Figure  3.21. Moreover, the POI lies on the red dashed line 

which has the same θ as the red dashed line in the first image (Figure  3.20), this comes 

directly from aligning beams in both positions and setting them in the same plane. Thus 
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to search for the point of interest we have to search in the region underneath the red 

dashed line and between the green dashed-dotted circles. This is a key point of the ASI 

geometry developed in this thesis, it can be considered as a key contribution in this 

chapter. 

Number Distance 

D 

Real 

Y 
�¥ �r *Ù *Ú 

Constructed 

Y 
Error 

1 0.5 2.31 3.34 3.08 1.92 0.47 2.38 0.08 

2 0.5 2.08 2.7 2.48 1.4 0.47 1.86 -0.22 

3 0.5 1.75 2.26 1.98 1.44 0.47 1.9 0.15 

4 0.6 2.31 3.34 3.07 1.74 0.47 2.21 -0.10 

5 0.6 2.08 2.7 2.42 1.49 0.47 1.96 -0.12 

6 0.6 1.75 2.26 2.02 1.15 0.47 1.62 -0.12 

7 0.7 2.31 3.34 2.99 1.93 0.47 2.40 0.09 

8 0.7 2.08 2.7 2.31 1.75 0.47 2.21 0.13 

9 0.7 1.75 2.26 2.01 1.11 0.47 1.58 -0.17 

10 0.8 2.31 3.34 2.99 1.78 0.47 2.25 -0.06 

11 0.8 2.08 2.7 2.29 1.68 0.47 2.15 0.07 

12 0.8 1.75 2.26 1.98 1.14 0.47 1.61 -0.14 

13 0.9 2.31 3.34 2.96 1.78 0.47 2.25 -0.06 

14 0.9 2.08 2.7 2.32 1.51 0.47 1.97 -0.11 

15 0.9 1.75 2.26 1.94 1.20 0.47 1.67 -0.08 

16 1 2.31 3.34 2.9 1.87 0.47 2.34 0.03 

17 1 2.08 2.7 2.2 1.72 0.47 2.19 0.11 

18 1 1.75 2.26 1.93 1.19 0.47 1.66 -0.9 

Table  3.1: Different distances between the sonars to reconstruct the missing coordinate 

of the points in the tank, the larger the distance the better the performance at the cost of 

smaller FOVA. All numbers in meters. 
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Figure  3.18: image obtained from the first position before matching, see text for details. 

 

Figure  3.19: image obtained from the second position before matching, see text for 

details. 
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Figure  3.20: image obtained from the first position, see text for details. 

 

 

Figure  3.21: image obtained from the second position, see text for details. 
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3.10 Conclusion 

In this chapter, we have discussed the feasibility of building a real time 3D 

reconstruction system starting from relatively inexpensive sensors. The ASI system 

which is introduced and studied in this chapter consists of two multi-beam, high 

resolution sonars situated one above the other. The ASI geometry has been introduced 

to facilitate matching correspondences between the two images obtained from the 

sonars. ASI simulation has shed the light on the ASI parameters and their effects on the 

system performance.  Real data obtained from BlueView sonar have validated the ASI 

Geometry and 3D reconstruction for mid-water targets has been accomplished. The 

search for correspondences in a small linear range [%;, %<] is the key finding in this 

chapter.  
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Chapter 4    

 Motion Estimation by Acoustic Imaging 

 

4.1 Introduction 

2-D Imaging systems, e.g., optical or acoustic, encode rich visual cues about the 

geometry of the work that is imaged and the position of the sensor relative to the world. 

In motion vision applications dealing with robotics platforms, one of the objectives is to 

determine the trajectory of a mobile system from the variations in the 2-D scene 

imagery. While this problem has been addressed extensively for numerous terrestrial 

applications[8] [9] [10] and to some extend in underwater by optical imaging [11][12], 

less than a handful of earlier studies have explored application to 2-D sonar imaging 

systems [13][14]. 

Recently, 2-D sonar imaging systems, e.g., DIDSON video cameras [72], have been 

installed on Remotely Operated Vehicles (ROVs)   and AUVs for the inspection of ship 

hulls and other subsea structures in turbid coastal and harbour waters. The control 

systems of these platforms and (or) their designs are to eliminate the pitch and roll 

motions, namely the rotations around the X and Y axes of the platform [148] [149]. 

Therefore, they typically undergo movements with 4 degrees of freedom, which means 

no/negligible pitch and roll. Alternatively, these two rotation components (around the X 

and Y axes) can be measured by external sensor, e.g., gyros, while sensors for 

measuring rotations about the Z axis use magnets. Thus, while the former can be 

measured with relatively good accuracy, the performance of the latter may be affected 

by metal structures such as the ship hull, pipelines, etc. Also, magnets perform poorly in 

high altitudes closer to the Arctic Circle. Thus, it is important to devise a robust and 

accurate method for the estimation of rotations around the Z axis, namely heading 

motions. 

In this chapter, a new framework for the analysis of 2-D sonar video image is explored, 

comprising the principles of Modified Discrete Uniform Distribution (MDUD), Sonar 

Projection Function (SPF) and sonar arc sampling. It can be applied to address the 

problems of motion estimation, correspondence problem and 3D reconstruction. This 
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will facilitate various routine tasks of ROVs/AUVs, including the inspection of different 

subsea structures, autonomous navigation, and target localization and classification. The 

immediate application of interest is the estimation of sonar motion with 4 degrees of 

freedom. We present an algorithm that applies the proposed framework along with a 

weighted-Hough transform formulation to select a solution from among many potential 

candidates. Next we present essential background concepts including sampling 

DIDSON arc, Modified Discrete Uniform Distribution (MDUD), and probability 

adjustment based on shadow. 

4.2 Background concepts 

4.2.1 Sampling DIDSON arc 

The sonar measurements (r, θ) comprise two components of the spherical coordinates (r, θ, φ) of a 3-D point of interest (POI), see Figure  4.1. These measurements, i.e. (r, θ)  define an arc in 3-D space as the locus of the POI, corresponding to an arbitrary 

elevation angle	φ (doted-purple arc in Figure  4.1). 

Figure  4.1: The spherical coordinates (r, θ, φ) of a 3-D point of interest (POI). The 

locus of the POI is defined by the doted-purple arc in sonar measurements (�, $). 
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In sonar measurements, the elevation angle	φ of the POI cannot be retrieved so we 

cannot determine the 3D coordinates of the POI. Thus, any point on the arc described by (�, $) (dotted-purple arc in Figure  4.1 and Figure  4.2) is a possible locus for the POI. To 

estimate the true position of the POI, we start by sampling this arc with N discrete 

points, each point being a candidate 3-D point for the POI as illustrated in Figure  4.2.  

  

Figure  4.2: Each point in purple is a possible solution for the measured (�, $) of the true 

POI (illustrated in orange). This figure depicts, in 2D, the beam which scans the POI 

illustrated in Figure  4.1. 

 

By considering the axes as depicted in Figure  4.1, the 3D coordinates of the N sampled 

points can be inferred using the following equations in ( 4.1): 

 :¥ =
ÜÝ
Þ
Ýß)¥ = �. cos $ . cos ½(� − 1). ÛQRSK − 1 Á										
*¥ = �. sin $ . cos ½(� − 1). ÛQRSK − 1 Á										
&¥ = �. sin ½(� − 1). ÛQRSK − 1 Á																						

y ( 4.1) 

Where i = 1…N; φáX� is the maximum vertical angle, we consider here that φáºâ = 0 

� 
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A naive look may consider that each point on the sampled arc has the same probability 

of being the true POI. In other words, each point can be assigned a pre-estimated 

probability from the uniform distribution, so the sampled 3D Points Xº = (xº, yº, zº) are 

associated with the probability Pº of being the true POI as in equation ( 4.2). However, 

by considering the nature of sonar imaging, we introduce a different way of assigning 

probabilities to the sampled arc points as explained in the next section. 

 ¶A¥
¥»ã
¥»< = 1							 ⇒ 								 A¥ = 1K ( 4.2) 

4.2.2 Modified Discrete Uniform Distribution (MDUD) 

The MDUD method for probability assignment is based on noticing the usual tilt angle 

of the sonar while in operation. The acoustic image of the insonified surface is formed 

properly when the sonar has a suitable tilt angle relative to the surface, otherwise, the 

acoustic image will be merely black image with few horizontal lines. The tilt angle of 

the sonar leads us to another observation; the region where the arc hits the flat surface 

depends on the range of the arc. In general, as the range increases, the elevation angle of 

the POI decreases. This is illustrated in Figure  4.3. 

  

Figure  4.3: In general, as the range increases, the elevation angle of the POI decreases. 

increasing � 

φáX� 

φáºâ 
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This observation leads us to define a set of points with high probability of being the true 

POI in the sampled arc. The position of this set depends merely on the range of the arc. 

This set is called points with high probability level; Figure  4.4 illustrates this set using 

red dots. The mathematical definition of this set will be introduced later on.  

 

  

Figure  4.4: The high level probability points. Their elevation angle φ  decreases as the 

range increases. 

The definition of the points with high probability level brings the definition of two other 

sets; first, the set of points with low probability level where the elevation angle is larger 

than the elevation angle for the points in the high probability level, second, the set of 

points with medium probability level where the elevation angle is smaller than the 

elevation angle for the points in the high probability level. These two sets are illustrated 

in Figure  4.5.  

Thus, each arc has K sampled points; these points are categorized in three sets with 

three probability levels reflecting the probability of being the true POI. The distribution 

of these sets on the sonar arc and their probability levels are governed by a new 

distribution dubbed the Modified Discrete Uniform Distribution (MDUD) which is 

explained next. 

increasing � 

φáX� 

φáºâ 
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Figure  4.5: Sampled points in high level probability (red), medium level probability 

(green), and low level probability (blue). All arcs have the same number of sampled 

points, assuming a flat surface. 

To assign probabilities for each point in the sampled arc (�, $), we infer the values of  P<, P; …P¹ based on a new version of the discrete uniform distribution.  In this 

distribution, we introduce three levels of probability, in contrast to only one level in the 

uniform distribution. These levels are the low, high, and medium probabilities. Some 

sampled points fall in the medium level (ML), few in the high level (HL), and the rest in 

the low level (LL). This is illustrated in Figure  4.6 by blue, red, and green dots for low, 

high, and medium levels, respectively. 

 

Figure  4.6: Modified Discrete Uniform Distribution 
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If N is the total number of samples in the arc, Nädenotes the number of samples in the 

medium level, Nå is the number of samples in the high level, and Næ  is the number of 

samples in the low level. It readily follows that: 

 

K = KQ + K± + Kg	0 < K± 	≤ K						0	 ≤ KQ 	< K						0	 ≤ Kg 	< K 

( 4.3) 

Where N,Nä, Nå and Næ are all integers. 

We define two parameters in determining the three-level probabilities. The first one ¯	usually takes on values between 60% to 90% of that for the uniform distribution (i.e.  1/N), in fact, (1 − ¯) defines the amount of probability taken from the points in the 

medium level and added to the points in the high level. The second parameter β usually 

takes on values between 15% to 35% of the medium level. Accordingly, the probability Pº is calculated as follows: 

A¥ =	
ÜÝÝ
Þ
ÝÝß

¯. HK 																																			 ∶ 1 ≤ �	 ≤ Kg1K è1 + 1K± [(1 − ¯)KQ + (1 − ¯H)Kg]é
K̄ 																					 ∶ Kg + K± < �	 ≤ K		

	y : Kg < �	 ≤ Kg + K± 

( 4.4) 

It worth mentioning that the definition for A¥ in ( 4.4) satisfies the relation in ( 4.5), and 

the uniform distribution is a special case of the MDUD when ¯ = H = 1. 

   ¶A¥
¥»ã
¥»< = 1		 ( 4.5) 

The percentage of samples in the medium and low level regions compared to all 

available samples is denoted by ë, this usually takes a value between 70% to 95%. The 

relation between the sampled points on a DIDSON arc and this distribution is defined 
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based on the range of the arc as a first guess. If the first strong return and the last strong 

return in the range direction are denoted %Q¥@and %QRS, respectively, we define Næ, Nå , 

and Nä as follows: 

 

Kg = NYoo� ì	ëK. � − %í¥îz°%gRz° − %í¥îz°ï																					 
KQ = 	Ln�Y�¤ð[ë. K − Kg] 
K± = K − KQ − Kg 							 

( 4.6) 

Where r	is the range of the POI. It is noted that, over all, we need to tune four 

parameters: K, ¯, H,	and ë.  Calculating Næ in ( 4.6) is simple approximation given that 

we have a decent sonar image, which means that the sonar is close to the recommended 

tilt angle. In theory, Næ depends on the tilt angle of the sonar relative to the seabed and 

on the range of the POI. The first and last strong returns are detected when the average 

value of the intensities exceeds pre-determined threshold.  

4.2.3 Probability adjustment based on shadow 

Determining Næ, Nå and Nä for each point of interest is not dependent on range only, 

however the range contributes to the original distribution of the probabilities over the N 

samples. Calculations of Næ, Nå and Nä  in ( 4.6) are carried out by assuming a flat 

scene, but this is not the case everywhere. For example, suppose we are imaging the sea 

bottom floor. Usually, some structures may protrude from the sea floor; these structures 

would form shadows in the sonar image. In our method, we adjust the calculations of Næ, Nå and Nä  based on the length of the shadow cast behind the point of interest along 

the iso-azimuth contour, (see Figure  4.7.) 
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Figure  4.7: MDUD, and the shadow adjustment, blue dots are in the low region, red in 

the high and green in the medium 

 
Consider the image in (r, θ) coordinates depicted in Figure  4.8. The yellow rectangle 

represents an object forming a shadow (black rectangle) in the image. In calculating Næ, Nå and Nä  for each point in the yellow region, we do not use its own range (r) in ( 4.6), 

but rather we apply the adjusted range, which is calculated as follows: 

 �Rñr = %ò%ó � ( 4.7) 

The size of the shadow in Figure  4.8 is assumed to be the same for all of the sonar 

beams. In general, this is not the case, and so the shadow is measured along the same 

iso-azimuth scan (sonar beam) for the POI. Figure  4.9 shows a sample (r, θ) image from 

a DIDSON camera. 

Shadow adjustment 
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Figure  4.8: an Object and its shadow 

 

Figure  4.9: real data from DIDSON showing a block in R-Theta coordinates 

 

4.2.4 Sonar projection function 

For a 3-D point X = (x, y, z) we define the Sonar Projection Function (SPF) as follows: 

 pA�(:) = 	 q(�, $)	xℎn¤	:	m�d�ôYn																														(0, 0)	xℎn¤	:	oõ(d�'n	N�nY'	oN	m�nxy 
( 4.8) 

 � = 	 ^Ñ); + *; + &;aö÷ 
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 $ = ^tan�< *)aöø 

Where Qε means that r is quantized with ε resolution, Qλ means that θ is quantized with λ resolution as well. Note that the point of interest has to meet the following conditions: 

 

Ráºâ 	≤ r	 ≤ 	RáX�			 
0	 ≤ 	θ	 ≤ 	 θáX� 

0	 ≤ 	 tan�< zr�� 	≤ 	φáX� 

( 4.9) 

Where	Ráºâ, Ráºâ, θäX�	 and φäX� are the specification of the sonar. We next 

demonstrate the application of MDUD and arc sampling to the estimation of sonar 

motion. 

4.3 Application 1: sonar motion estimation 

The sonar motion relative to the sea floor may comprise translation and rotation 

components. These can be described by the rigid transformation [R, T]. Then all space 

points move to a new position Xºi = (xºi, yºi, zºi) relative to the sonar. Using the 

homogeneous coordinates, the new position is given by the equation in ( 4.10). 

 Xi = èxiyizié = [R, T] ûxyz1ü = [R, T]	X ( 4.10) 

 SPF(Xi) = SPF(xi, yi, zi) = (ri, θi)			 ( 4.11) 

 

Where Xºi = [xºi		yºi		zºi]� is the correspondence of X = [x		y		z]�. The motion estimation 

involves determining [%	>] given the corresponding measurement pairs (�, $) and (�i, $i) in two sonar views. We consider the simplified case where the rotation is solely 
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about the Z-axis of the sonar camera. This is the case, when the sonar is installed on a 

vehicle that typically undergoes movements with 4 degrees of freedom; i.e. 

no/negligible pitch and roll.  

Rotations around the X axis or the Y axis can be measured by an external sensor which 

depends on gravity, sensors used to measure rotations around the Z axis use magnets so 

their performance may be affected by fast movements and/or metal objects like the 

ship’s hull. Moreover, most control systems in AUVs and ROVs try to eliminate 

rotations around the X axis and the Y axis, so these rotations tend to be very small. 

What is important here is the rotation about the Z axis to scan bigger area and this is 

what the algorithm tries to facilitate. 

4.3.1 Calculating the sonar rotation (rotation around Z-axis) 

If we have two points in the first image, and their correspondences in the second image 

we can calculate the rotation angle around the z axis. Figure  4.10 shows that the angle 

of rotation Rý is given by  

 Rý = A< −	A; ( 4.12) 

 

Figure  4.10: Calculating %þ using two POIs in two scans and drawing a line between 

them to infer �1 and �; 
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Where A< and A; each, is the angle between the line passing through the two points of 

interest in each of the two views (blue dots in the Figure  4.10) and the central beam of 

that view, in other words, Rý can be calculated as follows: 

 Rý = tan�< X; −	X<Y; − Y< −	tan�< X;i − X<iY;i − Y<i  ( 4.13) 

Where (X<, Y<), (X;, Y;)  and (X′<, Y′<), (X′;, Y′;)	are the points of interest in the first 

and second view respectively. 

If we have M pairs of correspondences, we can make M(M − 1)/2 calculations for the 

rotation angle around the Z axis, but the estimates differ due to various sources of error, 

including uncertainty in the feature position and range-azimuth quantizations. One 

solution is to average these various estimates. In general some form of least-square error 

formulation can be applied. Here, we propose another solution. 

One can readily note that the sources of error have minimal impact where the line 

between the two points of interest crosses more beams. Conversely, if the two points of 

interest lie on the same beam or on nearby beams, then each of A< and A; are more 

sensitive to the errors in locating the two image features and image quantization (range 

and azimuth resolutions).   

In our proposed solution, we consider only those pairs of points where the line between 

them crosses more than a minimum number of beams (based on a pre-determined 

threshold). We then apply a voting scheme based on the Hough transform in the [−π, π] 
space with a selected resolution (e.g., 0.5° resolution corresponding to 721 cells). The 

solution is the angle with the maximum votes in the linear Hough array. 

To summarize, if we have e()¥ , *¥) a point in the first view which corresponds to the 

point in the second view e′()¥i	, *¥i) and � = 1…h. Then to find out the rotation angle 

around the & axis we follow the algorithm as explained in the pseudo-code in the Table 

 4.1. 
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// P is an array of the points in the first view 

// Pprim is an array of the points in the second view 

// P[i] corresponds to Pprim[i], i = 0.. M-1 

// HoughArray is the array where we collect votes 

 

for (int i = 0; i < M ; i++) 

{ 

    for (int j = 0; i < M ; j++) 

    { 

        if (i == j) continue; 

         

        // the points should cross enough beams to be considered. 

        if ((BeamDistance(P[i],P[j]) < threshold)|| 

            (BeamDistance(Pprim[i],Pprim[j]) < threshold)) continue; 

             

        // atan is a function of the inverse tangent in degrees. 

        A1 = atan((P[j].x-P[i].x)/(P[j].y-P[i].y));  

        A2 = atan((Pprim[j].x-Pprim[i].x)/(Pprim[j].y-Pprim[i].y)); 

         

        // round Rz to the nearest 0.5 degree 

        Rz = round((A1-A2)*2)/2;  

         

        // The index of Rz in Hough array, 

        index = 2*Rz+360;  

         

        // vote in the Hough Array,  it has  

        // 721 celles representing the range -180,180 

        HoughArray[index]++; 

    } 

} 

// return the index of the maximum cell. 

Index = MaxIndex(HoughArray); 

Rz = (Index-360)*2;  

Table  4.1: Pseudo-code for calculating the rotation angle around the � axis. 

 

4.3.2 Calculating the sonar translation 

Once the rotation around the Z axis has been determined, we can calculate the 

translation matrix T from M correspondences, as we describe next. To do so, we first 

de-rotate the second image by the estimated angle Rý, so the transformation between the 

two views is solely due to translation. 

Consider a selected correspondence. In the first view, the feature point gives N 3-D 

candidate points Xº = (xº, yº, zº) based on the sampling of the sonar arc; each assigned a 

probability according to the MDUD method.  Similarly, the correspondence in the 

second view gives N 3-D candidate points X¼i = (x¼i, y¼i, z¼i)  with their probabilities. 

While there are N; possible motions from a sample Xº = (xº, yº, zº)  to X¼i = (x¼i, y¼i, z¼i)  , 
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some are more likely based on the assigned probabilities of the corresponding 3-D 

points. To determine the most likely translational motion, we apply a weighted voting 

scheme based on Hough transform over all the corresponding pairs. 

In our implementation, we sample the 3-D space of potential translations T� ⊂[−T�äX�, T�äX�] with a particular resolution ∆T�where	(k = x, y, z). Along each 

coordinate axis, there are C� = 1 + 2T�äX�/∆T� cells, for a total of C = C�C�Cý cells. 

Each translation gives a weighted vote for its selected cell based on its assigned 

probability PºP′¼ .The solution is the cell with the largest vote.  

4.4 Motion estimation algorithm 

Herein we summarize the whole motion estimation algorithm, given two sonar images  

Ι< and Ι;, with M pairs of correspondences called the “cor” set, execute the following 

steps: 

1) Initialize the correspondences set as in ( 4.16):  

 cor = ��r¼, θ¼� ∈ Ι<			; 	�ri¼, θi¼� ∈ Ι;		where	j = 1…M� ( 4.14) 

2) Calculate angles A1 and A2: 

 AÇâ	æW
 =	 �A1�	; A2�	�	where	k = 1, 2	 …M(M − 1)/2 ( 4.15) 

3) Discard those �A1�	; A2�	� pairs that are computed from two points where the 

line between them crosses fewer beams than the pre-determined threshold. 

Denote Q  the number of lines that survive the threshold test. 

 AÇâ	æW
 =	 �A1�	; A2�	where	k = 1…Q� ( 4.16) 

4) Calculate the estimates R
� from all Q pairs 
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 R
� = 	A1� − A2�	where	k = 1…Q ( 4.17) 

5) Initialize 1-D Hough array and collect votes for R
�. 

6) Get the index of the maximum cell, which corresponds to the best estimate R
 . 

7) Each point in the “cor” set will produce N points by applying the sampling 

procedure in ( 4.2),  Note that M is the number of correspondences, we have: 

 

S = ��xº¼, yº¼, zº¼�	; 	�x′º¼, y′º¼, z′º¼�� 
where	i = 1…N; j = 1…M 

( 4.18) 

8) Associate the MDUD probabilities to the points in S, taking into account 

adjustments based on shadow size. 

 P = �Pº¼	; 	Pº¼i 	where	i = 1…N; j = 1…M� ( 4.19) 

9) De-rotate the sampled points in the second image around the Z axis by –R
 

 

S�W���X�W� = ��xº¼, yº¼, zº¼�	; 	�x′′º¼, y′′º¼, z′′º¼�	� 
where	i = 1…N; j = 1…M 

( 4.20) 

10) Calculate T� = [tx�	ty�	tz�]�: 

 

tx� =	xº¼ −	xiiå¼	 
	ty� =	yº¼ −	yiiå¼	 
	tz� =	zº¼ −	ziiå¼ 
P(T�) = Pº¼På¼i 						 

where			i = 1. . N;h = 1. . N; j = 1. . M; k = i. j. h 

( 4.21) 
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11) Initialize 3-D Hough array, and collect votes P(T�) for each of the C cell. 

12) Get the index of the maximum votes, corresponding to the best estimate T. 

13) The transformation between Ι< and Ι; is [Rý	T] . 
4.5 Application 2: Correspondence problem   

Suppose that we have computed the motion [R, T] for two sonar views, or it is 

determined by calibration (as is the case for a calibrated sonar stereo system). Given a 

particular measurement (�, $) for some 3-D feature in one sonar view, can we estimate 

the measurement (�′, $′) for the same feature in the second view? 

For a given (�, $) we have N candidate 3-D points by sampling the arc:  

 (r, θ) ⇒ [X<, X;, X¢, ……X¹] ( 4.22) 

These points are associated with MDUD probabilities [	P<, P;, …	P¹], each representing 

the likelihood that the associated sample Xº	; i = 1,2…N is the true 3-D POI. To 

determine the match in the second image, we compute the 3-D position relative to the 

second sonar position, and the projection in the second view: 

 Xiº = [R, T]Xº								where	i = 1…N ( 4.23) 

 SPF(Xiº) = (riº, θiº)					where	i = 1…N ( 4.24) 

 

The probability A¥ is associated with each projected measurement (riº, θiº). The 

correlation between (r, θ) and each (riº, θiº) will give us a new measure qº. The 

estimates with low §¥ and low A¥ can be discarded, keeping the remaining ones as 

potential sought after match. This procedure can be easily adopted in the ASI system 

described in  Chapter 3; it can be utilized in the vertical configuration and any other 

configuration. 
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Table  4.2 shows the results obtained from the first experiment, it is clear that the Z 

rotation angle is estimated with small errors, however there are considerable errors in 

estimating the translation on the Y axis, after performing many tests, it turns out that 

errors on the Y axis increase as we rotate about the Z axis. And as we move forward on 

the X axis, errors increase on the Z axis. However, we can use these results as a first 

guess for other iterative methods such as in [14] if we are looking for more robust 

estimation. The strong point in this algorithm is its ability to give acceptable results in 

real time without any fear of de-convergence as in the iterative methods. 

Real 

Rý° 5 5 5 5 T� (m) 0 0 0 0 T�(m) 0 0 0 0 Tý(m) 0 0 0 0 

Estimated 

Rý° 5 4 4 4.5 T�(m) 0.005 -0.005 -0.025 0 T�(m) 0.050 0.025 0.030 0 Tý(m) -0.015 0.005 -0.010 0 

Table  4.2: Real and Estimated motions with Z-Rotation Only 

 

To test the translation estimation solely, we moved the sonar in X, Y and Z directions at 

the same time, in each step we move the sonar 2.54 cm (1 inch) in each direction 

without any rotation. Table  4.3 shows the results of this experiment. 

Real 

Rý° 0 0 0 0 T� (m) 0.0254 0.0254 0.0254 0.0254 T�(m) 0.0254 0.0254 0.0254 0.0254 Tý(m) 0.0254 0.0254 0.0254 0.0254 

Estimated 

Rý° 0 -0.5 -1 0.5 T�(m) 0.025 0.025 0.040 0.010 T�(m) 0.025 0.015 0.010 0.035 Tý(m) 0.035 0.010 0.050 0.015 

Table  4.3: Real and Estimated motions for 3-Directional translation. 
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It worth mentioning that we used Hough array with 0.005m cell’s width; N = 14; 	α =0.60; 	β = 0.20; and	γ = 0.90 as parameters for the MDUD. Unfortunately, the setup 

doesn’t allow for bigger steps in our controlled environment, so the results of these 

experiments do not reflect the performance of the algorithm in real movements, as the 

steps fall within the beams’ resolution  of the sonar, this is illustrated in Figure  4.13.  

 

 

Figure  4.13: Small sonar movements cannot be detected as the change may or may not 

alter the position of the features in the image. For example, after the small movement of 

the sonar, the point A did not change its position in the acoustic image, while the point 

B changed its position from the second beam in the left to the first beam to the left. 

Please note that the figure is for demonstration purposes only and does not reflect true 

number of the beams.  

 

To shed another light on the algorithm we have conducted another experiment with 

relatively longer track. In the second experiment we used DIDSON data obtained in 

Florida Atlantic University to measure the Z rotation angle, the experiment involved a 

DIDSON rotating full 360˚ counterclockwise around a cinder block.  
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Figure  4.15: The track and geometry of the sonar/target 

 

Figure  4.16: example frame of the imaged cinder block. (at 240°) 

 

1.33m 

3.07m 

2.76m 

DIDSON line of travel 

Target 

Target 

DIDSON-300 
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Figure  4.17:  example frame of the imaged cinder block. (at 300°) 

 

Figure  4.18: A reconstructed track for DIDSON sonar using the proposed method, The 

total length of the track is 17.34m which was reconstructed as 17.72m giving an error of 

+0.38m resembling 2.2% error. 
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Figure  4.19: The reconstructed sonar positions in the XZ plane, the positions fluctuated 

between 0 and -35 cm.   

 

4.7 Conclusion  

In this chapter, we have presented a new framework to build motion estimation 

algorithm for underwater vehicles, the framework introduces new concepts including 

Modified Uniform Distribution and sonar arc sampling. The algorithm uses two Hough 

arrays to select the best answer for translation and rotation angle. Real experiments have 

been conducted to validate the methodology and acceptable results were obtained. The 

framework can be integrated with iterative motion estimation methods to provide good 

starting point for robust motion estimation.  
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Chapter 5   

Motion Estimation Performance Analysis 

5.1 Introduction 

In addition to its numerous terrestrial applications, the capability to compute self (or a 

target’s) 3-D motion is important for many underwater operations. While optical 

systems are the most common imaging modality above the sea, serious complexities 

arise when the mission is to be carried out beneath the sea surface, with turbidity being 

the most prohibiting factor. 

Acoustic-based imaging and methods, because of the ability to penetrate silt and other 

sources of turbidity, offer a more effective solution. It is thus desired to devise robust 

motion vision techniques comparable to those realized for optical cameras. In this 

chapter, we explore the impact of selected key factors on the accuracy of motion 

estimation from 2-D sonar cameras. These factors comprise the field of view of the 

camera, the number of feature matches in a motion sequence, and the inaccuracy in the 

knowledge of their image positions. The significance of each factor is analyzed based 

on the variances of the sought after motion parameters. We also present various results 

from an experiment with real data, where we apply different measures that provide us 

with ground truth for the quantitative assessment of the motion estimation accuracy. 

The estimation of 3-D motion from optical images has received extensive treatment in 

the motion vision literature for its numerous applications in the terrestrial domain. The 

domain-independent feature-based approaches have been applied effectively to realize 

many desired capabilities for underwater operation, e.g., optical station keeping, target-

based positioning and photo-mosaicing, to name a few (see [151],[152] for a survey of 

relevant literature). Among various methods, the computation of 3-D motion relative to 

planar scenes arises in many underwater applications dealing with target detection and 

mapping over relatively flat surfaces, e.g., exploration of seabed habitats, ship hull 

inspection, as well as mine detection and localization. Unfortunately, turbidity or low 

visibility can impede the utility or prohibit the deployment of traditional optical cameras 

in certain environments, e.g., polluted harbours and certain marine sanctuaries. Here, 
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acoustic-based imaging and methods offer a key advantage, because of the ability to 

penetrate silt and other sources of turbidity. In particular, a new generation of high-

frequency 2-D forward-looking (FL) sonar systems offers a reliable technology for 

high-resolution imaging at near-video data rate [7][72]. In optical imaging, the epipolar 

geometry of projections rays from two or more views offer the framework for 3-D scene 

or motion interpretation. When moving rigidly in the world, a linear mapping describes 

the transformation of the coordinates of the planar surface points from one viewing 

position to the next. The underlying transformation is the homography between two 

perspective views of the scene plane [8], which can be fixed by the correspondences of 

minimum 4 points in the two views [153] [154]. 

In contrast, range and azimuth comprise the measurements of 3-D scene surface features 

in 2-D FL imaging. Imaging a plane with a 2-D FL sonar, the geometric transformation 

from one view to the next depends on 1) the linear mapping between the Cartesian 

coordinate systems of the two views, namely, the affine components from the 

homography of two perspective views; 2) the unknown elevations of the features being 

tracked [155]. Being dependent on the target feature point’s elevation, the 

transformation varies over the image. The nature of sonar imaging and available 

measurements can introduce some inherent complexities in the estimation of 3-D 

motion from the frame-to-frame feature displacements, when analyzing sonar video or 

motion sequences.  

An iterative method based on a maximum likelihood estimation (ML) framework has 

been proposed for the computation of 3-D motion from a pair of 2-D sonar views [14]. 

Results from the reported experiments, although, limited to a small number of real data 

sets, identified certain complexities and bottlenecks in the accurate estimation of 3D 

motion. Among these, primary factors include the inherent low signal-to-noise ratio of 

2-D sonar imagery, limited number of features that can be detected and matched in a 

motion sequence, and the very small field of view (FOV) of the earlier cameras (less 

than 30° horizontal FOV). The latter may no longer be a key factor with the advent of 

new models and technologies that offer much larger FOVs (as large as 130°). However, 

it is still desired to explore and quantify the impact of these factors on the motion 

estimation accuracy. 
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 In this chapter, we study the significance of each factor based on the variances of the 

sought after motion parameters. We analyze the results from a large number of 

numerical simulations with random data, and the typical parameters of existing 2-D 

sonar imaging systems. Our results offer quantitative measures, collectively in 

agreement with earlier observations and conjecture on the role of the named influential 

factors. In addition, we also present various results from an experiment with a real data 

set, where we apply different measures to establish ground truth for the quantitative 

assessment of the motion estimation accuracy. The results highlight some advantages 

offered in the estimation of 3-D motion by sonar imaging.  

5.2 Background concepts 

5.2.1 Coordinate systems 

 A 3-D point P
 has coordinates P
 = (X
, Y
, Z
)� in the world reference system. For the 

sonar view, we employ the spherical coordinates [ℛ, θ,ϕ]� comprising the range, 

azimuth angle and elevation angle. The point p
 = (x
, y
) = ℛ(sin θ, cos θ) in the 

zero-elevation plane of sonar coordinate system may be viewed as the 2-D sonar 

projection of a 3-D point P. The relationship between the Cartesian and spherical 

coordinates is useful in analyzing the sonar data: 

 P
 = èX
Y
Z

é = ℛ ècosϕ sin θcosϕ cos θsinϕ é ( 5.1) 

 èℛθϕé =
��
��
�� �X
; + Y
; + Z
;tan�<(X
/Y
)tan�< �Z
/�X
; + Y
; ��

��
��
 ( 5.2) 

5.2.2  Sonar image model 

A 2-D sonar image I(ℛ, θ) represents acoustic reflections from 3-D points at ranges ℛ 

(within a down-range window [ℛäºâ,ℛäX�]) and azimuth direction θ (within cross-

range field of view [−θäX�: θäX�]). The elevation angle ϕ, unknown in a 2-D imaging 
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sonar, is constrained by the vertical width of each transmitted beam [−ϕäX�,ϕäX�], 
which is 7º in DIDSON sonar [6] and 10º in Blue View P900-130 [7]. 

5.2.3  Coordinate transformation 

The transformation between the coordinate systems at viewing positions can be defined 

in terms of 3 × 3 rotation matrix R and 3-D translation vector t: 
 Pi = RP + t		 ( 5.3) 

Generally, the transformation parameters �R, t� describe the motion of the observer or 

imaging system – a sonar camera here – from one position to the next. 

5.2.4 Plane representation 

A point P on a plane Π with normal n satisfies the dot product equation: P. n = −1. The 

planar surface normal can be determined in the coordinate system of the second view 

from the equation in ( 5.9) which is derived as follows: 

 ¤i. Ai =	−1											 ⇒ 								 ¤i	Ai� =	−1			 ( 5.4) 

 ¤i(%A + ()� = −1					 ⇒ 			 ¤i(A�%� + (�) = −1		 ( 5.5) 

 ←× %¤								 ⇒ 								 ¤i(A�%�%¤ + (�%¤) = −%¤	   ( 5.6) 

 %�% =  									 ⇒ 								 ¤i(A�¤ + (�%¤) = −%¤	 ( 5.7) 

 		A�¤	 = 	−1						 ⇒ 			 ¤i(−1 + (�%¤) = −%¤			 ( 5.8) 

 n′ = ½ 11 − (�%¤Á%¤		 ( 5.9) 
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A general analogy with classical motion vision of two optical views can be established 

by noting that the elevation angle ϕ can be expressed in terms of the surface normal, 

and two coordinate �ℛ, θ�. More precisely, we can first express the surface equation in 

the form ( 5.10). 

 (n� sin θ + n� cos θ) cosϕ + ný sinϕ = − 1
ℛ		 ( 5.10) 

Which enables us to solve for the elevation angle ϕ in terms of the surface normal: 

 ϕ = −γ + η	 ( 5.11) 

Where 

 γ = tan�< �n� sin θ +	n� cos θný   ( 5.12) 

 η = sin�<
"
# −1

ℛ��n� sin θ + n� sin θ�; + ný;$
% ( 5.13) 

 

5.2.5  Image-to-image transformation of planar points 

Using the plane equation P. n = −1, we can write ( 5.3) in the form 

 P
i = �R − tn��P
 = QP
 ( 5.14) 

Where Q = R − tn�describes the underlying linear transformation between the 

coordinates of a 3-D points in reference frames of two viewing points. We can derive 

the frame-to-frame transformation of 2-D sonar image points ez()z, *z)	, p
i 	()′z, *′z)	 
described in ( 5.15) and ( 5.16)  [17] . The transformation is given by ( 5.17). 
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 ()z , *z) 	= ℛ(	sin	$, cos	$) ( 5.15) 

 ()′z, *′z) 	= ℛ′(	sin	$i, cos	$i) ( 5.16) 

 èx
iy
i1 é = èαq<< αq<; βq<¢αq;< αq;; βq;¢0 0 1 é ìx
y
1 ï = H ìx
y
1 ï			 ( 5.17) 

Where α = cosϕ/ cosϕi		 , β = ℛ sinϕ/ cosϕi and qº¼ is the �i, j� element of 3 × 3 

linear transformation matrix & = (R − tn�).  
It is important to note that the sonar rotation involves only 3 unknowns, expressed by 

the 3×1 vector representation ω = �ω�,ω�,ωý��. Here, R = R�R�Rý, where R((u =x, y, z) denotes 3×3 matrix representing rotation by ω( about õ axis. 

It trivially follows that the homography in ( 5.17), while a complex nonlinear constraint, 

can be expressed in terms of the 9 motion and surface parameters �(, G, ¤�. A distinct 

difference with traditional two-frame motion problem is the fact that no scale factor 

ambiguity exists with two sonar views. In other words, projections into two views of a 

small number of features allow us to determine the unknown motion and plane 

parameters. Simple count reveals that a minimum of 5 points is necessary, providing us 

with 10 constraints in terms of 9 unknowns. If the motion is modelled by pure 

translation, a minimum of 3 points is necessary for a solution. While such issues as 

ambiguous configurations, number of possible solutions, etc., are intriguing theoretical 

problems that also provide insight into solution degeneracies, we are interested with  

analyzing factors affecting  the motion estimation method adopted in [17], these factors 

include localization accuracy of feature positions, field of view, and the number of 

points. 
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5.3 Analyzing the motion parameters 

Equation ( 5.17) comprises two constraints relating the correspondence of points in two 

sonar views to the sonar motion and parameters of the planar scene i.e.: 

 x
′ = α(q<<x
 + q<;y
) + β	q<¢ 
( 5.18) 

 y
′ = α(q;<x
 + q;;y
) + β	q;¢						 ( 5.19) 

From this, variations in (')zi 	, '*zi	, ')z	, '*z)	can be expressed in terms of variations in 

the motion and scene parameters, namely, '(S, '(*, '(þ, '+S, '+*, '+þ, '¤S. '¤*, '¤þ. 

By reversing this relationship, we can analyze the variations in the motion and surface 

parameters due to uncertainty in the correspondences and their image positions. More 

precisely, given that the sonar data is rather noisy and image positions of sonar features 

cannot be established perfectly, it is important to know the impact on the motion 

estimation accuracy. Some tedious algebra in derivation of the underlying equations can 

be avoided by making use of computer symbolic processing, a single equation can reach 

up to three pages length. Still, the expressions are complicated due to highly nonlinear 

nature of the frame-to-frame transformation model in ( 5.17) and a large number of 

intermediate parameters. For simplicity, we express the nonlinear system of sensitivity 

equations in terms of some of the intermediate parameters, and then give the final form.  

Differentiating the equations ( 5.18) ( 5.19) yields to the relation between the derivatives 

of (')zi 	, '*zi	, ')z	, '*z)	 and all other motion derivatives and the derivatives of the 

surface vector i.e. '(S, '(*, '(þ, '+S, '+*, '+þ, '¤S. '¤*, '¤þ, finding these relations is 

extremely tedious due to the nonlinear nature of the equations involved, to overcome 

this we used Matlab symbolic processor to find these derivatives by feeding it with the 

essential equations discussed above. 

 
dx
i = (q<<x
 + q<;y
)dα + (q<¢)dβ + (αq<<)dx
 +													(α	q<;)dy
 + (αx
)dq<< + (αy
)dq<; + (β)dq<¢	 ( 5.20) 
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dy
i = (q;<x
 + q;;y
)dα + (q;¢)dβ + (αq;<)dx
 +												(α	q;;)dy
 + (αx
)dq;< + (αy
)dq;; + (β)dq;¢	 ( 5.21) 

Equations ( 5.20) ( 5.21) illustrate the first step to find these derivatives; these two 

equations can be re-written in the form  

(q<<x
 + q<;y
)dα + (q<¢)dβ + (αx
)dq<< + (αy
)dq<; +	(β)dq<¢ 	= dx
i − 	α(q<<dx
 + q<;dy
)	 ( 5.22) 

(q;<x
 + q;;y
)dα + (q;¢)dβ + (αx
)dq;< + (αy
)dq;; + (β)dq;¢= dy
i − 		α(q;<dx
 + q;;dy
)	 ( 5.23) 

 

The left hand side of the equations ( 5.22) and ( 5.23) was written in terms of nine 

derivatives, six derivatives for the motion and three for the surface normal i.e. these two 

equations can be rearranged in the form  

 ^a<< a<; ⋯ a<,a;< a;; ⋯ a;,aM = �dx
i − α(q<<dx
 + q<;dy
)dy
i − α(q;<dx
 + q;;dy
)�	 ( 5.24) 

Where  

 M = [dt� dt� dtý dn� dn� dný dϑ� dϑ� dϑý]�	 ( 5.25) 

t = -t�		t�		tý.�is the translation vector, n = -n�	n�	ný.� is the normal vector, ϑ =
-ϑ�	ϑ�	ϑý.� is the rotation vector for the rotation angles around the x, y	and	z axes. The 

rotation matrix can be obtained from ( 5.29). 

 R� = è1 0 00 cos ϑ� −sin ϑ�0 sin ϑ� cos ϑ� é	 ( 5.26) 
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 R� = û cos ϑ� 0 sin ϑ�0 1 0− sin ϑ� 0 cos ϑ�ü ( 5.27) 

 Rý = ècos ϑý −sin ϑý 0sin ϑý cos ϑý 00 0 1é ( 5.28) 

 R = R�R�Rý ( 5.29) 

As for motion estimation, K ≥ 5	correspondences are necessary for the quantitative 

assessment of the estimation accuracy. However, achieving higher accuracy requires 

employing as many accurate correspondences as we can establish in the two sonar 

views. Thus, one factor to be examined in our analysis is how the estimation robustness 

depends on the number of matched features over the sonar field of view, and the 

advantages in deploying a sonar with a larger FOV. If we have N pairs of 

correspondences between two images, then we have 2N equations, forming the equation 

yield to ( 5.30). 

 

��
��
��
¯<<< ¯<;< ⋯ ¯<,<¯;<< ¯;;< ⋯ ¯;,<⋮ ⋮ ⋮ ⋮¯<<ã ¯<;ã ⋯ ¯<,ã¯;<ã ¯;;ã ⋯ ¯;,ã ��

��
��h =

��
��
��
dx
i < − α(q<<dx
< + q<;dy
<)dy
i< − α(q;<dx
< + q;;dy
<)⋮dx
i ¹ − α�q<<dx
¹ + q<;dy
¹�dy
i¹ − α�q;<dx
¹ + q;;dy
¹���

��
��
 ( 5.30) 

Or simply: 

 A.M = B ( 5.31) 

Where A is 2N × 9 matrix, M is 9 × 1 vector and B is  2N × 1 vector, to find M, we 

used singular value decomposition [30]  to calculate the pseudo-inverse of  A i.e. 

 M = V ∗ S�< ∗ U� ∗ B ( 5.32) 

Where: 
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 A = U ∗ S ∗ V� ( 5.33) 

The pseudo-inverse method gives the solution for the M vector in a least squares sense. 

The inverse of S can be calculated by replacing each singular value by its reciprocal if it 

is bigger than zero, otherwise it will remain zero. 

The condition number of A -which is the ratio of its largest singular value to its smallest 

singular value- was used to reject ill-conditioned cases, large condition number 

indicates an ill-conditioned case, where small condition number reveals well-contained 

linear system, the threshold is subjective, the highest threshold we used is 5500, the 

lowest is 2000. 

5.4 Experiments 

We have carried our experiments with synthetic data to assess the robustness and 

accuracy in motion estimation, and variations with number of features, size of the sonar 

field of view, and accuracy in localizing image features. We then present the results 

from an experiment with real data, to check agreement with our theoretical analysis.  

5.4.1 Sensitivity analysis with synthetic data 

We examine the solution for variations in M as a result of variations in the position of 

correspondences, encoded in B. We analyze the motion uncertainty in terms of various 

factors, including the number of features K, the size of the sonar field of view where 

these features are distributed, and the uncertainty in correspondence positions, 

represented by the standard deviation σ
	 (	ϵ�δx
;� = 		ϵ�δy
;� = 		ϵ�δx′
;� = 		ϵ�δy′
;� =σ
 without loss of generality).  

To do this, we assume arbitrary motions and planar scene surfaces, and create random  

correspondences; we choose N random points p
 in the first view, compute the 

correspondences p
i  according to ( 5.17). We randomly determine a zero-mean noise 

sample   �δx
º 	, δy
º 	, δx′
º 	, δy′
º � (i = 1. . N)  from zero-mean Gaussian distribution with 

standard deviation 3d. We compute M from ( 5.32) , then repeat the process 500 times, 

and determine the mean and standard deviation of M. In our analysis, we have 
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eliminated a small number of outliers that often arise due to some degeneracies (e.g., 

most of the K points are clustered around a line). This is done by setting a threshold on 

the condition number of A, defined in terms of the ratio of the largest to the smallest 

non-zero singular value (threshold is adjusted according to the mean of the condition 

numbers in each case).  

Figure  5.1and Figure  5.2 depict the variation in the mean and standard deviation of the 

motion estimation error for a range of feature location errors, Figure  5.3, Figure  5.4, 

Figure  5.5 and Figure  5.6 illustrate the relation between the size of the sonar field of 

view and the mean and standard deviation of the motion estimation error with different 

feature uncertainty settings, Figure  5.7 and Figure  5.8 relate the number of 

correspondences to the mean and standard deviation of the motion estimation error. In 

the experiments of the Figure  5.1 up to Figure  5.8, the planar scene features have been 

selected in the range of 2.5m- 5.0m and the motion is varied randomly in the range 	± 0.4m in translation and 	± 20° for each axis (recall that 	R = R�R�Rý ) as stated in ( 5.29). 

 

Figure  5.1: The relation between the feature location uncertainty [m] and    '(S, '(*, '(þ 

[m]; No Features=25, Half-Angle FOV=65°; target features are assumed in the range 

2.5-5 [m]. While the noise increases in the feature locations, The errors in estimating the 

translation increase, particularly, translations on the Z axis. 
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Figure  5.2: The relation between the feature location uncertainty [m] and  '+S, '+*, '+þ 

[deg]; No Features=25, Half-Angle FOV=65°; target features are assumed in the range 

2.5-5 [m]. While the noise increases in the feature locations, The errors in estimating the 

rotation increase, particularly, rotations about the X and Y axes. 

 

Figure  5.3: The relation between the field of view [deg] and  dt�, dt�, dtý [m] 

(No Features=25, Feature position uncertainty = 0.005m; target features are assumed in 

the range 2.5-5 [m]. The bigger the FOV angle, the better the estimation of the 

translation. 
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Figure  5.4: The relation between the field of view [deg] and dϑ�, dϑ�, dϑý [deg]  

No Features=25, Feature position uncertainty = 0.005m; target features are assumed in 

the range 2.5-5 [m]. The bigger the FOV angle, the better the estimation of the rotation. 

 

Figure  5.5: The relation between the field of view [deg] and  dt�, dt�, dtý [m] 

No Features=25, Feature position uncertainty = 0.02m; target features are assumed in 

the range 2.5-5 [m]. The bigger the FOV angle, the better the estimation of the 

translation. Also, in this figure the noise is higher compared to that in Figure  5.3 which 

increases the errors on the xyz axes compared to the earlier errors in Figure  5.3. 
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Figure  5.6: The relation between the field of view [deg] and dϑ�, dϑ�, dϑý [deg]  

No Features=25, Feature position uncertainty = 0.02m; target features are assumed in 

the range 2.5-5 [m]. The bigger the FOV angle, the better the estimation of the rotation. 

Also, in this figure the noise is higher compared to that in Figure  5.4 which increases 

the errors on the xyz axes compared to the earlier errors in Figure  5.4. 

 

Figure  5.7: The relation between the number of features and    dt�, dt�, dtý [m]            

Feature position uncertainty = 0.005m, Half-Angle FOV=65°; target features are 

assumed in the range 2.5-5 [m]. As the number of features increases, the errors in 

estimating the translation decrease. 
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Figure  5.8: The relation between the number of features and   dϑ�, dϑ�, dϑý [deg]            

Feature position uncertainty = 0.005m, Half-Angle FOV=65°; target features are 

assumed in the range 2.5-5 [m]. As the number of features increases, the errors in 

estimating the rotation decrease. 

 

The sensitivity to the field of view has been computed for two different pixel 

localization uncertainties of 0.5cm and 2cm. It is noted that there is a large discrepancy 

between translations and rotations in the :4	and � directions. Here, the sensitivity is 

higher for � translations while rotation uncertainty is higher for :4	rotations. This 

translation uncertainty is intuitive due to elevation ambiguity, and the fact that 3-D 

points maps onto the zero-elevation plane along circular arc (two points with different 

elevations along the same circular arc map onto the same image points).  The less 

uncertainty in � rotation can be recognized by noting that this impacts the azimuth 

(bearing) of the 3-D point which is directly measured with good resolution (0.3° beam-

width in DIDSON).  
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It is noted that the number of feature correspondences is tied to the scene complexity 

and the feature position localization accuracy depends on a number of factors, including 

but not limited to the scene surface complexity, sonar properties, and environmental 

conditions. Unlike the optical cameras where the FOV can be readily adjusted with the 

lens properties over a range of angles, there is a little flexibility with the sonar cameras 

due to limitations of a small number existing technologies. Now, given that the field of 

view has a large impact on estimation accuracy/robustness, it is critical to use a camera 

with the largest field of view, e.g., a Blueview P900-130 blazed-array sonar with Half-

angle FOV of 65° (extreme point on the FOV sensitivity graphs, and the assumed FOV 

in other plots). 

We have repeated the sensitivity analysis with passive navigation over the seabed; see 

Figure  5.9 and Figure  5.10. The specific parameters are chosen according to the real 

data in our next experiment, collected with a Blueview P900-130 in the marina of the 

Florida Atlantic University- Sea Technology Centre, Dania Beach, FL. The feature 

positions vary randomly over the 2m-30m range. The sonar half-vertical beam width is 

10° and half-angle horizontal field of view is 65°, as stated in [7]. 

 

Figure  5.9: The relation between the feature uncertainty [m] and  dt�, dt�, dtý [m] 

No Features=25, Half-Angle FOV=65°; target features are assumed in the range 2-30 

[m]. 
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Figure  5.10: The relation between the feature uncertainty [m] and  dϑ�, dϑ�, dϑý [deg] 

No Features=25, Half-Angle FOV=65°; target features are assumed in the range 2-30 

[m]. 

One notes a significant improvement in estimation uncertainty for any particular pixel 

localization uncertainty, primarily due the increase in the target range (corresponding to 

a larger SNR). As an example, the standard deviation is about 2cm for :4 translation, 

18cm for �	translation, 2° for � rotation, and 10° for :4 rotation, for a feature position 

uncertainty of 2cm (for either )z or *z).  

5.4.2 Motion estimation with real data 

 Our sensitivity analysis can be compared with the results from an experiment with real 

data. This constitutes the estimation of motion for 5 frames of a video sequence, 

recorded at the Sea Tech Marina of the Florida Atlantic University in Dania Beach, FL. 

The sonar placement is near the end of a horizontal beam, roughly 10 [ft] (3.07m) from 

a vertical rotating pole, while tilted down slightly. Rotating the pole, two perpendicular 

rows of vertical dock pilings, the main scene features, were imaged. Figure  5.11 to 5.14 

show two of the five images, also superimposed with features, used for motion 

estimation. Figure  5.15 illustrates the setup of the experiment. 
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Figure  5.11: Frame 1 from FAU Marina in experiments with real data, also 

superimposed with features used for motion estimation in Figure  5.12 

 

 

Figure  5.12: Frame 1 from FAU Marina in experiments with real data, also 

superimposed with features used for motion estimation. 
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Figure  5.13: Frame 3 from FAU Marina in experiments with real data, also 

superimposed with features used for motion estimation in Figure  5.14. 

 

 

Figure  5.14: Frame 3 from FAU Marina in experiments with real data, also 

superimposed with features used for motion estimation. 
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Figure  5.15: Sketch for the experiment setup. 

Taking every 5th frame of the video, the image-to-image sonar rotations have been 

estimated at roughly 0.12 [rad] (or 7°), with the induced image-to-image translation of 

roughly 0.36m, dominantly in the :4 plane (although neither is constant). The 

estimated motions and the planar normals have been summarized in Table  5.1. 

           Seq 

Motion 
1-2 2-3 3-4 4-5 

() -0.3773 -0.3916 -0.3786 -0.4008 

(* 0.0371 0.075 -0.1439 0.0276 

(& 0.0029 0.0072 -0.008 0 

G) 0.0094 0.0101 -0.0215 0.0307 

G* -0.0075 0.0099 -0.023 -0.0303 

G& -0.1101 -0.1215 -0.1214 -0.1534 

¤* 0.0684 0.0111 0.056 0.0305 

¤& -0.0489 -0.0009 -0.0287 0.0322 

Table  5.1: Estimated motion components, translation (	 = 	 [(), (*, (&] [m] and rotation G	 = 	 [G), G*,G&] [rad] between 5 consecutive images, along the sonar trajectory. The 

surface normals are defined with respect to each sonar position. 
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For quantitative assessment, we need ground truth of the frame-to-frame motions, which 

is not available. Instead, we have constructed 6 sequences that form closed trajectories, 

starting and ending at the same position, roughly of the same length. This means that 

while we do not know the intermediate positions along the sonar track, the first and last 

positions should coincide. Therefore, the accumulated end position and angle can be 

used for quantitative accuracy assessment. Table  5.2 summarizes the results. As an 

example, the first closed trajectory is defined by positions 1, 2, 3, 4, 3, 2 and 1, with 

accumulated errors of n( = [0.054, 0.18,−0.03] [m], and ex = [2.9, 1.6,−2.7] [deg] in 

position and orientation, respectively, while travelling a distance of 2.4 [m]. Based on 

the total errors in position and angle for the 5 trajectories, the average image-to-image 

translation and rotation errors are less than 3 [cm] and 1.7°. 

           Seq 

Motion 
1234321 2345432 134321 12421 23532 45324 

n(S 0.0544 -0.0026 -0.0354 0.092 -0.0824 0.0433 

n(* 0.1782 0.1181 0.0742 0.2617 -0.0124 0.2161 

n(þ -0.0318 -0.0042 -0.0572 0.0023 -0.1353 0.0121 

||n(|| 0.19 0.12 0.1 0.28 0.16 0.22 

nGS 2.8661 1.9628 2.7042 7.9027 8.6307 6.245 

nG* 1.6099 4.3059 0.1152 4.6707 1.6081 4.2471 

nGþ -2.6691 -1.3981 -3.6185 -1.6876 -5.9191 -6.1983 

||nG|| 4.2 4.9 4.5 9.2 10.3 9.6 

Distance 2.419 2.4444 2.4738 2.3911 2.4007 2.3696 

Table  5.2: six closed trajectories formed from 5 sonar positions, with roughly the same 

travelled distance. Each row depicts the position numbers defining the loop, 

accumulated error in position et	 = 	 [etx, ety, etz] [m] and angle eω	 = 	 [eω�, eω�, eωý] 
[deg], and estimated total travled distance [m].  
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Referring to our theoretical analysis, recall that the translation and rotation magnitudes 

have been assumed at 0.4m and 20°, respectively. Compared to results from real data (∣∣ ( ∣∣ ≈ 0.36m and ∣∣ G ∣∣	≈ 7°), there is agreement between motion error magnitudes, 

although the motion component errors differ. One explanation may be that our analysis 

is based on motions with all 6 degrees of freedom, while our experiment has involved 

sonar motions with mainly 2 degrees of freedom (although we have not made use of this 

fact in our computations).  

Finally, we have depicted in Figure  5.16, Figure  5.17, Figure  5.18, and Figure  5.19 

various views of three selected closed trajectories to visualize the earlier results. In 

addition to the accumulated error at the final position, another quantitative measure of 

accuracy is the discrepancy in the estimate sonar positions when visited more than once 

along each and across different trajectories. In this case, we can compare each position 

over different trajectories because the same position, namely position 1, is used as the 

reference for all of these trajectories. As expected, the accumulated errors increase with 

the length of distance travelled. 

 

Figure  5.16: Three selected trajectories constructed from different pairs of frames. The 

discrepancies in various positions along each and across different positions reflect the 

accumulation error, blue: 134531, black: 135421, red: 123454321 
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Figure  5.17: XY projection from Figure  5.16, blue: 134531, black: 135421, red: 

123454321 

 

 

Figure  5.18: XZ projection from Figure  5.16, blue: 134531, black: 135421, red: 

123454321 
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Figure  5.19: YZ projection from Figure  5.16, blue: 134531, black: 135421, red: 

123454321 

5.5 Conclusion 

 This chapter deals with the estimation of motion from sonar image sequences. One of 

the important objectives has been to determine how the estimation accuracy depends on 

a number of factors, comprising the uncertainty in the position of image features used as 

image-to-image correspondences, number of these features, and the size of the sonar 

camera’s field of view. We have considered the ranges of these parameters for some 

existing sonar technologies. We have also presented results of experiments to evaluate 

performance with real data. Here, we have provided various measures to quantify the 

achieved accuracy, based on ground truth. This includes accumulated errors in closed 

trajectories and the position of the sonar along various tracks, with respect to a common 

reference position. Our results suggest merit in the application of motion vision 

approaches to sonar video. Some challenges comprise the development of 1) image 

enhancement methods to improve the signal-to-noise ratio; 2) robust algorithms for 

feature detection and matching, to maximize number of accurate correspondences which 

is discussed in the next Chapter.  
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Chapter 6 

  Sorting the Correspondence Space 

 

6.1 Introduction 

 

Image registration is an indispensable component in computer vision; it represents the 

core problem in many tasks like shape recognition, motion estimation, 3D 

reconstruction, medical image analysis, mosaicing and stereo-matching to name but a 

few. The problem can be easily described as the task of assigning correspondences for a 

set of points in the first image to their counterparts in the second image. In other words, 

the problem is to find the transformation which maps the first set of points into the 

other. In  Chapter 2, we have reviewed some important works for image registration, 

including point matching algorithms. 

Herein, we introduce a novel, robust, and fast algorithm for affine point matching; in 

fact, the SCS algorithm cannot be categorized to spectral or to probabilistic methods 

discussed in  Chapter 2. Our contributions in this algorithm can be outlined in the 

following points: 

• Novel algorithm for affine point matching, the algorithm is intelligible and its 

core is derived using clear algebraic equations. 

• Robust, the algorithm is very robust against outliers; in this context, it surpasses 

state of the art methodologies. Also, its execution time is naturally dependent on 

the outlier percentage in the point sets. 

• Fast, compared to algorithms with similar robustness like RANSAC. The 

algorithm doesn’t use iterative optimization in high dimensional space, it is 

neither probabilistic nor spectral; the algorithm also uses a novel error formula 

to enhance its performance. 
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6.2 Point matching problem. 

Let’s have two sets of features P and P′ extracted from two images, here, we seek the 

affine transformation T with 6 DOF (Degrees of Freedom) between P and P′. 
 > = 	 ì7< 7; 7¢78 79 7:0 0 1 ï ( 6.1) 

 

In other words, our goal is to know the correspondences between P and P′ so that Pi = T. P where: 

 Ai =	 è)i< )i; )i¢ … )@i*i< *i; *i¢ … *@i1 1 1 … 1 é	; 		A = 	 ì)< ); )¢ … )@*< *; *¢ … *@1 1 1 … 1 ï ( 6.2) 

 

Obviously, P and P′ may have different sizes in the first instance due to outliers; 

however, for the simplicity of introducing the algorithm, we consider that our sets of 

features are outlier-free sets as we will discuss outliers later on; to show the essence of 

the algorithm, we will discuss an affine transformation with 5 degrees of freedom (5 

DoF) as in equation ( 6.3), the algorithm is easily adapted for 6 DoF as explained later 

on. 

 > = 	 èp) cos $ −p) sin $ >)p* sin $ p* cos $ >*0 0 1 é ( 6.3) 

 

6.3 Exploring the correspondence space 

We start by rewriting T in equation ( 6.3) in a different form, after some triangulations 

we write T as follows: 

> =	
��
��
��	ÑpS; + p*;2 [cos($ − Û) + cos($ + Û)] −	ÑpS; + p*;2 [sin($ − Û) + sin($ + Û)] >)
ÑpS; + p*;2 	[cos($ − Û) − cos($ + Û)] −	ÑpS; + p*;2 [sin($ − Û) − sin($ + Û)] >*0 0 1 ��

��
��
 ( 6.4) 

 

Where φ is dubbed the scale angle and defined as follows: 
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cos Û = pS

�pS; + p*;
		and					 sin Û = p*

�pS; + p*;
 

( 6.5) 

 

 

For any point pi = [xi	yi	1]� ⊂ P′ which corresponds to p = [x	y	1]� ⊂ P  we can 

write: 

)i =	�pS; + p*;2 	�[cos($ − Û) + cos($ + Û)]	) −	 [sin($ − Û) + sin($ + Û)]*� + >S 
( 6.6) 

*i =	�pS; + p*;2 	�[cos($ − Û) − cos($ + Û)]	) −	 [sin($ − Û) − sin($ + Û)]*� + >*	 ( 6.7) 

 

By adding the previous two equations ( 6.6) and ( 6.7) we get  

H = )i + *i =	�pS; + p*;	�[cos($ − Û)]	) −	 [sin($ − Û)]*� + >S + >* ( 6.8) 

Or simply: 

 ; = ���	< + ���		 ( 6.9) 

Where: 

= = � >?@� − � @AB�		 ( 6.10) 

6 = $ − Û	;			pS* = �pS; + p*;		; 				>S* = >S + >* 
( 6.11) 

The linear relation in ( 6.9) between α and β represents the correspondence space, in 

other words, points C = (α, β) represents the correspondence relation between two 

points in P	 and P′. The algorithm exploits this relation to find the correspondences, to 

do that, we find β for all points in P′ and sort them in an ascending order: 
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 )<i + *<i < );i + *;i < )¢i + *¢i < ⋯ ( 6.12) 

 H< < H; < H¢ < ⋯ ( 6.13) 

 pS*	¯< + >S* < pS*	¯; + >S* < pS*	¯¢ + >S* < ⋯ ( 6.14) 

This yields to: 

¯< < ¯; < ¯¢ < ⋯ 
( 6.15) 

)< cos6 − *< sin6 		< ); cos6 − *; sin6 		< )¢ cos6 − *¢ sin6 		< ⋯ 
( 6.16) 

 

In the next example, we illustrate how to establish the correspondences between A and A′. This example demonstrates the basic concepts of the SCS algorithm and will 

defiantly raise some questions like filtering the outliers and the ambiguous order of the 

points where ¯< = ¯; or H< = H; (which are called trouble points). These questions will 

be answered in the sections after the example. 

6.3.1 SCS example 

Let’s assume that we have two sets of points P and Pi as illustrated in the Figure  6.1 and 

their coordinates are listed in the Table  6.1. The true correspondence between the points 

is numbered and colour-coded for the ease of following the algorithm stages, so the red 

point ❷ in P corresponds to the red point ② in P′. We start with random order in the 

sets and attempt to find the correspondences by using the SCS algorithm. 

 

A	()	, *) (1.00, 2.00) ❷ (1.50, 1.20) ❸ (2.10,  1.30) ❹ (1.00, 1.80) ❶ 

A′( )′	, *′) (2.70, 2.79) ③ (1.97, 3.06) ① (1.87, 3.23) ② (3.17,3.18) ④ 

Table  6.1: The coordinates of two sets of points, The true correspondence between the 

points is numbered and colour-coded. 
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Figure  6.1: Two point sets P and Pi, T is the missing transform matrix between them. 

 

Firstly, we move P′ to β space by adding both coordinates for its points, and then we 

sort the β space in ascending order as illustrated in Table  6.2: 

A′ ()′	, *′) (2.70, 2.79) ③ (1.97, 3.06) ① (1.87, 3.23) ② (3.17,3.18) ④ 

H	space = )′ + *′ 5.49   ③ 5.03  ① 5.10 ② 6.36  ④ 

Sorted H vector 5.03  ① 5.10 ② 5.49   ③ 6.36  ④ 

Table  6.2: Moving A′ to H space and sorting the H space. 

Secondly, to search for the correspondences, we search for the right 6 in the range [−180°, 180°] by sampling the range in 20°, the sampling procedure will be discussed 

later on, for now, 20° is a heuristic  number. For each 6 value, we calculate the value of 

the ¯ vector and sort it in an ascending order. The right 6 will map the points in P to 

their correspondences in P′ as illustrated in the Table  6.3 and in the Table  6.4: 
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 ¯ = ) cos6 − * sin6 

A	()	, *) (1.00, 2.00) ❷  (1.50, 1.20) ❸ (2.10,  1.30) ❹ (1.00, 1.80) ❶ 

6¥ = −180°	 → ¯ = -1.00   ❷ -1.5   ❸    -2.1    ❹ -1.00   ❶ 

6¥ = −160°	 → ¯ = -0.26   ❷ -0.10    ❸ -1.53  ❹ -0.32   ❶ 

....... ....... ....... ....... ....... 

6¥ = −20°	 → ¯ = 1.62    ❷ 1.82     ❸ 2.42   ❹ 1.56  ❶  

6¥ = 0°	 → ¯ = 1.0      ❷ 1.50     ❸ 2.10   ❹ 1.00  ❶ 

6¥ = 20°	 → ¯ = 0.26  ❷   0.10     ❸ 1.53   ❹ 0.32  ❶  

....... ....... ....... ....... ....... 

6¥ = 160°	 → ¯ = -1.62    ❷ -1.82     ❸ -2.42   ❹ -1.56  ❶ 

Table  6.3: Moving the points in A to the ¯ space depending on 6 values. 

By sorting α vectors in an ascending order, we get potential correspondences for the 

point sets as illustrated in the Table  6.4: 

Sorted H vector 5.03  ① 5.10 ② 5.49   ③ 6.36  ④ 

 ¯ vectors in ascending order 

6¥ = −180° -2.1    ❹ -1.5      ❸ -1.00   ❷ -1.00   ❶ 

6¥ = −160° -1.53  ❹ -0.32   ❶ -0.26   ❷ -0.10    ❸ 

....... ....... ....... ....... ....... 

6¥ = −20°	 1.56    ❶ 1.62    ❷ 1.82     ❸ 2.42   ❹ 

6¥ = 0°	 1.00    ❷ 1.00  ❶ 1.50     ❸ 2.10   ❹ 

6¥ = 20° 0.10     ❸ 0.26    ❷ 0.32  ❶ 1.53   ❹ 

....... ....... ....... ....... ....... 

6¥ = 160°	 -2.42   ❹ -1.82     ❸ -1.62    ❷ -1.56  ❶ 

Table  6.4: Sorting ¯ vectors in an ascending order to match the points, when 6 = −20° 

the suggested order in the ¯ vector match the points correctly between A and A′. 
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Table  6.4 shows the suggested correspondences for each 6 value, for example, when 	6 = −160° the algorithm maps (2.10,  1.30) ❹ to (1.97, 3.06) ① and so on.  We get 

the right correspondence when 6 = 	−20° which maps correctly the points in P′ to the 

points in P. It worth mentioning here that the true value of 6 is -15° for the used 

transformation, however when 6 = −20°, it is close enough to the right value of 6 so 

that it orders the points in a correct way. In this example, the SCS algorithm suggested (360°/20) = 	18 different solutions out of 4! = 24 possible solutions. While this 

reduction is not very attractive, the algorithm leads to a great reduction with large point 

sets where the number of possible solutions in RANSAC terms is n!.  
In the previous example, it is clear that the search space is turned into one dimensional 

search space over (6) rather than five dimensional search space (S�, S�, T�, T�	, θ), or 

six dimensional search space in the affine case as explained later on,  this fact is one of 

the greatest advantages of the algorithm. As we have seen in the previous example, 

sampling 6 gives different correspondence solutions which we have to evaluate and 

choose the solution which best maps between the point sets. Thus, for each suggested 

solution (represented by a row in the Table  6.4 ) we calculate the transformation T in 

least squares terms using singular value decomposition and calculate the error 

associated with it, then we choose the transformation with the minimum error as the 

solution. In other words, to find correspondences between two sets of points P	and P′ 
with outlier-free assumption we follow these simple and fast steps: 

 

1- Find the sorted  Cn(7HV¦°Iî = �H<, H;	, H¢ …H@� from A′ 
2- Sort points in A′ according to their order in Cn(7HV¦°Iî to get Az′ 
3- Find  Azi�<, the pseudoinverse of Azi using single value decomposition (svd). 

4- Find the sorted �Yeℎ7_�HV¦°Iî = �¯¥<, ¯¥;, ¯¥¢ …¯¥@� based on a given 6¥ 
5- Sort points in A according to their order in �Yeℎ7_�KV¦°Iî to get A�z 

6- Find the inverse of the affine Transformation >¥�< = A�z ∗ Azi�< 

7- Find the Error value L¥ associated with >¥ using the error function in the 

correspondence space which is explained in the next section. 

8- Repeat steps 4 to 7 for all 6¥ ⊂ [−180°		180].	
9- > = >©	where	Z = arð 	mi¤¥ �L¥� 
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It is important to note that we use the inverse of P
i rather than inversing Pi
 inside the 

loop, this arrangement decreases the computational burden significantly. It worth 

mentioning also that there is another correspondence space which can be inferred from 

subtracting equations ( 6.6) and ( 6.7); the only difference in this case is 6 = θ + φ ; we 

will use both spaces in the error function as explained later on. 

6.4 Moving to complete affine transformation (6 DoF ) 

As mentioned earlier, the algorithm doesn’t change in 6 DoF, for now let’s have an 

affine transformation as described in equation ( 6.1), we can write x′ and y′ as follows: 

 xi = a<x + a;y + a¢ ( 6.17) 

 yi = a8x + a9y + a: ( 6.18) 

 

As the earlier procedure, adding the equations ( 6.17) and ( 6.18) will give us: 

 
β = xi + yi = (a< + a8)x + (a; + a9)y + a¢ + a: 

( 6.19) 

 β = Ñ(a< + a8); + (a; + a9);		[x cos6 − y sin6] + a¢ + a: 
( 6.20) 

 N = OPQ	= + RPQ ( 6.21) 

Where: 

 = = P >?@� − Q @AB� ( 6.22) 

 S�� = Ñ(a< + a8); + (a; + a9);	 ( 6.23) 

 cos6 = (XSlXT)
UVW         and       sin6 = �(XtlXX)

UVW  ( 6.24) 

 T�� = a¢ + a: ( 6.25) 
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It is clear that both equations ( 6.21) and ( 6.9) are similar, so the algorithm doesn’t 

change at all, we presented the 5 DOF case first of all to highlight the meaning of the 

scale angle φ  and its relation to 6 and θ. 

6.5 The error function 

To differentiate between the suggested solutions by the sorted H vector and ¯ vectors, 

we use an error function to evaluate each solution individually. In fact, the error 

function is an indispensable tool to pick the right affine transformation; it has to be fast 

and robust to outliers. It can be shown that slight amendments in the error function 

thresholds and/or mechanism will severely affect the performance of any point 

matching algorithm, herein we present the simple error function which is adopted by 

most point matching algorithms, also, we present a novel error function depending on 

the introduced correspondence space, in our new function, we have achieved relatively 

fast and robust performance by using two correspondence spaces simultaneously as 

explained later on. 

6.5.1 Simple error function  

One intuitive method to estimate the error for an affine transformation Tº is performed 

by accumulating the error associated with each point in Pi′ = 	Tº ∗ Pi
 ; the error for 

each point pii in Pi′ is defined by the smallest  distance  between pii and each point in P′, see Figure  6.2 ; this definition is simple and intuitive; however, this method is 

inefficient in terms of the computational load as it requires n;distance-calculations to 

calculate the error associated with Tº; we call this method SError  for the simple error 

function. 

 pL��o�¥ =	¶min© Ye�′r − e©i Y
@

r»<  

 

( 6.26) 

 

Where Ypi′¼ − p�i Y is the Euclidean distance between pi′¼ ⊂ Pii ∶ j = 1…n	 and p�i ⊂Pi 	 ∶ k = 1…n 
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Figure  6.2: The error for each point pii in Pi′ is defined by the smallest distance 

between pii and each point in P′. 
6.5.2 The Error function in the correspondence space 

The error function has to measure how far the points of Pi′ are from the points of P′, this 

measurement will tell how good the calculated affine transformation Tº is. The best Tº 
will make the transformation from Pii  to  P′ a unity matrix; the error Eº in the 

correspondence space can be calculated as illustrated in Figure  6.3. Mathematically, L¥ 
is defined as follows. 

 Eº =	¶Yβ¼ − βi¼Y¼ + ¶|β� − βi�|
�

 
( 6.27) 

Where:  

β¼ =	x¼i + y¼i 								 ∶ 	 p¼i = [x¼i			y¼i			1]� ⊂ Pi		&		β¼ <	β¼l<	∀	j = 1. . n ( 6.28) 

βi¼ =	xi¼i + yi¼i 					 ∶ 	 pi¼i = [xi¼i				yi¼i			1]� ⊂ Pii			&		Hi¼ < 	Hi¼l<	∀	j = 1. . n ( 6.29) 

Ti 

)	

*	
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β�		and βi� are in the second correspondence space which is produced from subtracting 

equations ( 6.6) and ( 6.7) rather than adding them.  

β� =	x�i − y�i 							 ∶ 	 p�i = [x�i 			y�i 			1]� ⊂ Pi		&			β� <	β�l<	∀			k = 1. . n ( 6.30) 

βi� =	xi�i − yi�i 	 ∶ 	 pi�i = [xi�i 				yi�i 			1]� ⊂ Pii			&		Hi� < 	Hi�l<	∀	k = 1. . n	 ( 6.31) 

  

 

Figure  6.3: The error function in the correspondence space. 

6.6 Filtering the outliers 

The outlier is a point in P which has no correspondence point in Pi or vice versa; 

obviously, the outlier will distort the order of the Alpha\W]��� and Beta\W]��� which 

means assigning wrong correspondences between P and P′ as illustrated in the next 

relations: 

P′ Pi′ 

β βi 

Sorted_β Sorted_βi 
 

L��o�	mnL(o� = |Sorted_β	 − 	Sorted_βi| 
Error1 = sum	(L��o�	mnL(o�)	 
 

)i + *′ 

Sort 

Eº = Error1 + Error2 

 

P′ Pi′ 

β βi 

Sorted_β Sorted_βi 
 

L��o�	mnL(o� = |Sorted_β	 − 	Sorted_βi| 
Error2 = sum	(L��o�	mnL(o�)	 
 

)i − *′ 

Sort 

First Correspondence Space (Add)  j Second Correspondence Space (Subtract) k 
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 Betavector = 	H< < H; < H¢ < H8 < H9 < H: < ;_ < ⋯		 ( 6.32) 

 Alphavector 	= ¯< < ¯; < ¯¢ < <_ < ¯8 < ¯9 < ¯9 < ⋯ ( 6.33) 

 

The outlier α� has no correspondence in the sorted Beta\W]��� which fools the 

aforementioned algorithm to assign the points: (p8i 	, p�	)	(p9i 	, p8	)	(p:i 	, p9	) ….	 as 

correspondences. There are different methods to tackle the outliers here; for example, 

we may use guided RANSAC which selects the correspondence of the point p¼i from the 

neighbourhood of its direct correspondence i.e. p¼�;	, p¼�<	, p¼, p¼l<, p¼l; with small 

neighbourhood range if the expected number of outliers is small and vice versa. Also, 

Hough Transform [156] can be applied to get a robust estimation for S�� and T��. 

Here, we filter the outliers by using the linear relation in the correspondence space, i.e. 

equation ( 6.21), for all β¼	, α¼ we can write: 

 p�S* = Hr�< − Hr
r̄�< − r̄ 				 ∶ � = 2…¤ ( 6.34) 

This relation doesn’t hold if one of its components is an outlier, to filter the outlier out 

first we get an initial estimation ES�� for S�� by using the pseudoinverse of the first 

order vandermonde matrix as follows: 

 m7¤' = 	 ^H< H; H¢ … H@1 1 1 … 1 a ( 6.35) 

 		ì 1
LpS* 							−L>S*LpS* ï = [¯<			¯;		¯¢ 		… ¯@] ∗ m7¤'�<	 ( 6.36) 

 

Where m7¤'�< is the pseudoinverse matrix of m7¤'	calculated using the single value 

decomposition (svd) [157], another effective ways to compute the inverse of the 

vandermonde matrix can be found in [158], [159] and [160], we estimate ES�� from the 

contaminated Alpha\W]��� and Beta\W]��� , this estimation is very fast as we find the 

pseudoinverse of the vandermonde matrix only once (again it is not inside the loop). 

This procedure estimates the true S�� with no more than 15% error even with 50% 
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outliers randomly distributed in each point set ( this is of course applicable for the right Alpha\W]��� which is calculated from the right 6¥), Figure  6.4 illustrates the relation 

between the relative error in the S�� estimation as described in ( 6.37) and the number of 

outliers. Next we describe S�� filtering which is the first stage in filtering the outliers 

out. 

 %nY7(�mn	Ld(�ª7(�o¤	L��o� = 	 YLpS* − pS*YpS*  ( 6.37) 

 

 

 

 

Figure  6.4:  illustrates the relation between the relative estimation error and the outliers 

ratio in the point sets, for each outlier ratio we have repeated the experiment 5000 times 

with random affine transformation and random point sets, the 0.005 error when the 

outlier ratio is 0 is due to the 6-sampling resolution . 

6.6.1 ��� filtering  

When Sj��, described in ( 6.34), is  considerably larger or smaller than ES�� i.e. the 

condition in ( 6.38) is not satisfied, it gives an indicator that one of the four terms in 

( 6.34)  is an outlier (or more than one), so we start calculating the effects of deleting 



Sorting the Correspondence Space 

 

 
135 

 
  

 

each term (or more than one) and see if the new Sj��  survives the ES�� test, i.e. the 

condition in ( 6.38).  

 YSj�� − ES��Y < 	` ∗ LS��  ( 6.38) 

6.6.1.1 One term tests (<a	, ;a		, <a�b	, ;a�b) 
For each questioned term we perform two tests to see the effects of deleting that term 

forward and backward, for example if we question α¼ then we calculate: 

 test1c = β¼�< − β¼α¼�< − α¼l< ; 																	test1d = β¼ − β¼l<α¼l< − α¼l; ( 6.39) 

It worth mentioning here that Alpha\W]��� and Beta\W]��� are sorted and indexed as 

illustrated in ( 6.40) and ( 6.41), deleting the term in the vector will shift all other terms 

after its index to the left as illustrated in ( 6.42) and ( 6.43). 

 	Beta\W]��� =	… <	β¼�; < β¼�< < β¼ < β¼l< < β¼l; < β¼l¢ < ⋯		 ( 6.40) 

 Alpha\W]��� = ⋯ < α¼�; < α¼�< < α¼ < α¼l< < α¼l; < α¼l¢ < ⋯ ( 6.41) 

 Before deleting α¼  

 	Beta\W]��� =	… <	β¼�; < β¼�< < β¼ < β¼l< < β¼l; < β¼l¢ < ⋯		 ( 6.42) 

 Alpha\W]��� = ⋯ < α¼�; < α¼�< < α¼l< < α¼l; < α¼l¢ < α¼l8 < ⋯ ( 6.43) 

 After deleting α¼  

If both of the backward and forward values pass the ES�� test i.e. Ytest1c,d − ES��Y <	` ∗ LS��  then we delete α¼ and its associated point p¼ in P
 and move to the next j 
value. Also, we delete α¼ and its associated point p¼ if its backward value is the only one 

passing the ES�� test among all other backward values in the one term tests, (even if the 

forward value doesn’t pass the ES�� test).  In Table  6.5 we summarize all test values 

with their questioned terms: 
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Term Backward test Forward test Notes 

r̄ 

 
(nd(1¬ = Hr�< − Hr

r̄�< − r̄l< (nd(1í = Hr − Hrl<
r̄l< − r̄l;  

Hr 

 
(nd(2¬ = Hr�< − Hrl<

r̄�< − r̄  (nd(2í = Hrl< − Hrl;
r̄ − r̄l<   

r̄�< 

 
(nd(3¬ = Hr�; − Hr�<

r̄�; − r̄  (nd(3í =	Hr�< − Hr
r̄ − r̄l< 

To delete 

r̄�<	or	Hr�< 	the next 

value should 

not pass the LpS* test 

Hr�; − Hr�<
r̄�; − r̄�< Hr�< 

 
(nd(4¬ = Hr�; − Hr

r̄�; − r̄�< (nd(4í = Hr − Hrl<
r̄�< − r̄ 

Table  6.5: backward and forward test values for the one term test. 

6.6.1.2 Two terms tests: 

If we cannot rectify the problem by deleting one term only from Alpha\W]��� or Beta\W]���, we perform two points test to delete two terms at once (with their associated 

points in P
	, P
i), here we make one test only (and may add more tests for extra 

robustness), Table  6.6 summarizes the performed tests: 

Term Forward test 

r̄ 	&		Hr (nd(5 = Hr�< − Hrl<
r̄�< − r̄l< 

r̄�<	&		Hr�< (nd(6 = Hr�; − Hr
r̄�; − r̄ 

r̄ 	&	 r̄l< (nd(7 = 	 Hr�< − Hr
r̄�< − r̄l; 

Hr 	&	Hrl< (nd(8 = Hr�< − Hrl;
r̄�< − r̄  

Hr 	&	 r̄�<	 (nd(9 = Hr�< − Hrl<
r̄ − r̄l<  

Hr�<	&	 r̄	 (nd(10 = Hr − Hrl<
r̄�< − r̄l< 

Table  6.6: test values for the two term test. 



Sorting the Correspondence Space 

 

 
137 

 
  

 

It is true that if αº	, βº are outliers they will not distort the correspondences, but they will 

affect later stages in calculating the error and getting the best affine transformation, so 

we delete them. 

6.6.1.3 Three terms test 

Again, if we cannot rectify the problem by deleting tow terms from Alpha\W]��� and/or Beta\W]���, we perform three points test to delete three terms at once (with their 

associated points in P
	, P
i), here we make two tests, backward and forward; both tests 

have to pass the ES�� test to delete their associated points, Table  6.7 summarizes the 

performed tests: 

Term Backward test Forward test 

r̄�<	, r̄ 	, r̄l< 

 
(nd(11¬ = Hr�< − Hr

r̄l; − r̄l¢ (nd(11í = Hr − Hrl<
r̄l¢ − r̄l8 

Hr�<	, Hr 	, Hrl< 

 
(nd(12¬ = Hrl; − Hrl¢

r̄�< − r̄  (nd(12í = Hrl¢ − Hrl8
r̄ − r̄l<  

r̄�<	, Hr�<	, Hr 	 
 

(nd(13¬ = Hr�; − Hrl<
r̄�; − r̄  (nd(13í =	Hrl< − Hrl;

r̄ − r̄l<  

r̄�<	, r̄ 	, Hr�< 

 
(nd(14¬ = Hr�; − Hr

r̄�; − r̄l< (nd(14í = Hr − Hrl<
r̄l< − r̄l; 

r̄	, Hr�<	, Hr (nd(15¬ = Hr�; − Hrl<
r̄�; − r̄�< (nd(15í = Hrl< − Hrl;

r̄�< − r̄l< 

r̄�<	, r̄ 	, Hr  (nd(16¬ = Hr�; − Hr�<
r̄�; − r̄l< (nd(16í = Hr�< − Hrl<

r̄l< − r̄l; 

Hr�<	, Hrl<	, r̄ (nd(17¬ = Hr�; − Hr
r̄�; − r̄�< (nd(17í = Hr − Hrl;

r̄�< − r̄l< 

r̄�<	, r̄l<	, Hr (nd(18¬ = Hr�; − Hr�<
r̄�; − r̄  (nd(18í = Hr�< − Hrl<

r̄ − r̄l;  

Table  6.7: backward and forward test values for the three term test. 

After the end of the three terms test and deleing all outliers, we perform another Sj�� 

scan and delete all α¼	, β¼ and their associated points in P
	, P
i if Sj�� doesn’t pass the 
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ES�� test. Also we make sure that both P
 and P
i have the same size by deleting all 

points at the end of the larger one, as they undergo unbalanced treatment depending on 

the number of outliers in each one. In most cases we end up at this stage with many 

points deleted and few left, but this will not be the case with the right 6¥ value. So 

deleting too many points is a good indicator that we are working with the wrong 6¥. It 
worth mentioning also that ϵ has no major effect on the ES�� test, we found ϵ = 15% to 

be a good heuristic value proved by Monte Carlo simulation in Figure  6.4 ; however, 

any value between 10% and 40% works well. 

6.7 Trouble points 

Before performing the S�� filtering, we sort Alpha\W]��� in an ascending order; if two 

values in Alpha\W]��� are equal or very close to each other we may give them incorrect 

order due to the sampling of 6. These points are called trouble points; we take a record 

of them before the S�� filtering, and delete them from P
	 after the S�� filtering if they 

still exist (we delete their supposed correspondences in P
i as well). 

 

In fact, trouble points have the same projection into the correspondence space in which 

we search for the right 6, for example, if we have a point pi(xi, yi) ⊂ P
i and its true 

correspondence is p(x, y) ⊂ P
 the relation between them is described in equations ( 6.6) 

and ( 6.7)  or ( 6.17) and ( 6.18); however, if there is a point p�(x�	, y�) ⊂ P
		&	p� ≠ p 

which satisfies the following equations: 

)i − c ≈ 	�pS; + p*;2 	�[cos($ − Û) + cos($ + Û)]	)I
−	[sin($ − Û) + sin($ + Û)]*I� + >S 

( 6.44) 

*i + c ≈ 	�pS; + p*;2 	�[cos($ − Û) − cos($ + Û)]	)I
−	[sin($ − Û) − sin($ + Û)]*I� + >* 

( 6.45) 
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For any λ	 ∈ ℝ∗	; adding ( 6.44) and ( 6.45) will show that both points p	 ≠ p� will be 

projected to the correspondence space as α = α� so one point will be aligned with pi(xi, yi) as a correspondence and the other will be filtered with the S�� filtering, both 

points (p and p�) have similar chances to survive the S�� filtering, so it will be better to 

delete the point which survived the test with its associated correspondence p′  as there is 

50% chance to filter the correct point out. 

Another issue can be raised here is the size difference between the point sets, so far we 

have considered that both point sets have the same size, if they don’t, we simply add 

random points to the smaller point set to make it the same size as the larger one, they 

have to be in the same range as the smaller point set, then we include them in the 

trouble points record.  

6.8 Calculating �� 
After deleting the trouble points, Pi
 and P
i will have many true correspondences and 

few incorrect correspondences; because of the mechanism of the S�� filtering, true 

correspondences occur in blocks of successive points in Pi
 and P
i. To calculate the best 

possible Tº we infer the transformation Tº� from each successive three points in Pi
 with 

their correspondences in P
i, from each Tº� we can deduce Sik�� which is another 

estimation for S��. Then we quantize the absolute difference between ESi�� and Sik��, 

hereafter, we use all correspondences in Pi
 and P
i which contributed to calculate the 

most frequent error to calculate the final Tº. This step is very effective to tackle noise in 

the points coordinates. 

6.9 Sampling � and calculating the error 

For each 6º we infer Tº and calculate its error Eº using the filtered points P
 and P
i only, 

to add extra robustness to the algorithm we revisit the Error function in the 

correspondence space to enhance its performance. First, as the number of the filtered 

points in Pi
 and P
i will be different for different 6º values, we normalize the error 

depending on the number of correspondences survived the S�� filtering and the trouble 

points deletion. Second, we use the smallest 50% errors in each correspondence space, 
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as large errors are more likely to be caused by the leaked outliers, see Figure  6.5. In 

mathematical terms the error Eº will be calculated as follows: 

 L¥ =	¶YHr − H�rY@/;
r»< /¤ + ¶|H© − H�©|@/;

©»< /¤ 
( 6.46) 

 

Where 	Yβ¼ − βi¼Y <	 Yβ¼l< − βi¼l<Y			∀j = 1. . n				in the first correspondence space 

(β¼ =	x¼i + y¼i) and |β� − βi�| <	 |β�l< − βi�l<|			∀k = 1. . n in the second 

correspondence space (β� =	x�i − y�i ). In other words, the error vector is sorted 

ascendingly  before accumulating its first half. 

 

Figure  6.5: The robust error function in the correspondence space. 

P′ Pi′ 

β βi 

Sorted_β Sorted_βi 
 

L��o�	mnL(o� = |Sorted_β	 − 	Sorted_βi| 

Error1 = sum	(pL�(1…¤/2))	 
 

)i + *′ 

Sort 

Eº = 1n (Error1 + Error2) 

 

P′ Pi′ 

β βi 

Sorted_β Sorted_βi 
 

L��o�	mnL(o� = |Sorted_β	 − 	Sorted_βi| 

Error2 = sum	(pL�(1…¤/2)) 
 

)i − *′ 

Sort 

First Correspondence Space (Add)  j Second Correspondence Space (Subtract) k 

Sort Sort 

po�(n'	L��o�	mnL(o�		(pL�) po�(n'	L��o�	mnL(o�		(pL�) 
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In the same fashion, we can adjust the simple error function to use 50% smallest simple 

errors; in other words, we sort the errors in an ascending order and sum the first half of 

the vector. In mathematical terms we can write: 

 pL��o�¥ =	¶min© Ye�′r − e©i Y
@/;
r»<  ( 6.47) 

Where: 

 
 min© Ye�′r − e©i Y 			< 	min© Ye�′rl< − e©i Y					 ( 6.48) 

  

Sampling 6 is done using different levels, in the first level we use large intervals 

between 6º and 6ºl< and differentiate the calculated transformations Tº by using the 

enhanced error function in the correspondence space (Eº), then we calculate the 

enhanced simple error SErrorÔ of the best transformation TÔ = T� ∶ k = arg 	minº �Eº� by 

using  TÔ ∗ P and Pi as inputs, if SErrorÔ is small enough we stop and the best 

transformation will be TÔ, otherwise,  we move to the next level and sample 6 using 

half of the previous interval, all previously visited 6 values are ignored. Our results 

show that 5 levels are very robust, starting from 1° degree interval in the first level up to 

0.0625° interval in the fifth level which is only reached if the outliers ratio is very high. 

(40% to 50%). This sampling procedure gives the algorithm an advantage of making the 

execution time relative to the outliers’ ratio; however, there is always an upper bound 

limit on the execution time. 

6.10 Results 

We have implemented the SCS algorithm in Matlab, the core of the algorithm is 

straightforward and doesn’t require more than tens of lines to implement; however, the 

filtering function needs some efforts to be implemented in a “vectorized” style for best 

performance, in the next figures (Figure  6.6 to 6.25) we show how the algorithm 

restored the correct affine transformation for some challenging point sets. Figures 6.14 

to 6.25 contain outliers in the point sets with different ratios (20% up to 50%), each 

point set contains 100 points, if the outlier ratio is 35% then only 65 points have 

correspondences and 35 points in each point set are merely outliers. In the following 
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figures correspondences are connected with green dashed lines, the outliers in the first 

point set are blue stars, in the second point set the outliers are empty red circles. 

The SCS algorithm doesn’t depend on the proximity assumption to find 

correspondences as in most point matching algorithms [122], [125], but rather it  

depends on simple algebraic principles which makes it easy to implement and 

comprehend;  moreover, SCS uses fast error function with O(N	log	(N)) complexity 

rather than the conventional error function with O(N;) complexity, furthermore, the 

error  function is naturally robust against outliers. 

 

 

  

Figure  6.6: Translation only with no outliers, 

the transformation is restored exactly. 

Figure  6.7: Rotation only with no outliers, this 

case is called “wanog wheeling”. The 

transformation is restored exactly. 

> = è1 0 35.110 1 35.040 0 1 é > = è0.98 −0.16 00.16 0.98 00 0 1é 
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Figure  6.8: Translation only with 10%  outliers, 

the transformation is restored exactly. 

Figure  6.9: Translation only with 20%  outliers, 

the transformation is restored exactly. 

> = è1 0 41.770 1 −17.140 0 1 é > = è1 0 −70.980 1 −10.180 0 1 é 

  

Figure  6.10: Translation only with 30%  outliers, 

the transformation is restored exactly. 

Figure  6.11: Translation only with 40%  

outliers, the transformation is restored exactly. 

> = è1 0 80.220 1 38.420 0 1 é > = è1 0 −19.340 1 −33.090 0 1 é 
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Figure  6.12: Scale only with no outliers, the 

transformation is restored exactly. 

Figure  6.13: Sheer only with no outliers, the 

transformation is restored exactly. 

> = è1.38 0 00 1.38 00 0 1é > = è0.78 0 00 1.21 00 0 1é 

 
 

Figure  6.14: Outliers ratio is 35%. The 

algorithm restored the affine transformation 

exactly. 

Figure  6.15: Outliers ratio is 35%; The 

algorithm restored the affine transformation 

exactly. 

> = è 0.14 2.05 0.11−0.30 −1.37 0.090 0 1 é > = è 0.17 −0.22 1.32−1.81 0.78 0.430 0 1 é 
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Figure  6.16: Outliers ratio is 35%. The 

algorithm restored the affine transformation 

exactly. 

Figure  6.17: Outliers ratio is 35%. The 

algorithm restored the affine transformation 

exactly. 

> = è	0.29 0.06 0.18	0.52 −1.72 1.350 0 1 é > = è	1.25 −0.02 −1.01	0.03 0.77 −1.090 0 1 é 

  

Figure  6.18: Outliers ratio is 30% in 50 points; 

the algorithm restored the affine transformation 

exactly. 

Figure  6.19: Outliers ratio is 20% ; the 

algorithm restored the affine transformation 

exactly. 

> = è1.08 −0.26 −62.850.33 0.59 −56.670 0 1 é T = è−0.08 −0.38 0.10−0.26 −1.69 −0.710 0 1 é 
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Figure  6.20: Outliers ratio is 25%. The 

algorithm restored the affine transformation 

exactly. 

Figure  6.21: Outliers ratio is 25%. The 

algorithm restored the affine transformation 

exactly. 

> = è0.32 −0.81 −1.540.22 −0.58 −0.260 0 1 é > = è0.42 1.11 0.600.49 0.15 −0.600 0 1 é 

  

Figure  6.22: Outliers ratio is 25%; the algorithm 

restored the affine transformation exactly. 

Figure  6.23: Outliers ratio is 50%; the 

algorithm restored the affine transformation 

exactly. 

> = è0.33 −0.86 −49.470.83 0.32 31.010 0 1 é > = è−0.98 −0.96 0.350.19 −1.75 −0.740 0 1 é 
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Figure  6.24: Outliers ratio is 50%; the algorithm 

restored the affine transformation exactly. 

Figure  6.25: Outliers ratio is 50%; the 

algorithm restored the affine transformation 

exactly. 

> = è−0.72 −0.69 00.69 −0.72 00 0 1é > = è0.81 −0.66 −33.970.66 0.81 2.420 0 1 é 

6.11 Comparing the SCS algorithm with other point matching algorithms 

Next we report the performance of 4 different point matching algorithms running the 

same experiment in the same environment and against identical success/fail evaluation. 

The studied algorithms are Scott Longuet-Higgins algorithm followed by RANSAC for 

outlier removal [122], iterative closest point ICP [125] [126], Coherent Point Drift 

[161], and finally the SCS algorithm. The first three algorithms fairly represent the 

spectral, iterative and probabilistic point matching algorithms. We measured the ability 

of each point matching algorithm to recover the transformation between two point sets, 

each point set has 100 points and the first point set is uniformly distributed in the range 

[-100 100]. In each experiment, we have started with outlier free sets and monitored the 

performance of the algorithms, then added outliers to the sets and removed inliers so the 

point set size is always 100 points. For example, the experiment with 20% outliers 

means that each point set has 80 points inliers and 20 points outliers. We have tested 

different transformations including translation only, rotation only, translation, rotation 

and scaling, 5 DOF, and 6 DOF. However, we configured all algorithms to the affine 

settings so that we don’t assume that we know the transformation model as a priori. 
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Success out of 1000 runs, translation only 

Outliers 0% 10% 20% 30% 40% 50% 

SL- RANSAC 1000 1000 989 938 804 557 

ICP 935 193 55 11 3 2 

CPD 1000 1000 1000 979 214 0 

SCS 1000 1000 996 952 791 507 

Average elapsed time in seconds for each run- translation only 

Outliers 0% 10% 20% 30% 40% 50% 

SL- RANSAC 0.074 0.124 0.244 0.464 0.781 1.106 

ICP 0.0011 0.0012 0.0012 0.0013 0.0013 0.0014 

CPD 0.0190 0.0221 0.0252 0.0326 0.0393 0.0351 

SCS 0.4661 0.4702 0.5902 1.1535 2.1957 3.6989 

Table  6.8: The performance of four different algorithms, see text for details. 

Success out of 1000 runs, rotation only 

Outliers 0% 10% 20% 30% 40% 50% 

SL- RANSAC 164 168 161 135 132 120 

ICP 335 74 17 7 2 0 

CPD 627 637 624 570 135 0 

SCS 1000 1000 996 933 710 444 

Average elapsed time in seconds for each run- rotation only 

Outliers 0% 10% 20% 30% 40% 50% 

SL- RANSAC 1.4866 1.4186 1.4394 1.4639 1.4655 1.5083 

ICP 0.0085 0.0094 0.0090 0.0093 0.0095 0.0098 

CPD 0.0288 0.0305 0.0329 0.0374 0.0417 0.0387 

SCS 0.4722 0.5155 0.7249 1.4916 2.8869 4.1285 

Table  6.9: The performance of four different algorithms, see text for details. 
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Success out of 1000 runs, translation, rotation and scaling 

Outliers 0% 10% 20% 30% 40% 50% 

SL- RANSAC 267 234 204 170 116 85 

ICP 2 0 1 0 0 0 

CPD 632 626 620 565 123 0 

SCS 1000 1000 997 932 747 415 

Average elapsed time in seconds for each run, translation, rotation and scaling  

Outliers 0% 10% 20% 30% 40% 50% 

SL- RANSAC 1.2666 1.3179 1.3734 1.4401 1.5203 1.5595 

ICP 0.0013 0.0013 0.0013 0.0013 0.0014 0.0013 

CPD 0.0296 0.0307 0.0334 0.0374 0.0415 0.0389 

SCS 0.4654 0.5129 0.7174 1.4647 2.6961 4.2332 

Table  6.10: The performance of four different algorithms, see text for details 

Success out of 1000 runs, 5 DOF (Translation, rotation, scale and sheer). 

Outliers 0% 10% 20% 30% 40% 50% 

SL- RANSAC 278 222 195 164 124 74 

ICP 0 0 0 0 0 0 

CPD 632 639 595 590 126 1 

SCS 1000 1000 996 943 730 421 

Average elapsed time in seconds for each run, 5 DOF 

Outliers 0% 10% 20% 30% 40% 50% 

SL- RANSAC 1.2447 1.3483 1.4021 1.4557 1.5188 1.5661 

ICP 0.0013 0.0014 0.0013 0.0014 0.0014 0.0014 

CPD 0.0298 0.0314 0.0339 0.0379 0.0418 0.0391 

SCS 0.4734 0.5091 0.7404 1.3914 2.8625 4.2260 

Table  6.11: The performance of four different algorithms, see text for details 
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Success out of 1000 runs, 6 DOF. 

Outliers 0% 10% 20% 30% 40% 50% 

SL- RANSAC 41 33 38 26 22 9 

ICP 0 0 0 0 0 0 

CPD 138 135 140 113 32 0 

SCS 1000 999 992 927 686 336 

Average elapsed time in seconds for each run, 6 DOF. 

Outliers 0% 10% 20% 30% 40% 50% 

SL- RANSAC 1.5723 1.5936 1.5878 1.6021 1.6083 1.6246 

ICP 0.0015 0.0016 0.0016 0.0018 0.0017 0.0016 

CPD 0.0383 0.0398 0.0382 0.0393 0.0404 0.0408 

SCS 0.4652 0.5120 0.7335 1.5001 3.0026 4.4418 

Table  6.12: The performance of four different algorithms, see text for details 

6.11.1 Discussion 

From the tables 6.80 to 6.12, it can be argued that the SCS algorithm is the slowest 

algorithm between all other algorithms. However, it is clear also that the SCS is the 

most robust algorithm. While execution time is really important, we think that there is 

little point in comparing the execution time between two algorithms if they do not 

deliver the same robustness. In this context, the SCS algorithm fails if the target 

transformation is translation only and the outliers’ ratio is within 30% (see Table  6.8) in 

this case CPD [161] is a better solution. However, the SCS algorithm wins elsewhere as 

it recovers transformations successfully even with high outliers rates where other 

algorithms fail. Moreover, the SCS algorithm is agnostic towards transformations, in 

other words, the SCS algorithm has very similar success rates whether it solves for 

translation, rotation, 5 DOF or 6 DOF transformations. Furthermore, the SCS algorithm 

has approximately the same execution time regardless of the transformation it searches 

for, in fact, the execution time depends mostly on the outliers’ ratio. Also, it is possible 

to decrease the execution time by adopting parallel implementation.  Figure  6.26 and 

Figure  6.27 both illustrate the performance of the SCS and CPD algorithms against 

outliers respectively.  
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Figure  6.26: SCS performance against outliers for different transformations. T: 

translation, R: Rotation, S: scale. 

 
Figure  6.27: CPD [161] performance against outliers for different transformations. T: 

translation, R: Rotation, S: scale. 
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6.11.2 Where the SCS fails  

Although the SCS algorithm is quite robust against outliers, there are some cases where 

it fails completely even with no outliers. These cases occur when there is a strong 

dependency between ) and * coordinates in the point sets. For example, let us consider 

the case when there is a linear relation between ) and * for all points in A i.e. * =∝ ) 

for some constant ∝. The algorithms fails to pick three pairs to infer the transformation 

as the pairs should not be collinear; however, all points in this case are collinear so the 

algorithm fails to infer the transformation. This case is a common problem shared 

between all point matching algorithms as it is ill-conditioned problem. 

This problem doesn’t exist if the relation is not completely linear as illustrated in Figure 

 6.28. This problem doesn’t exist in acoustic images as features are fairly modelled with 

uniform distribution in the acoustic image. 

  

a b 

Figure  6.28: a) When * =∝ ) the SCS algorithm will not be able to recover the 

transformation. b) Adding Gaussian noise to the * coordinates with 10−6
 std enables the 

SCS to recover the transformation. 
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6.12 Applying the SCS algorithm on acoustic images 

 The correspondence problem between two acoustic images is different from the 

correspondence problem between images obtained from optical cameras, mainly due to 

the nature of sensing the environment and building the images. The difference can be 

summarized in two points 1) optical images have abundant features in contrast to scarce 

features in acoustic images 2) SNR in optical images is much higher than SNR in 

acoustic images which affects the locus of the features. We use the aforementioned SCS 

methodology to find the best 2D-affine transform between two acoustic images and 

assign correspondences between them. 

Dominant feature extraction algorithms for optical images do not usually select features 

close the edges or with high contrast; however, pixels with high contrast in acoustic 

images should be considered as features because they correspond to objects with high 

acoustic impedance in the imaged scene, therefore, we use simple and intuitive way to 

select pixels with high contrast relative to the image background. 

 Next, we explain the algorithm to extract features and find the correspondences 

between two acoustic images  Ι< and Ι;. 

1. Divide the first image Ι< to small square blocks (we used 25x25 pixels in an 

image obtained from BlueView P900-130 sonar). 

2. Calculate the standard deviation (std) of each block and select blocks exceeding 

pre-determined threshold. 

3. Select the point with the maximum intensity in each block selected in the 

previous step, these points will serve as a core for candidate features. 

4. Apply steps 1 to 3 for the second image Ι; 

5. Initialize candidate correspondences for each feature in the first image Ι< with 

features in the second image Ι;; each feature in the first image Ι< will have a set 

of candidates so we can write:  

F<ºCandidates = �F;¼ ∶ 	 F<�,�º − 	γ ≤ F;�,�¼ ≤	F<�,�º + γ� 
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Where i, j are indexes for the features in the first and second images 

respectively, γ is the maximum distance (measured in pixels) a feature can move 

in any direction in the acoustic image due to the vehicle movement between two 

successive scans, thus γ is related to the maximum expected speed of the 

submerged vehicle and to the applied frame rate. 

6. Apply SCS algorithm on the features F<º  and F;¼ taking into account the previous 

constraint in the filtering process. 

The Std threshold affects the number of extracted features, which can be dynamically 

adjusted to limit the number of extracted features, this is particularly important as the 

number of features in both images should be the same (or close to each other) when we 

apply the SCS algorithm, Figures 6.29 , 6.30 , 6.31 , and 6.32 illustrate the extracted 

features with different std threshold. 

SCS algorithm surpass SIFT and SURF in matching acoustic images, we have seen in 

 Chapter 2, how SURF and SIFT gave more than 30% mismatches (Figure  2.14 and 

Figure  2.16), in contract, SCS algorithm matched the same frames with no outliers. This 

is mainly because of the intrinsic methodology of the SCS. While SURF and SIFT 

search for feature to feature best match, SCS searches for the best transformation which 

maps the first features set to the other.  
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Figure  6.29: The original sonar image obtained from BlueView P900 in FAU marina 

 

Figure  6.30: selected features from Figure  6.29 using std threshold 5. 



Sorting the Correspondence Space 

 

 
156 

 
  

 

 

Figure  6.31: selected features from Figure  6.29 using std threshold 4. 

 

Figure  6.32: selected features from Figure  6.29 using std threshold 3. 



Sorting the Correspondence Space 

 

 
157 

 
  

 

 
Figure  6.33: SCS features matched perfectly with the features in Figure  6.34 

 

Figure  6.34: SCS features matched perfectly with the features in Figure  6.33. 

The inferred transformation is : T = è0.9953 −0.1241 3.03650.1534 1.0250 −123.42640 0 1 é 
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6.13 Conclusion 

In this Chapter, we have introduced a new algorithm, named Sorting the 

Correspondence Space (SCS), for point matching. SCS performs well in reducing the 

search space from 6 degrees of freedom in the transformation matrix to only one 

variable named 6. Also, the algorithm is robust against outliers and can search for the 

best match in noisy feature sets. We have shown that SCS can be utilized to register 

acoustic images and find the best transformation matrix between successive sonar 

images. This can be employed in motion estimation and 3D reconstruction algorithms 

serving AUV platforms. 
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Chapter 7  

Conclusion 

 

7.1 Summary 

In this thesis, we presented a new method for 3D reconstruction of underwater 

environment dubbed Acoustic Stereo Imaging (ASI) system. Two forward-looking 

sonars are used in the ASI system to reconstruct the scanned scene in a similar manner 

to classic stereo vision in terrestrial applications. The vertical ASI configuration is 

discussed and the according geometry is inferred to solve for the correspondence 

problem in two sonar views. The performance of the system is examined depending on 

different sonar parameters and the geometrical relation between both sonars. ASI 

system has the merits found in the T configured sonars regarding the cheap 

implementation, yet it solves its main demerit in terms of long delay scanning 3D 

volumes. 

Motion estimation for Autonomous Underwater Vehicles (AUV) has a close relation to 

3D reconstruction of the scanned scene. In this thesis we introduced a new motion 

estimation method based on two concepts of sampling the sonar arc and the Modified 

Discrete Uniform Distribution (MDUD). The motion estimation algorithm utilizes 

weighted-Hough array to solve for the ego-motion of the vehicle using the 

aforementioned concepts. We explore the impact of selected key factors on the accuracy 

of motion estimation from 2-D sonar cameras. These factors comprise the field of view 

of the camera, the number of feature matches in a motion sequence, and the inaccuracy 

in the knowledge of their image positions. The significance of each factor is analyzed 

based on the variances of the estimated motion parameters. 

Autonomous Underwater Vehicles (AUVs) utilizing the proposed motion estimation 

framework and equipped with the ASI system for short-range 3D imaging can be used 

for enhanced object detection and classification. Numerous applications may benefit 

from this system including mine countermeasure missions, harbour monitoring, 

routinely dam inspection, search and rescue tasks, and coral reef monitoring to name but 

a few. 
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3D reconstruction and motion estimation both require image registration as a 

prerequisite, acoustic image registration is a challenging problem compared to the well-

known correspondence problem in optical images. A new algorithm called Sorting the 

Correspondence Space (SCS) is introduced to tackle acoustic image registration; it 

serves 3D reconstruction and motion estimation for AUVs alike. 

SCS algorithm can be easily adopted in different domains other than acoustic image 

registration; the SCS algorithm is a strong alternative for RANSAC and RANSAC-

based algorithms introduced for 2D point matching. It can be used in medical image 

analysis, blurred image registration, and template recognition. 

7.2 Further Work 

There are different paths for future developments based on the methods which have 

been investigated in this thesis. Acoustic Stereo Imaging can be developed further in the 

horizontal configuration which may serve torpedo-shape vehicles. Also arbitrary 

configuration is of an interest for AUVs with complex geometry. ASI system calibration 

is an important project in the context of the ASI design and implementation, previous 

work can be a starting point for this project [162]. Integrating the ASI system with 

tracking methods similar to those proposed in [147] is an interesting topic. Also, 3D 

point registration, mesh building and outliers filtering are immediate aspects to consider 

in future ASI developments.  

In motion estimation, acoustic image enhancement is an important step to improve 

shadow, background and reflection segmentation. This step has a major effect on 

motion estimation accuracy and can be considered for future developments. Different 

statistical methodologies may be investigated to exploit the arc sampling concept and 

the modified discrete uniform distribution (MDUD), these methods may interpret 

variations in the acoustic images to infer more distinctive features in the scanned 

environment. These features can be employed in proceeding motion estimation 

algorithms. Furthermore, Kalman filters and particle filters can be integrated with the 

proposed algorithms to obtain better measurements from the sensors on board of the 

AUVs. 
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As we have stated throughout the thesis that the correspondence problem is a 

prerequisite to implement 3D reconstruction or motion estimation using acoustic 

imaging. We have introduced the SCS algorithm for robust point matching and applied 

the SCS algorithm to register acoustic images. Further SCS developments may include 

investigating different outlier rejection approaches, extending the SCS algorithm to 

accommodate projective transformation (8 degrees of freedom), and implementing the 

SCS algorithm for 3D points registration. Also, enhanced SCS implementation can 

speed up the algorithm especially in p)* filtering.   Detailed analysis on the parameters 

of the SCS algorithm and its performance may open the door for different applications 

in the optical and/or medical domains.  

Another important subject in the acoustic image registration is robust feature extraction. 

This step has a profound impact on the performance of the image registration algorithm 

and other subsequent algorithms for 3D reconstruction or motion estimation. In other 

words, developing robust feature extraction algorithms specifically designed for 

acoustic images is an emerging necessity for successful underwater 3D reconstruction 

and motion estimation algorithms.  
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Appendix A DIDSON Specifications 

 

Detection Mode 

Operating Frequency 1.1 MHz 

Beamwidth (two-way) 0.4° H by 14° V 

Number of Beams 48 

Beam Spacing 0.6° 

(Extended) Window Start 0.83m to 52.3m in 0.83m steps 

Frequency (Extended) Window Length 5m, 10m, 20m, 40m 

Bin Size (relative to window length) 10mm, 20mm, 40mm, 80mm 

Operating Range Pulse Length (relative to 

window length) 
18µs, 36µs, 72µs, 144µs 

Identification Mode 

Operating Frequency 1.8 MHz 

Beamwidth (two-way) 0.3° H by 14° V 

Number of Beams 96 

Beam Spacing 0.3° 

(Extended) Window Start 0.42m to 26.1m in 0.42m steps 

Frequency (Extended) Window Length 1.25m, 2.5m, 5m, 10m 

Bin Size (relative to window length) 2.5mm, 5mm, 10mm, 20mm 

Operating Range Pulse Length (relative to 

window length) 
4.5hd, 9hd, 18hd, 36hd 

Both Modes 

Max Frame Rate (range dependent)  4-21 frames/s 

Field-of-view  29° 

Remote Focus  1m to Infinity 

Control & Data Interface  UDP Ethernet 

Aux Display  NTSC Video 

Max cable length  (100/10BaseT) 61m/152m (200ft/500ft) 

Max cable length  (twisted pair, Patton Extender) 1220m 

(4000ft) 

Power Consumption  25 Watts typical 

Weight in Air  7.9 kg (17.4 lb) 

Weight in Sea Water  1.0 kg (2.2 lb) 

Dimensions  31.0cm x 20.6cm x 17.1cm 



 

163 

Appendix B BlueView P900-130 

 

Sonar Specification 

Operating Frequency 900 kHz 

Update Rate Up to 15 Hz 

Field-of-View 130° 

Max Range 100 m  

Optimum Range 2 - 60 m 

Beam Width 1° x 20° 

Number of Beams 768 

Beam Spacing 0.18° 

Range Resolution 0.0256 m 

Interface 

Supply Voltage 12 - 48 VDC 

Power Consumption 19 W/23 W max 

Connectivity Ethernet/VDSL 

Mechanical 

Weight in Air 2.58 Kg  

Weight in Water 0.63 Kg 

Depth Rating 1,000 m 

Size L x W 0.29 x 0.13 m 
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Appendix C Eclipse 

 

Eclipse is a highly versatile multibeam sonar which has the ability to clearly visualise 

the underwater environment in 3D. 

The Eclipse carries out horizontal and vertical measurements through the use of 

Tritech’s true time-delay beamforming and electronic beam steering technology. This 

coupled with the 3D underwater visualization make Eclipse the most flexible multibeam 

sonar on the market and the solution for mattress lay in zero visibility and also in search 

and salvage operations and pipeline inspections. 

Eclipse can be deployed on an ROV at depths down to 1000m both in Forward Looking 

Navigation and 3D Model View modes. 

Forward Looking Navigation 

In forward-looking or search mode, Eclipse produces 2D imagery which can be used to 

aid navigation and obstacle avoidance when mounted on a ROV. 

3D Model View 

Eclipse's 3D Model View allows imaging up to 40m range, with 0.5º sweep steps. By 

electronically sweeping the 1.5º x 120º profiling beam, a 120º (horizontal) by 45 º 

(vertical) volumes can be produced ahead of the sonar. Depending on range setting, the 

Eclipse can image a complete a volume scan in less than one second. 

Measurements possible with Eclipse's 3D model view include; range, bearing, 

horizontal and vertical distance and the slope angle between two points of interest. The 

3D volume image can also be digitised onto a points cloud for export to third party 

applications for further processing. 
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Operating Frequency  240 kHz 

Acoustic Angular Resolution  1.5° 

Beam Width  120° 

Number of Beams  256 

Effective Angular Resolution  0.5° 

Range Resolution  2.5cm (0.98”) 

Typical Ranges 2D forward looking = 60m (197ft) 

 2D search mode = 120m (393ft) 

 3D = 40m (131ft) 

Minimum Focus Distance  0.4m (1.31ft) 

Scan Rate  140Hz @ 5m, 7Hz @ 100m 
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Appendix D Author Publications 

 

 
 

 

� Assalih, H. Petillot, Y. and Bell, J. "Acoustic Stereo Imaging (ASI) system" in 

OCEANS 2009 IEEE – Germany, pp 1-7, 11-14 May 2009 

 

� Assalih, H. Negahdaripour, S. and Petillot, Y., J. " 3-D Motion Estimation in 

passive navigation by acoustic imaging" in OCEANS 2010 IEEE – WA Seattle, 

pp 1-6, 20-23 Sept. 2010 

 

� Negahdaripour, S. Assalih, H. and Petillot, Y., J. " Performance and accuracy in 

visual motion computation from FS sonar video sequences" in OCEANS 2010 

IEEE – WA Seattle, pp 1-7, 20-23 Sept. 2010 

 

� Assalih, H. Negahdaripour, S. and Petillot, Y., J. "Sorting the Corespondence 

Space" - to be published soon. 
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