76 research outputs found

    Multi-sensor human action recognition with particular application to tennis event-based indexing

    Get PDF
    The ability to automatically classify human actions and activities using vi- sual sensors or by analysing body worn sensor data has been an active re- search area for many years. Only recently with advancements in both fields and the ubiquitous nature of low cost sensors in our everyday lives has auto- matic human action recognition become a reality. While traditional sports coaching systems rely on manual indexing of events from a single modality, such as visual or inertial sensors, this thesis investigates the possibility of cap- turing and automatically indexing events from multimodal sensor streams. In this work, we detail a novel approach to infer human actions by fusing multimodal sensors to improve recognition accuracy. State of the art visual action recognition approaches are also investigated. Firstly we apply these action recognition detectors to basic human actions in a non-sporting con- text. We then perform action recognition to infer tennis events in a tennis court instrumented with cameras and inertial sensing infrastructure. The system proposed in this thesis can use either visual or inertial sensors to au- tomatically recognise the main tennis events during play. A complete event retrieval system is also presented to allow coaches to build advanced queries, which existing sports coaching solutions cannot facilitate, without an inordi- nate amount of manual indexing. The event retrieval interface is evaluated against a leading commercial sports coaching tool in terms of both usability and efficiency

    Highly-Individualized Physical Therapy Instruction beyond the Clinic Using Wearable Inertial Sensors

    Get PDF
    Musculoskeletal conditions, often requiring rehabilitation, affect one-third of the U.S. population annually. This paper presents rehabilitation assistive technology that includes body-worn motion sensors and a mobile application that extends the reach of a physical rehabilitation specialist beyond the clinic to ensure that home exercises are performed with the same precision as under clinical supervision. Assisted by a specialist in the clinic, the wearable sensors and user interface developed allow the capture of individualized exercises unique to the patient’s physical abilities. Beyond the clinical setting, the system can assist patients by providing real-time corrective feedback to repeat these exercises through a correct and complete arc of motion for the prescribed number of repetitions. An inertial measurement unit (IMU) is used on the body part to be exercised to capture its pose. In this paper, we present a kinematics data processing approach to defining custom exercises with flexibility in terms of where it is worn and the nature of the exercise, as well as real-time corrective feedback parameters. The system is tested on two exercises performed by a healthy individual to demonstrate the feasibility and accuracy of the approach. We demonstrate how it can improve exercise adherence by assisting users in reaching the full prescribed range of motion and stay on the ideal plane of motion and improve hold time. Preliminary results from an ongoing clinical trial are presented

    Pushing the limits of inertial motion sensing

    Get PDF

    Fusion of wearable and visual sensors for human motion analysis

    No full text
    Human motion analysis is concerned with the study of human activity recognition, human motion tracking, and the analysis of human biomechanics. Human motion analysis has applications within areas of entertainment, sports, and healthcare. For example, activity recognition, which aims to understand and identify different tasks from motion can be applied to create records of staff activity in the operating theatre at a hospital; motion tracking is already employed in some games to provide an improved user interaction experience and can be used to study how medical staff interact in the operating theatre; and human biomechanics, which is the study of the structure and function of the human body, can be used to better understand athlete performance, pathologies in certain patients, and assess the surgical skill of medical staff. As health services strive to improve the quality of patient care and meet the growing demands required to care for expanding populations around the world, solutions that can improve patient care, diagnosis of pathology, and the monitoring and training of medical staff are necessary. Surgical workflow analysis, for example, aims to assess and optimise surgical protocols in the operating theatre by evaluating the tasks that staff perform and measurable outcomes. Human motion analysis methods can be used to quantify the activities and performance of staff for surgical workflow analysis; however, a number of challenges must be overcome before routine motion capture of staff in an operating theatre becomes feasible. Current commercial human motion capture technologies have demonstrated that they are capable of acquiring human movement with sub-centimetre accuracy; however, the complicated setup procedures, size, and embodiment of current systems make them cumbersome and unsuited for routine deployment within an operating theatre. Recent advances in pervasive sensing have resulted in camera systems that can detect and analyse human motion, and small wear- able sensors that can measure a variety of parameters from the human body, such as heart rate, fatigue, balance, and motion. The work in this thesis investigates different methods that enable human motion to be more easily, reliably, and accurately captured through ambient and wearable sensor technologies to address some of the main challenges that have limited the use of motion capture technologies in certain areas of study. Sensor embodiment and accuracy of activity recognition is one of the challenges that affect the adoption of wearable devices for monitoring human activity. Using a single inertial sensor, which captures the movement of the subject, a variety of motion characteristics can be measured. For patients, wearable inertial sensors can be used in long-term activity monitoring to better understand the condition of the patient and potentially identify deviations from normal activity. For medical staff, inertial sensors can be used to capture tasks being performed for automated workflow analysis, which is useful for staff training, optimisation of existing processes, and early indications of complications within clinical procedures. Feature extraction and classification methods are introduced in thesis that demonstrate motion classification accuracies of over 90% for five different classes of walking motion using a single ear-worn sensor. To capture human body posture, current capture systems generally require a large number of sensors or reflective reference markers to be worn on the body, which presents a challenge for many applications, such as monitoring human motion in the operating theatre, as they may restrict natural movements and make setup complex and time consuming. To address this, a method is proposed, which uses a regression method to estimate motion using a subset of fewer wearable inertial sensors. This method is demonstrated using three sensors on the upper body and is shown to achieve mean estimation accuracies as low as 1.6cm, 1.1cm, and 1.4cm for the hand, elbow, and shoulders, respectively, when compared with the gold standard optical motion capture system. Using a subset of three sensors, mean errors for hand position reach 15.5cm. Unlike human motion capture systems that rely on vision and reflective reference point markers, commonly known as marker-based optical motion capture, wearable inertial sensors are prone to inaccuracies resulting from an accumulation of inaccurate measurements, which becomes increasingly prevalent over time. Two methods are introduced in this thesis, which aim to solve this challenge using visual rectification of the assumed state of the subject. Using a ceiling-mounted camera, a human detection and human motion tracking method is introduced to improve the average mean accuracy of tracking to within 5.8cm in a laboratory of 3m × 5m. To improve the accuracy of capturing the position of body parts and posture for human biomechanics, a camera is also utilised to track the body part movements and provide visual rectification of human pose estimates from inertial sensing. For most subjects, deviations of less than 10% from the ground truth are achieved for hand positions, which exhibit the greatest error, and the occurrence of sources of other common visual and inertial estimation errors, such as measurement noise, visual occlusion, and sensor calibration are shown to be reduced.Open Acces

    The optimization of gesture recognition techniques for resource-constrained devices

    Get PDF
    Gesture recognition is becoming increasingly popular as an input mechanism for human-computer interfaces. The availability of MEMS (Micro-Electromechanical System) 3-axis linear accelerometers allows for the design of an inexpensive mobile gesture recognition system. Wearable inertial sensors are a low-cost, low-power solution to recognize gestures and, more generally, track the movements of a person. Gesture recognition algorithms have traditionally only been implemented in cases where ample system resources are available, i.e. on desktop computers with fast processors and large amounts of memory. In the cases where a gesture recognition algorithm has been implemented on a resource-constrained device, only the simplest algorithms were implemented to recognize only a small set of gestures. Current gesture recognition technology can be improved by making algorithms faster, more robust, and more accurate. The most dramatic results in optimization are obtained by completely changing an algorithm to decrease the number of computations. Algorithms can also be optimized by profiling or timing the different sections of the algorithm to identify problem areas. Gestures have two aspects of signal characteristics that make them difficult to recognize: segmentation ambiguity and spatio-temporal variability. Segmentation ambiguity refers to not knowing the gesture boundaries, and therefore reference patterns have to be matched with all possible segments of input signals. Spatio-temporal variability refers to the fact that each repetition of the same gesture varies dynamically in shape and duration, even for the same gesturer. The objective of this study was to evaluate the various gesture recognition algorithms currently in use, after which the most suitable algorithm was optimized in order to implement it on a mobile device. Gesture recognition techniques studied include hidden Markov models, artificial neural networks and dynamic time warping. A dataset for evaluating the gesture recognition algorithms was gathered using a mobile device’s embedded accelerometer. The algorithms were evaluated based on computational efficiency, recognition accuracy and storage efficiency. The optimized algorithm was implemented in a user application on the mobile device to test the empirical validity of the study.Dissertation (MEng)--University of Pretoria, 2009.Electrical, Electronic and Computer Engineeringunrestricte

    Augmented reality (AR) for surgical robotic and autonomous systems: State of the art, challenges, and solutions

    Get PDF
    Despite the substantial progress achieved in the development and integration of augmented reality (AR) in surgical robotic and autonomous systems (RAS), the center of focus in most devices remains on improving end-effector dexterity and precision, as well as improved access to minimally invasive surgeries. This paper aims to provide a systematic review of different types of state-of-the-art surgical robotic platforms while identifying areas for technological improvement. We associate specific control features, such as haptic feedback, sensory stimuli, and human-robot collaboration, with AR technology to perform complex surgical interventions for increased user perception of the augmented world. Current researchers in the field have, for long, faced innumerable issues with low accuracy in tool placement around complex trajectories, pose estimation, and difficulty in depth perception during two-dimensional medical imaging. A number of robots described in this review, such as Novarad and SpineAssist, are analyzed in terms of their hardware features, computer vision systems (such as deep learning algorithms), and the clinical relevance of the literature. We attempt to outline the shortcomings in current optimization algorithms for surgical robots (such as YOLO and LTSM) whilst providing mitigating solutions to internal tool-to-organ collision detection and image reconstruction. The accuracy of results in robot end-effector collisions and reduced occlusion remain promising within the scope of our research, validating the propositions made for the surgical clearance of ever-expanding AR technology in the future

    Augmented Reality (AR) for Surgical Robotic and Autonomous Systems: State of the Art, Challenges, and Solutions

    Get PDF
    Despite the substantial progress achieved in the development and integration of augmented reality (AR) in surgical robotic and autonomous systems (RAS), the center of focus in most devices remains on improving end-effector dexterity and precision, as well as improved access to minimally invasive surgeries. This paper aims to provide a systematic review of different types of state-of-the-art surgical robotic platforms while identifying areas for technological improvement. We associate specific control features, such as haptic feedback, sensory stimuli, and human–robot collaboration, with AR technology to perform complex surgical interventions for increased user perception of the augmented world. Current researchers in the field have, for long, faced innumerable issues with low accuracy in tool placement around complex trajectories, pose estimation, and difficulty in depth perception during two-dimensional medical imaging. A number of robots described in this review, such as Novarad and SpineAssist, are analyzed in terms of their hardware features, computer vision systems (such as deep learning algorithms), and the clinical relevance of the literature. We attempt to outline the shortcomings in current optimization algorithms for surgical robots (such as YOLO and LTSM) whilst providing mitigating solutions to internal tool-to-organ collision detection and image reconstruction. The accuracy of results in robot end-effector collisions and reduced occlusion remain promising within the scope of our research, validating the propositions made for the surgical clearance of ever-expanding AR technology in the future

    Synaptic Learning for Neuromorphic Vision - Processing Address Events with Spiking Neural Networks

    Get PDF
    Das Gehirn übertrifft herkömmliche Computerarchitekturen in Bezug auf Energieeffizienz, Robustheit und Anpassungsfähigkeit. Diese Aspekte sind auch für neue Technologien wichtig. Es lohnt sich daher, zu untersuchen, welche biologischen Prozesse das Gehirn zu Berechnungen befähigen und wie sie in Silizium umgesetzt werden können. Um sich davon inspirieren zu lassen, wie das Gehirn Berechnungen durchführt, ist ein Paradigmenwechsel im Vergleich zu herkömmlichen Computerarchitekturen erforderlich. Tatsächlich besteht das Gehirn aus Nervenzellen, Neuronen genannt, die über Synapsen miteinander verbunden sind und selbstorganisierte Netzwerke bilden. Neuronen und Synapsen sind komplexe dynamische Systeme, die durch biochemische und elektrische Reaktionen gesteuert werden. Infolgedessen können sie ihre Berechnungen nur auf lokale Informationen stützen. Zusätzlich kommunizieren Neuronen untereinander mit kurzen elektrischen Impulsen, den so genannten Spikes, die sich über Synapsen bewegen. Computational Neuroscientists versuchen, diese Berechnungen mit spikenden neuronalen Netzen zu modellieren. Wenn sie auf dedizierter neuromorpher Hardware implementiert werden, können spikende neuronale Netze wie das Gehirn schnelle, energieeffiziente Berechnungen durchführen. Bis vor kurzem waren die Vorteile dieser Technologie aufgrund des Mangels an funktionellen Methoden zur Programmierung von spikenden neuronalen Netzen begrenzt. Lernen ist ein Paradigma für die Programmierung von spikenden neuronalen Netzen, bei dem sich Neuronen selbst zu funktionalen Netzen organisieren. Wie im Gehirn basiert das Lernen in neuromorpher Hardware auf synaptischer Plastizität. Synaptische Plastizitätsregeln charakterisieren Gewichtsaktualisierungen im Hinblick auf Informationen, die lokal an der Synapse anliegen. Das Lernen geschieht also kontinuierlich und online, während sensorischer Input in das Netzwerk gestreamt wird. Herkömmliche tiefe neuronale Netze werden üblicherweise durch Gradientenabstieg trainiert. Die durch die biologische Lerndynamik auferlegten Einschränkungen verhindern jedoch die Verwendung der konventionellen Backpropagation zur Berechnung der Gradienten. Beispielsweise behindern kontinuierliche Aktualisierungen den synchronen Wechsel zwischen Vorwärts- und Rückwärtsphasen. Darüber hinaus verhindern Gedächtnisbeschränkungen, dass die Geschichte der neuronalen Aktivität im Neuron gespeichert wird, so dass Verfahren wie Backpropagation-Through-Time nicht möglich sind. Neuartige Lösungen für diese Probleme wurden von Computational Neuroscientists innerhalb des Zeitrahmens dieser Arbeit vorgeschlagen. In dieser Arbeit werden spikende neuronaler Netzwerke entwickelt, um Aufgaben der visuomotorischen Neurorobotik zu lösen. In der Tat entwickelten sich biologische neuronale Netze ursprünglich zur Steuerung des Körpers. Die Robotik stellt also den künstlichen Körper für das künstliche Gehirn zur Verfügung. Auf der einen Seite trägt diese Arbeit zu den gegenwärtigen Bemühungen um das Verständnis des Gehirns bei, indem sie schwierige Closed-Loop-Benchmarks liefert, ähnlich dem, was dem biologischen Gehirn widerfährt. Auf der anderen Seite werden neue Wege zur Lösung traditioneller Robotik Probleme vorgestellt, die auf vom Gehirn inspirierten Paradigmen basieren. Die Forschung wird in zwei Schritten durchgeführt. Zunächst werden vielversprechende synaptische Plastizitätsregeln identifiziert und mit ereignisbasierten Vision-Benchmarks aus der realen Welt verglichen. Zweitens werden neuartige Methoden zur Abbildung visueller Repräsentationen auf motorische Befehle vorgestellt. Neuromorphe visuelle Sensoren stellen einen wichtigen Schritt auf dem Weg zu hirninspirierten Paradigmen dar. Im Gegensatz zu herkömmlichen Kameras senden diese Sensoren Adressereignisse aus, die lokalen Änderungen der Lichtintensität entsprechen. Das ereignisbasierte Paradigma ermöglicht eine energieeffiziente und schnelle Bildverarbeitung, erfordert aber die Ableitung neuer asynchroner Algorithmen. Spikende neuronale Netze stellen eine Untergruppe von asynchronen Algorithmen dar, die vom Gehirn inspiriert und für neuromorphe Hardwaretechnologie geeignet sind. In enger Zusammenarbeit mit Computational Neuroscientists werden erfolgreiche Methoden zum Erlernen räumlich-zeitlicher Abstraktionen aus der Adressereignisdarstellung berichtet. Es wird gezeigt, dass Top-Down-Regeln der synaptischen Plastizität, die zur Optimierung einer objektiven Funktion abgeleitet wurden, die Bottom-Up-Regeln übertreffen, die allein auf Beobachtungen im Gehirn basieren. Mit dieser Einsicht wird eine neue synaptische Plastizitätsregel namens "Deep Continuous Local Learning" eingeführt, die derzeit den neuesten Stand der Technik bei ereignisbasierten Vision-Benchmarks erreicht. Diese Regel wurde während eines Aufenthalts an der Universität von Kalifornien, Irvine, gemeinsam abgeleitet, implementiert und evaluiert. Im zweiten Teil dieser Arbeit wird der visuomotorische Kreis geschlossen, indem die gelernten visuellen Repräsentationen auf motorische Befehle abgebildet werden. Drei Ansätze werden diskutiert, um ein visuomotorisches Mapping zu erhalten: manuelle Kopplung, Belohnungs-Kopplung und Minimierung des Vorhersagefehlers. Es wird gezeigt, wie diese Ansätze, welche als synaptische Plastizitätsregeln implementiert sind, verwendet werden können, um einfache Strategien und Bewegungen zu lernen. Diese Arbeit ebnet den Weg zur Integration von hirninspirierten Berechnungsparadigmen in das Gebiet der Robotik. Es wird sogar prognostiziert, dass Fortschritte in den neuromorphen Technologien und bei den Plastizitätsregeln die Entwicklung von Hochleistungs-Lernrobotern mit geringem Energieverbrauch ermöglicht
    corecore