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Abstract

The ability to automatically classify human actions and activities using vi-

sual sensors or by analysing body worn sensor data has been an active re-

search area for many years. Only recently with advancements in both fields

and the ubiquitous nature of low cost sensors in our everyday lives has auto-

matic human action recognition become a reality. While traditional sports

coaching systems rely on manual indexing of events from a single modality,

such as visual or inertial sensors, this thesis investigates the possibility of cap-

turing and automatically indexing events from multimodal sensor streams.

In this work, we detail a novel approach to infer human actions by fusing

multimodal sensors to improve recognition accuracy. State of the art visual

action recognition approaches are also investigated. Firstly we apply these

action recognition detectors to basic human actions in a non-sporting con-

text. We then perform action recognition to infer tennis events in a tennis

court instrumented with cameras and inertial sensing infrastructure. The

system proposed in this thesis can use either visual or inertial sensors to au-

tomatically recognise the main tennis events during play. A complete event

retrieval system is also presented to allow coaches to build advanced queries,

which existing sports coaching solutions cannot facilitate, without an inordi-

nate amount of manual indexing. The event retrieval interface is evaluated

against a leading commercial sports coaching tool in terms of both usability

and efficiency.
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Chapter 1

Introduction

Recent advances in computer vision and human motion detection offer great

potential to many fields today, such as military operations, assisted living

applications, medical applications, sport and leisure applications to name

but a few. As mass production and more efficient approaches drive down

the cost of visual and inertial sensors, the amount of data available from

such sensory channels increases. The potential to fuse data from multiple

sensors such as low cost cameras and inertial sensors attached to the human

body potentially allows engineers to infer new knowledge not available from

any single source.

Tennis is one of the most popular court based racquet sports in the world

because of the relative simplicity of the rules and the small amount of equip-

ment needed. A major aim of tennis coaching is to provide feedback to

athletes to improve performance. While there are many aspects of perfor-

mance that can be enhanced (e.g. physiology, biomechanics, psychology),

recent sub-discipline of sport science have emerged (Performance Analysis

and notational analysis) which aim to objectively record performance so that

key elements of that performance can be quantified in a valid and consistent

manner [79] [78]. An extremely common method is to video record a (ten-

2



3

nis) match and identify all of the key events (strokes), e.g. [123]; [80]; [13].

Subsequently, the coach would review this information to perhaps: (i) quan-

tify the patterns of play, and/or (ii) identify if positive/negative outcomes

are associated with a particular technique or tactic. The video recordings

themselves do not necessarily directly quantify aspects of performance (e.g.

measure technique or tactic) they simply provide the coach with an accu-

rate and objective record of events, in comparison to self-recall which is

inaccurate and biased [78] [55]. The coach reviews the recordings to use

their experience and expert knowledge to infer technical, tactical or mental

strengths and weaknesses related to performance.

While there are a variety of uses of such video-based playback systems, a

central requirement for them is the identification and indexing of key events.

To date this has invariably been completed through a manual process, where

each action/event in the recording is tagged by the user. This however is a

very time consuming process. A solution to this would be the production on

an automated system that could record tennis matches and automatically

index the match into key tennis events. Coaches could then review and

quantify instances of indexed events as a visual coaching aid. To the best of

our knowledge only one system (Hawke-Eye Coaching) has been developed

which automatically indexes events. However a major limitation of this

system is that it cannot index specific strokes played. Automatic indexing

has not been achieved in any other sport to the best of our knowledge. The

main technological advancement has been in verification of referee decisions,

which has been very popular in professional tournaments. In assessing how

best to present information to guide the coaching process in tennis, [132]

argue that a combination of both visual and verbal strategies can be effective

if used correctly. In fact, empirical evidence has suggested that in tennis,

the use of videotaped replay and loop-film technique has merit and can be
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given consideration for use in instructional settings [114].

The subsequent sections in this chapter explore the state of the art in

existing sports coaching tools and where sensors are widely used in the field

of sports coaching software. Existing problems with sports coaching tools

are explored before presenting the research objectives and contributions of

this thesis which aim to enhance existing sports coaching software.

1.1 Existing Sports Coaching Tools

Video technology has long been used as the perfect feedback modality to

record training sessions and use these recordings to improve an athletes

performance. The following sections look at the different groups of coaching

systems used today.

1.1.1 Commercial Sports Coaching Solutions

There is a lucrative market today for combining technology and sport, whereby

there are endless off the shelf solutions aimed at improving a coach’s knowl-

edge of how to get the best out of an athlete. Many of the leading sports

coaching products (SiliconCoach1 , Dartfish2 , Quintic3 , Simi4 , Templo5

), do not focus on one particular sport, such as football or tennis, but aim

to satisfy the objectives of sports coaches across multiple sports. Another

important aspect of all the leading sports coaching software tools available

today is that they all focus on a single modality, namely video. Profes-

sional video analysis software certainly does offer benefits to a coach, as

vision analysis is a superb tool for portraying feedback to an athlete. The

following subsections look at the various categories of sports coaching soft-

1http://www.siliconcoach.com/
2http://www.dartfish.com/
3http://www.quintic.com
4http://www.simi.com
5http://www.mar-systems.co.uk/
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ware offerings today, in terms of analysis, video and instrumented coaching

environments.

1.1.2 Analysis Sports Coaching Software

Post-match analysis software such as Avenir6 , All Stats7 and Football

Technologies8 , provide coaches with an abundance of useful data which

can be captured during a match or post-match and then organised to help a

coach make game winning decisions by studying various statistics on players,

tactics used or plays to avoid. All major sports are swamped with analysis

software packages, which provide interfaces to manually input data and in

most cases these tools are vital to a sports coach. Existing analysis tools,

however, are not technologically advanced and in the cases of all vendors,

manual data input is necessary to generate meaningful archives.

1.1.3 Video Sports Coaching

Coaches mainly use sight and sound to sense an athlete’s movement pattern,

while touch can also be used in certain instances. They form a mental image

of the skill and match this against the athlete’s performance. Access to

camcorders and laptops with commercial software over the past number

of years has broadened coaches’ awareness of the potential for technically

enhancing coaching [66].

Hailes et al. [66] state that advances in video software technologies are

making instant video feedback more commonplace. Visual coaching tools

such as Vidback9 are examples of commercial offerings today which are

widely used in sport, while Dartfish Simulcam and Dartfish StroMotion10

6http://www.avenirsports.ie
7http://www.allstats.com
8http://www.footballtechnologies.com/
9http://www.simi.com/en/products/vidback/index.html
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provide the coach with visual editing techniques only possible with high end

production systems in the past. It should be noted that all these video

coaching tools are portable by nature and each vendor assumes that the

coach has access to a camcorder to capture video streams and a laptop to

ingest the media files into the respective video coaching applications. These

applications can exist in an online or an offline manner.

1.1.4 Instrumented Sports Coaching Environments

One of biggest technological breakthroughs in the sporting domain has been

the success story of Hawk-Eye11 , where high quality cameras have been

deployed by governing bodies of sports to identify ball position and player

position to a high degree of accuracy. Hawk-Eye has been deployed into

several professional sporting organisations to date such as tennis, cricket and

snooker, while investigations are currently underway to bring this technology

to soccer and Gaelic games.

Hawk-Eye have also commercialised products for instrumented coach-

ing environments in tennis and cricket. Hawk-Eye Tennis Coaching System

provides a number of interesting features which include:

• How quickly a receiver reacts to a first serve or second serve;

• Any spin put on a ball during a serve or ground stroke;

• The location of a bounce during a stroke;

• Where the receiver returns a serve (first or second serve);

• Where those returns land (first and second serve);

• First serve percentage, points won on first and second serve;

10http://www.dartfish.com
11http://www.hawkeyeinnovations.co.uk
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• How high the ball is when it passes over the net during a stroke;

However, one major drawback to this coaching system is that it is very

expensive and this system requires on going court maintenance from expert

system administrators making this system unaffordable to non-professional

coaches. This system also lacks the ability to recognise the stroke type played

by an athlete.

ProZone12 provides a soccer analysis framework by instrumenting a foot-

ball pitch with high quality cameras. ProZone provides semi-automatic

frameworks for indexing sports video. The ProZone system (which, due to

the cost of installation and game analysis costs, is generally only used by pro-

fessional teams) uses eight cameras placed around a stadium to track players

during a match. Each player (and official) is tracked via a semi-automatic

process. The system employs a computer vision algorithm in which players

are segmented by background subtraction from a static background image,

followed by thresholding and connected component analysis. Each player is

then tracked automatically. However, where there is a conflict, such as sev-

eral possible players within close proximity or no possible choice of player,

then the tracks are manually annotated. In addition to tracking players,

events such as free kicks, corners and passes are all manually annotated.

When a player touches the ball, this is recorded by clicking the correct event

from a displayed list to indicate the event type. This ball data, combined

with the position coordinates derived from the player locations, creates a

ball trajectory data set. Both the player, official and ball data can then

be employed to calculate tactical and statistical data. This style of instru-

mented visual analysis system is widely employed in soccer stadiums and is

very expensive and its semi-automated operations results in a large amount

of user input.

12http://www.prozonesports.com
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1.1.5 Limitations of Existing Solutions

Approaches for visual event indexing for tennis have been previously reported

[47] [127], however there has been no coaching system which is facilitated by

automatic stroke recognition in tennis or any other court sports such as bad-

minton or squash. Issues with existing instrumented sports coaching tools

such as Hawke-Eye Coaching include its inability to automatically recognise

which player has executed a stroke during play (due to change of ends) and

most importantly its inability to recognise the stroke type played, which is

essential for enabling coaches to generate high-level tactical queries. None of

the existing solutions can automatically track a player over an entire match

and this means that a coach will need to spend time manually annotat-

ing video after or during a capture session. Another drawback of existing

instrumented coaching systems is the high cost associated with all these

systems. With commercial video coaching tools such as Dartfish, coaches

need to spend endless hours manually editing video after a capture, which is

extremely time consuming and is a detrimental burden on coaching teams.

1.2 Research Objectives

There are several research objectives associated with building a next genera-

tion coaching system for racquet sports and tennis in particular. Our initial

objective is to understand coaching requirements by working with coaches

over the course of several seasons to fully appreciate how employing sen-

sors in their everyday coaching environment will increase and improve their

workflow and productivity.

Another objective is to enhance both the athletes’ and coaches’ education

and training through capturing data on the athletes’ performance and ac-

tions from multiple sensors located on body and via an instrumented court.
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Very little research exists where the data from wireless inertial measuring

units and visual sensors have been captured simultaneously for the purposes

of sports coaching in any domain.

After the multi-sensor data has been pre-processed, a key research objec-

tive is to process and analyse the captured data to obtain information that

is beneficial to coaches. Therefore it is pertinent that a concrete tennis on-

tology be created which clearly defines the semantics and rules of a standard

game of tennis. This tennis ontology is then the foundation by which we

can automatically index key tennis events which are of interest to coaches.

When the semantic model is defined, variations between events detected in a

capture session and the ideal actions as described by a professional coach can

be identified and potentially visualised for feedback. This will be achieved by

mining the ideal actions and comparing these to the captured data. This ob-

jective will reduce the time a coach has to spend browsing through archives

and offers great potential if properly merged with existing research in video

abstraction in the future.

Archiving the data over long periods of time will provide the coach and

athlete with a vital tool for tracking trends and by applying machine learning

algorithms to perform trend analysis, a further research objective will be to

highlight information to the coach which would only have been possible

previously through endless hours of manual archiving.

1.3 Research Contributions

Addressing the problem of using multiple low cost sensors to capture human

actions in a wide area space has provided this research with several novel

contributions. The first major contribution provides a novel approach for

fusing multiple inertial sensors to recognise different human actions. A major

contribution is the introduction of an early fusion approach, which fuses
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multiple inertial sensors to provide an accurate human action classification

system, which to the best of our knowledge is a first of its kind for human

action recognition.

This early fusion event detection system is then applied to a wide area

space to capture and recognise competitive tennis and automatically index

a game of tennis into key tennis events. Therefore, the second contribution

presents novel approaches to identify tennis events through early fusion of

inertial sensors. Using a single inertial sensor (attached to a players forearm),

this thesis proposes a set of algorithms to detect key tennis events including

stroke recognition, rallies, games, and change of end events. Additionally,

this thesis proposes a novel approach to detect the same tennis events (stroke

recognition, rallies, games, and change of end events) using a fixed video

camera infrastructure. This level of event detection in competitive tennis

has never been achieved before and whether inertial sensors or visual sensors

are used event detection is fully automatic.

Having all this information from different sensors creates a significant

research problem in attempting to visualise this data in a manner such that

a coach or athlete can use it to maximise performance. To overcome this

problem, a third contribution is presented, in which a novel content man-

agement and retrieval system (Match Point) is presented which allows users

to ingest the sensor information for a particular match and provides a user

interface that allows users to query the system to find interesting queries.

This system can automatically index the key events in tennis using either

visual or inertial sensors, or a combination of both. The query engine which

this system provides allows users to run queries which are simply not possible

without automatic indexing of key tennis events. Such a complete system

for event retrieval in competitive tennis has never been developed before.
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1.4 Structure of the Thesis

Chapter 2 explores the technical background on visual and inertial sensing

before looking at literature for machine learning. This thesis uses state of the

art approaches to recognise motion using multi-sensor streams and the first

two sections in this chapter help to unlock the theory which is essential to

realising the full potential of these sensors. The final section in this chapter

looks at the state of the art machine learning techniques, which are used for

classification in this work.

Chapter 3 describes the challenges which need to be overcome to per-

form human action recognition using video. The chapter then outlines the

computer vision techniques which are used specifically for human action

recognition using video. The final section in the chapter details the ap-

proach used in this thesis for detecting human actions from visual sensors.

Two approaches to extract human features from visual sensors (Contour

Features and Histogram of Oriented Gradient of Motion History Image) are

evaluated and the chapter closes by discussing the experiment results.

In Chapter 4, we explore the challenges which arise when using inertial

sensors to recognise human actions. There are various approaches which

can be used to detect human actions and activities and we explore the main

approaches used to date in the literature. We then discuss details of the

techniques used in this thesis to recognise human actions using inertial sen-

sors. Experiments are conducted to evaluate recognition accuracy. After

evaluating individual inertial sensors, we introduce the state of the art in

multisensor fusion relevant to the work reported in this thesis. Various fu-

sion approaches are then explored with a view to improving human action

recognition accuracy. The first fusion technique explores the approach used

to fuse the different sensors within an inertial sensor. Finally, experiments

are conducted which use both early and late fusion to fuse the data from
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both visual and inertial sensors. As the results prove, sensor fusion can

significantly improve recognition of human actions.

Chapter 6 takes the visual and inertial sensing software and applies this

infrastructure to the sport of tennis. Throughout the course of this research

different techniques have been investigated, such as using visual sensors to

recognise tennis strokes from contour features and using multiple inertial

sensors to classify tennis strokes. This chapter explores these different tech-

niques and evaluates their potential in practice.

Chapter 7 describes the novel content management and retrieval sys-

tem which integrates the results of the various analysis tools. This retrieval

system allows coaches to generate advanced queries which would not pre-

viously have been possible without an inordinate undertaking of manual

annotation on the part of a tennis coach or tennis expert. An evaluation

study determines if such a system can significantly improve coaching tech-

niques and also investigates how automatic event indexing tools compare to

existing state of the art commercial coaching tools.

Chapter 8 concludes this thesis. It briefly reviews the research contri-

butions and discusses directions for future work.



Chapter 2

Technical Background

2.1 Introduction

This chapter contains an overview of the background literature necessary to

understand the methods leveraged in the core work in this thesis. Firstly

foreground extraction and adaptive background models are explored, which

is necessary for visual event detection in tennis. We then explore the cur-

rent state of the art in inertial sensing. Event detection using visual or

inertial sensing is greatly enhanced by employing the best machine learn-

ing approaches available and we introduce the machine learning techniques

which will later be employed to detect events in tennis.

2.2 Visual Feature Extraction

This research performs event based indexing of tennis videos and the fol-

lowing subsections explore the computer vision approaches which are vital

to achieving satisfactory visual event detectors. In any scene not all pixels

are of interest and it is the role of visual feature extraction to eliminate

non-interesting pixels (background pixels) from the scene.

Object recognition aims to detect interesting objects in a scene, such as

13
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a moving car, a person or a potentially unusual detection. Of course, any

video may have many different foreground objects visible, so it is a matter of

judgement as to what objects are of interest to the user and should therefore

be detected.

Feature extraction is the process of finding the main characteristics of

a data segment that can accurately represent the original data [95]. It is

the transformation of large volumes of raw data into a condensed set of

features, known as the feature vector. In image segmentation, visual saliency

is a process to estimate interesting objects from an image without prior

knowledge of the image content [32]. In this thesis however, prior knowledge

of the interesting objects i.e. humans is known and therefore the process

of foreground extraction sufficient for detecting interesting objects. The

following section describes this process in more detail.

2.2.1 Foreground Extraction

Foreground extraction is a well known technique for recognising moving fore-

ground regions in computer vision as used in [36] [90] [19] and many more.

This technique assumes a static camera is used and that image features, such

as colour intensity or edge gradient information of foreground objects differ

to that of the background.

In this context, a foreground object can quite often become a background

object over time and therefore neither can be well defined. An example may

be where a moving vehicle will be considered a foreground object, but when

it is stationary for a period of time it will become a background object. A

naive approach to background subtraction is to detect pixels belonging to

foreground objects by determining if the difference between pixels in the

current frame, fi , and the corresponding pixels in an image of the scenes

static background, bi , are above a user defined threshold t. A pixel, (x, y),
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(a) Original image (b) Foreground image

Figure 2.1: Shows the original image and the resulting image after the athlete
is extracted as foreground.

is declared as foreground if

|fi(x, y)− bi(x, y)| > t

otherwise it is declared as background. There are various techniques

applied to obtain the background model, bi. For example [96] obtains an

image of the scene without any foreground objects and uses this as bi. Figure

2.1 illustrates an example where an athlete’s silhouette is extracted from the

foreground and displayed in a binary foreground image.

There are a number of reasons why this technique is naive. It lacks

robustness to changing illumination, multi-modal backgrounds, and its as-

sumption that bi can be obtained at one instant in time. More advanced

techniques generate their background model over time by observing the scene

during a training period.

For example, in [83], a background variation model is built when the

scene contains no moving objects. The background model is generated by

extracting the minimum and maximum intensity values of each pixel, along

with the maximum intensity difference between two consecutive frames. All

these values are calculated during the training period when no foreground

objects are present. The values are captured over several seconds and the
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background model is updated at regular intervals for sections of the scene

that the system recognises as being part of the background model. Every

pixel in turn is classified as part of the background or foreground by analysing

its values against the background model. Given the minimum (M), maximum

(N) and the largest absolute difference between frames (D), pixel x from

image I is a foreground pixel if:

|M(x)− I(x)| > D(x)

or

|N(x)− I(x)| > D(x)

Simply thresholding the image will typically not be sufficient to extract a

clear foreground region as there will still be noise present, due to illumination

changes, for example. In [83], the authors use a region specific noise removal

process to remove noisy regions. Once thresholding is complete, a first pass

of erosion is performed to the foreground regions to extract one-pixel noise

areas. After the first pass is complete, a fast binary connected component

operator is used to remove the minor regions of noise and finally erosion

and dilation extracts the remaining noise which is larger than those already

removed (morphological operations are explained in Section 2.2.5).

2.2.2 Thresholding

In the previous section on foreground extraction, the process of threshold-

ing as a means to extracting a suitable foreground was introduced. The

background model is used to compute the difference or distance between

the background and any salient objects in the current scene. The technique

used to detect any differences which appear different to the background is
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called thresholding. Because of its intuitive properties and simplicity of im-

plementation, image thresholding is commonplace in applications of image

segmentation [62].

Finding an optimal threshold can be a delicate matter and will have a

significant effect on the system’s performance. If the threshold is set high it

will result in a high number of missed recognitions, on the other hand if the

threshold is set too low, the system will be too sensitive and there will be

too many detections. A static threshold can be used in scenes where there

are few changes in the properties of the image. By dynamically adapting

the threshold to cater for different scenarios, these limitations can be ad-

dressed. There is a significant amount of research which has given great

impetus to adaptive thresholding [30] [152]. The authors in [30] evaluate

40+ different thresholding approaches, six categories of thresholding algo-

rithm are identified, each using a different measure to determine the optimal

threshold. The measures used in each of the thresholding categories were:

(i) histogram shape information, (ii) measurement space clustering, (iii) his-

togram entropy information, (iv) image attribute information, (v) spatial

information and (vi) local characteristics.

Ridler and Calvard [152] use an iterative clustering approach to threshold

selection. The mean image intensity serves as an initial estimate. Pixels

are classified as foreground and background using this threshold and the

threshold is iteratively re-estimated as the average of the two class means.

In the conclusion of thresholding tests using synthetic data [6], it is noted

that the methods of Ridler and Calvard, as well as Otsu’s method [157], fail

when the number of background pixels is more than 10 times greater than

the number of foreground pixels.

Bouguet et al. [92] use different threshold constants for different regions

of the image. The rationale behind this is that different types of regions
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have different colour statistics. This region-based threshold constant is more

flexible than the simplest method of using only one set of thresholds for the

whole image. Also, compared to the method of having thresholds for each

pixel, the approach is more practical and accurate. In [92] the authors choose

a number of regions within the scene and as this number is not too high, it

allows the threshold for each region to be set manually.

The previous approaches work well in the presented environments, how-

ever, this research will take place in an indoor environment, where changes

in the lighting occur, so it is paramount that a successful background model

should adapt to background changes. Therefore adaptive background mix-

ture models have been identified as a solution to extracting a human subject

as foreground. The following section briefly describes this approach.

2.2.3 Adaptive Background Mixture Models

There are various adaptive methods, including alpha-blending [83], Kalman

filtering, Gaussian mixture models and averaging images over time. Aver-

aging and alpha-blending are quick and simplistic but they are not efficient

in scenes where there are multiple moving objects. The authors in [43] and

[42] determine the background model to be the mean or the median of the

previous m frames. Although quite fast, this approach consumes a large

amount of memory.

A simple method of adaptive background estimation is to average the

images over time. This creates a background candidate which reflects the

current static scene except where motion occurs. This approach works effec-

tively where foreground objects are in continuous motion and the background

is visible a significant portion of the time. However it does not work well

in situations where there are many moving objects and particularly if these

objects move slowly.
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In recent times, statistical methods have been employed to extract chang-

ing foregrounds from the background. Stauffer and Grimson [148] pioneered

the adaptive background mixture model for real-time tracking, where a mix-

ture of Gaussians modeled each pixel and the model was updated by an

online approximation. The advantages of this approach were that the tech-

nique could operate in a scenario where there were multiple background

objects by using a multi-valued background model. This approach is also

immune to shadow, noise and change of lighting.

There are of course more advanced approaches to adapt the background

model such as Kalman filtering, but a basic adaptive background model pro-

duces excellent results in an indoor environment where a human subject is

constantly moving and there are very few foreground objects. There are

also many contributing factors which can create a noisy background such as

moving objects, moving trees, lighting switches etc, but in an indoor environ-

ment such as an indoor tennis court, lighting change is the only significant

challenge. The probability density function for the Gaussian Mixture Model

(GMM) used in this work is given by:

P (x) =
K∑
i=1

wiN (x|µi,Σi), (2.1)

where N (x|µi,Σi) is the probability density of a D-dimensional multivariate

Gaussian distribution with mean µi ∈ RD and covariance Σi ∈ RD×D:

N (x|µ,Σ) =
1

(2π)
D
2 |Σ|

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.2)

The weights wi are each in the interval [0, 1] and sum to unity:
∑K

i=1wi = 1.

Given that we used a 3 dimensional matrix (RGB), D = 3.

2.2.4 Shadow Removal

Foreground objects often cast shadows which appear different from the mod-

eled background, see Figure 2.2. If shadows are not dealt with appropriately
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(a) (b)

Figure 2.2: Background Image; Background Edge Model;

they will create a noisy foreground object which will result in a distortion of

the colour histogram, merging of objects and deformed foreground objects.

There are many solutions proposed for shadow removal. Several solutions

analyse the HSV color space, taking advantage of the fact that a shadow

cast on a background does not significantly change its hue [41].

Other solutions take into account the saturation levels and also knowl-

edge that any shadow will normally reduce the saturation of the pixels. In

[74], a pixel is grouped into either foreground, background, shadow or high-

light, by analysing the distortion of the brightness and the distortion of

the chrominance of the difference. In an indoor tennis court however, we

can deal with slow lighting modifications by slowly adapting the values of

the Gaussians. Shadows can then be detected by detecting pixels which do

change over a number of frames.

2.2.5 Morphological Opening and Closing Operators

Foreground regions like those generated by adaptive background mixture

models are never complete silhouettes and always contain small holes which

need to be removed. Morphological opening and closing operators are the

most common approach to remove these holes and attempt to transform

the blurry foreground object into a complete silhouette. Dilation (opening)
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and erosion (closing) are two basic morphological operators, which can yield

major improvements when properly applied in a feature extraction process.

The feature extraction process used in this thesis applies both of these tech-

niques to obtain the best foreground extraction results and this is achieved

by finding a suitable configuration of adaptive parameters which best suit

each application.

Dilation combines two sets of vectors using vector addition. The result

of the dilation operation on an image is an expansion of the boundaries of

all foreground objects. This results in an increased size of the areas of fore-

ground objects and also any holes within foreground objects become smaller.

In contrast to dilation, erosion is the other morphological operation which

combines two sets using vector subtraction. The output of this operation is

to erode the boundaries of the foreground objects, making the overall objects

smaller and holes within objects expand. It is common to use both morpho-

logical opening and closing together to achieve a more complete foreground

object. The authors in [85] state that if the closing of an image f is denoted

as C(f), and the opening of the same image is represented by O(f), then a

typical combination for this approach can be:

Proper opening:

Min(f, C(O(C(f)))) (2.3)

Proper closing:

Max(f,O(C(O(f)))) (2.4)

2.2.6 Motion History Images & Motion Energy Images

Davis and Bobick [45] describe a view-specific template of an action, where

the action is represented over time. A clear foreground silhouette needs to

be extracted in order for this approach to work. The basic idea used in [45]

is to build a vector-image which can then be measured in terms of similarity
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Figure 2.3: Motion Energy Image [45]

against recorded representations of given actions, called temporal templates.

They use two slightly different techniques to represent an action (1) a motion

energy image and (2) a motion history image and both are explained below.

Motion Energy Images

For illustration, we analyse the human action of someone sitting, as

shown in Figure 2.3. The row above shows the raw key frames of the action.

The bottom row shows how the foreground silhouette of the human subject

would be aggregated over the raw frames above. The idea is that the aggre-

gated foreground can be used to describe the motion in that region. These

aggregated foreground images are known as motion-energy images (MEI).

Let I(x; y; t) be an image sequence, and let D(x; y; t) be a binary image se-

quence describing regions of motion of n images. The foreground MEI E

(x; y; t) is defined as

ET (x; y; t) =
n⋃

i=0

D(x; y; t− i)

A duration variable τ is used to define the temporal properties of an

action. The authors in [45] use a backward seeking algorithm which can

dynamically search over a range of T .

Motion History Images
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Figure 2.4: Formula for Motion History Image

Figure 2.5: Motion History Image [45]

The sister process of MEI is motion history images (MHI) which describe

when (rather than how) movement occurs within the action sequence. In an

MHI HT , pixel intensity is a function of the temporal history of motion at

that point.

The output is a scalar-valued image where the pixels which have moved

most recently have a brighter intensity. An example of an MHI can be seen

in Figure 2.5, taken from [45]. The formula for Motion History Images is

given in Figure 2.4. It should be noted that an MEI can be generated by

thresholding the MHI above zero. Although MHIs do not account for optic

flow (the direction of image motion [18]), temporal clues are obtained by

identifying the brightness of the foreground object.

In this example the MHI describes the flow of motion: whereby the

downward movements of the arm is older than the upward movement of

the arms. Where the movements are quite basic and there is no occlusion,

MHIs will give a good visual representation of the action being performed.

As motions become more complex, the optical flow is more challenging to
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identify, but is still represented (only not as well as basic actions). The reason

for MHIs popularity is down to its simple nature and low computational cost

compared to optical flow, for example.

2.2.7 Histogram of Oriented Gradients

Another common approach used to extract features for human action recog-

nition is to compute a histogram of oriented gradients (HOG). HOG is a

commonly used technique to recognise objects in images. HOG are inspired

by Scale-Invariant Feature Transform (SIFT) descriptors [108]. This concept

is built around the idea that local shape information is often well described

by the distribution of intensity gradients or edge directions even without

precise information about the location of the edges themselves.

Algorithm Overview

The image is divided into small sub-images called cells. Cells can be repre-

sented as rectangular (R-HOG) or circular (C-HOG). A histogram of edge

orientations are accumulated within each cell. The combined histogram en-

tries for all the cells are used as the feature vector describing the object.

To provide better illumination invariance (lighting, shadows, etc.) the cells

are often normalised across larger regions incorporating multiple cells called

blocks.

To find a set of descriptive features, a unique HOG can encode local

gradients and the first step in this process finds the gradient for each pixel.

The training image (see Figure 2.6) is then decimated into a series of sub-

windows, known as “blocks”. These blocks can vary in size from 8 to 64

pixels, they can have various length to width ratios. All blocks are then

divided into quadrants and the HOG for each quadrant is calculated.

HOG are capable of detecting gradients or edges that characterise the
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Figure 2.6: A pedestrian image (training) and the resulting gradient [22]

local shapes. It is also an effective approach to tune the spatial and orien-

tation sampling densities for differing applications. In human detection, the

authors of [44] use coarse spatial sampling and fine orientation sampling to

prove that HOG descriptors significantly outperform existing feature sets for

human detection.

For recognising shapes, approaches which use the HOG approach are

considered accurate for visual classification. One such example which uses

HOG is reported in [65], where the algorithm has been employed with color

features and shape modelling. This approach can reliably detect vehicles

even when multiple occlusion is present in the scene. However to make

this approach suitable for recognition of rear view human postures, several

parameters were adjusted in order to achieve maximum recognition accuracy.

The theory behind HOG is that local object appearance and shape is well

characterised by the presence of local intensity gradients or edge directions,

even without the knowledge of where the edge positions occur.
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2.2.8 Applications

Automatic recognition of human movements and actions is a vibrant research

field due to the ubiquitous nature of video recordings in our everyday lives,

as well as the inherent complexity of the task. This field produces numerous

and often difficult challenges such as determining the kinematic structure

and movement of a self-occluded three dimensional entity from video frames.

This complexity provides lots of interesting challenges from an academic

perspective. From an application perspective, computer vision provides a

non invasive solution, making it an attractive approach [117]. Applications

in this area can be grouped into any of the following groups: surveillance,

control, or analysis. The following three sections describe these three groups.

Surveillance Applications

Security and surveillance applications have traditionally used networked

video cameras, which are monitored by a human surveillance team. Any

irregular activities are then acted upon in real-time by security. However

with the reduction in cost of camera networks, more and more surveillance

cameras are being used everyday, which in turn requires more human re-

sources to monitor areas. This problem has naturally lead to a surge of

activity in the area of vision-based solutions which can replace or assist the

need for a human operator. Automatic recognition of unusual human activ-

ities in surveillance cameras is one area which has seen a surge of activity in

recent times [139].

Other security applications include those which automatically monitor

and understand potentially crowded locations such as train stations or air-

ports. Example applications include crowd counting [58], crowd flow [103]

and congestion analysis [83]. With the increased awareness of security, to-

day’s surveillance applications analyse actions, activities and behaviors both
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individual people and also for groups of people. Example applications in

automatic surveillance include anti-social behavior [97], shopping behavior

analysis and person detection [134].

Control Applications

These applications estimate human motion or human poses to manipulate

an output. This could be used as an interface to a game, e.g. EyeToy1

, or more generally for human computer interfaces. It could also be used

within the entertainment industry where personal avatars can be based on

the captured semantics, such as shape and motion to create a more realistic

product. Microsoft Kinect2 , which is a motion sensing input device and is

used for entertainment gaming is an example of this type of application.

Analysis Applications

Motion capture may also be used to analyse and optimise the performance

of athletes [46] [50] or to automatically diagnose patients [130]. More recent

applications in this domain allow for video annotations along with content

based retrieval and the motor industry has also embraced visual research

capabilities to address challenges such as automatic airbag activation, sleep

detection, impeding pedestrian hazards or lane following [98] [100].

2.3 Semantic Video Indexing

The amount of multimedia content has increased rapidly in recent years due

to lower cost capturing equiptment and the widespread use of video over

the internet . There are many applications for multimedia today such as

live braodcasts of various programmes, advertising, movies, or even picture

1http://www.eyetoy.com
2http://www.xbox.com/en-US/kinect
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sharing. With this has come advancements in the technology for media cap-

ture, storage and transmission, where newer, more sophisticated and cheaper

capture devices are constantly expanding the growth of multimedia. As con-

tent generation and dissemination increases, more advanced tools to filter,

search and retrieve this content in an efficient manner also becomes more

important. The authors in [120] state that the existing tools for informa-

tion retriveal in text databased cannot be adopted for video and the lack of

retrieval tools for efficient access and data mining could render most of this

data useless. In most cases many of the existing video retrieval systems do

not process the audio content and intead focus on the video semantics.

Semantic video indexing is the first stage toward automated video brows-

ing, retrieval and personalisation. Semantic video indexing allows the end

users to retrieve videos based on their interest and preference with regards to

the content within the video. It is essentially the process which attaches con-

cept terms to video segments. The authors in [120] state that the difficulty

lies in the mapping between low-level video representation and high-level

semantics. To overcome this problem they therefore formulate the multi-

media content access problem as a multimedia pattern recognition problem.

Automatic temporal video segmentation methods typically involve comput-

ing pixel-level and/or histogram-based difference measures for each pair of

consecutive frames in the video. These methods then use shot boundary

detection methods to detect shot boundary positions [171], [54]. More ad-

vanced temporal segmentation methods use low-level image features such as

edges [174], focus of expansion points [7] and image motion [129].

2.4 Inertial Sensing

Measuring human motion involves sensing the movement in a three dimen-

sional space and is often a complex task. The Six degrees of freedom (6DoF)
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Figure 2.7: Six degrees of freedom (6DoF) of a rigid body in a 3D space.

refers to this freedom of movement of a rigid body in three-dimensional

space. Specifically, the body is free to move forward/backward, up/down,

left/right (translation in three perpendicular axes) combined with rotation

about three perpendicular axes, often termed pitch, yaw, and roll. Figure

2.7 illustrates the 6DoF and inertial sensors are used to measure movement

in this space.

The amount of academic literature which deals with wearable inertial

sensing in the area of human action recognition has only began to grow

in recent years largely due to the relatively recent drop in cost of inertial

sensors. While Chapter 4 describes the latest research in using inertial sen-

sors for human action recognition, the following section introduces what is

meant by inertial sensors and the applications to which they have been ap-

plied. Stubberud et al. [150] explain that inertial sensing can be found

in guidance, navigation, and control systems for small space vehicles, such

as satellites, which use inertial measurement sensors to calculate accurate

positioning, velocity and angular information about the vehicle.

Inertial sensors are commonly used for motion recognition today and this

is largely due to their ability to overcome challenges such as line of sight and



30

Figure 2.8: Single Axis Accelerometer [109].

mobility issues which are associated with other sensors. Different technolo-

gies which employ inertial sensors include aircrafts, cars, smartphones and

gaming consoles. In a typical use with humans, inertial sensors are strapped

to a body segment to measure angular rotation or acceleration [135].

Thankfully, recent developments in these sensors have made this technol-

ogy inexpensive, which helps to drive forward advancements and usage. The

following section discusses literature on inertial sensing devices and how they

capture real world data. The first subsection looks at how accelerometers

are designed and how acceleration is measured. The remaining subsections

look at gyroscopes and magnetometers and then wireless inertial measuring

units respectively.

2.4.1 Accelerometers

The authors in [109] describe an accelerometer as a mass, suspended by a

spring in a void chamber (Figure 2.8). The mass moves in one direction

and its sensitivity is measured by the accelerometer. The dislodgement of

the mass can be used to calculate the acceleration experienced by the mass
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along that particular sensitivity axis.

A more common style of accelerometer used today is the tri-axial, where

three single axis accelerometers are mounted together. To find the three

gains and offsets and how each axis is oriented in relation to how they are

housed, equation 2.5 is used. The output SyA can be associated to the initial

acceleration and gravitational force by the following equation:

SyA = Sa − Sg (2.5)

In this thesis, accelerometer signals are obtained using tri-axial accelerom-

eters where the output is obtained by equation 2.5, after calibration.

2.4.2 Gyroscopes

Also in [109], the authors describe several different approaches for making

angular rate sensors (gyroscopes) such as laser gyroscopes, spinning rotor

gyroscopes and vibrating mass gyroscopes to name but a few. The standard

spinning rotor gyroscope and laser gyroscopes are primarily used for nav-

igation. These traditional styles of gyroscope are unsuitable for detecting

human motions because of their large size and high expense [142]. A more

suitable gyroscope for human motion is the small and inexpensive vibrating

mass gyroscope.

A 2D perspective of a standard gyroscope is shown in Figure 2.9. A mass

is moved in the direction denoted by ract .The dislodgement experienced by

the mass can be calculated by examining the direction at right angles to

the movement direction. When the unit experiences a rotation where the

angular speed is at right angles to the plane, coriolis force will be experienced

in the direction at right angles to the angular speed. The amount of coriolis

force fC is denoted by:

fC = 2m.v.w



32

Figure 2.9: A.: A gyroscope is made up of a mass, which vibrates in the path
illustrated by ract. B: Rotation of the gyroscope will cause the vibration of
the mass and also a dislodgement. The angular speed can then be inferred
from the coriolis force generated. [109]

in that m represents the mass, v is the speed of the mass at that moment

and w is the angular speed. Therefore the dislodgement due to coriolis force

is relative to the angular speed and is used to measure angular speed.

2.4.3 Magnetometers

A magnetometer is a device which can be used to measure the properties of

the natural magnetic field or an artificially generated magnetic field. One

possible field of detection is the Earths magnetic field. Magnetometers are

generally used to measure a compass heading information and can be reg-

ularly used to offset integration drift in gyroscopes, which is a common

problem with gyroscopes [15].

Magnetometers cannot sufficiently measure 3-D orientation alone, though

they do record slight responses to changes in 3-D orientation. As this thesis

will discuss in detail in Chapter 4, the data captured by magnetometers can

be of significant value when fused with other sensors such as accelerometers

and gyroscopes.
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(a) (b)

Figure 2.10: One of the WIMU designs used in this research

2.4.4 Wireless Inertial Measuring Units

An Wireless Inertial Measurement Unit (WIMU) is a sensor unit which has

tri-axial accelerometer and a tri-axial gyroscope. A calibrated WIMU can

measure 3-D angular speed and 3-D acceleration.

Where the orientation and initial position of the WIMU is known, these

signals can be used to determine kinematic movement of the WIMU. The

orientation can be calculated by recording the original orientation and then

measuring the difference in the current orientation which may be obtained

from the gyroscope. Figure 2.10(a), taken from [57], shows a modern inertial

measuring unit, which is suitable for mounting on a human body given its

small size.

Figure 2.10(a) shows the internals of the WIMU which has been designed

specifically for attaching to the body of tennis athletes and was used in this

work. This device was developed by our colleagues in Tyndall. The assem-

bled hardware of the WIMU is composed of a NAP150 Board (power supply,

battery management and integral dual-axis 70g/37g accelerometer), an IMU

layer (9x motion sensors), a 1Mbps Nordic Radio with ATmega128 layer

(wireless communication and processing) and a prismatic lithium polymer

battery (1230mAh). The IMU layer consists of a tri-axis accelerometer with
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a range of ± 10g, the gyroscope range is ±1200/s and the magnetometer can

measure ±6gauss.

Calibration of a wireless inertial measurement unit (WIMU) is the pro-

cess of finding the parameters which allow us to convert the values recorded

by the WIMU into meaningful physical units. The reason such a process is

required is because a sensor’s readings can deviate from node to node, due

to manufacturing inconsistencies. Sensor readings can even deviate within

the same device as a result of temperature conditioning and power supply

voltage. For these reasons it is necessary to calibrate the data generated by

a WIMU and there are many methods available to do this. The sensors used

in this thesis are pre-calibrated.

2.4.5 Applications

In this section we discuss applications for activity recognition systems in

wearable or mobile settings. We begin with applications for healthcare and

assisted living, which represent an important class of applications. In ad-

dition to this there are three other application groups discussed, industrial

application uses, applications for the entertainment and gaming industry

and applications within the sporting domain. Finally, this section briefly

introduces the other applications areas which commonly use inertial sensors.

Healthcare and Assisted Living

Currently, activity recognition and context-aware computing is often mo-

tivated to enable new health-related applications and technologies for the

aging. Longer life expectancy is increasing the percentage of the elderly

population in societies all over the world and posing difficulties to existing

healthcare systems. It is hoped that technology can help overcome these

challenges, for example by helping the elderly to be more independent and
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also to reduce the need for human assistants to the elderly.

One such system aims to prevent age-related diseases or serious medi-

cal conditions before they occur. These disease prevention sensors use data

gathered over long periods of monitoring to detect changes or irregular pat-

terns in a subject’s daily activities which may indicate early signs of diseases

such as Alzheimers. Automatic recognition of subtle changes in behavior is

an active area of research and inertial sensors which accumulate data and

have the ability to give summaries of daily activities [33] or applications

which aggregate data from physiological parameters [104] [6] are currently

providing huge benefits to physicians and carers to determine the health of

a patient.

Another application of inertial sensing in the area of health and well be-

ing is the use of context information to champion a more active and healthy

lifestyle. It may also be used to facilitate disabled or elderly patients in

executing daily activities. The authors in [112] use variations in a mobile

phone signal to recognise if a user is active and can provide summaries of the

levels of activities in which a subject is engaged as motivational feedback.

In [39] a similar approach is described which uses inertial sensors for activity

recognition so that when a flagged activity is performed by a human subject,

a feedback system displays virtual rewards on a mobile phone screen. An-

other approach uses a combination of data captured from localisation and

activity sensors on wearable devices to suggest physical activities, e.g. by

noting that the user has enough time to walk to the next bus stop instead

of waiting at the current one [5].

Ground breaking improvements in wireless technology have helped to

drive forward body worn sensor devices, which can be used in everyday lives.

Motion capture sensors which can be body worn are mainly used for health-

care monitoring [101] [126]. The most commonly used sensors worn for the
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detection of motor movements in the healthcare domain are accelerometers

and gyroscopes [91]. These sensors can be attached to any body part or even

attached to sports equipment and collect data on movements performed by

athletes. Some approaches use portable virtual training applications, which

assist training and provide the subjects with useful information like instant

notification of mistakes made during a session at anytime and in any location

[84].

Industrial Applications

In an industrial environment, activity-aware applications can potentially

support workers in their duties, reduce unnecessary mistakes and improve

safety in the workplace, for example. Wearable computing systems which

support workers in communications, accessing necessary information, or data

collection, have been commercially available since the early 1990s from or-

ganisations such as Xybernaut3 . As was highlighted in an overview in

[145], the first organisations to adopt this wearable technology [such as the

shipping, airline and telecommunications industries] were those who used

complicated and expensive systems.

There is currently on going progress to harness advancements of indus-

trial systems, which make better use of multimodal sensors, for example, by

detecting context information such as the current location or the activity

being performed by a worker. An example of this is given by [110], who give

an overview of technical uses for body worn sensors in motor manufactur-

ing assembly lines, aircraft maintenance, hospitals and emergency response

units. In the context of each of these applications wearable sensors and ac-

tivity recognition is used to give hands free interactions to data and assist

in training of new workers, provide a summary of activities performed by

3http://www.xybernaut.com/default.aspx
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the workers. In [160], Ward et al. fuse information from body worn mi-

crophones and accelerometers to recognise individual worker activities in a

wood factory such as sawing or hammering.

Entertainment and Games

Body worn activity recognition systems can be found in many entertainment

devices today, such as games consoles and mobile smartphones, where these

devices provide a range of customised applications for entertainment and

gaming. Inertial sensors have been used to recognise human activities in

contexts, such as performing arts, where sensors are attached to dancers to

augment their performances with interactive multimedia content that cor-

relates with their movements. Gowing et al. [64] propose a system for

augmented reality-based evaluations of Salsa dancer performances. They

present a novel technique to achieve dancer step segmentation jointly using

audio signals captured by the on floor piezoelectric sensors and signals from

the WIMU devices which are attached to the dancers.

Other systems in performing arts are described in [9] [52] [12], which

use inertial sensors attached to the human body to collect data, which is

later classified using machine learning systems and the data is then used to

visualise the dancer’s motions. It should be noted that application design-

ers in this domain have been early adaptors of body worn inertial sensing

technology and this is also expedited by the fact that entertainment applica-

tions are non-critical in comparison to healthcare applications. The gaming

industry has been a leader in harnessing the power of inertial sensors. The

authors in [175] describe a motion sensor attached to the body and other

objects used to control computer games. In [72], Heinz uses inertial sensors

attached to the human body to detect moves which then control computer

games. Inertial sensors are of course widely used in computer games console
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systems, such as the popular Nintendo Wii4 .

Sporting & Leisure Applications

Inertial sensors have also found significant use in sporting applications. In

[53] the authors developed a system to recognise basic activities and also

sporting activities such as playing soccer, riding a bicycle and exercise rou-

tines such as rowing. They used Neural Network classifiers to recognise the

different activities. Long et al. [107] compute the amount of energy ex-

penditure which is used to perform certain daily activities and also sports

activities such as table tennis, football, volley ball etc. Motion detection in

the context of martial arts activities can be recognised by placing a tri-axial

accelerometer on the torso to capture the bodily acceleration for recognising

rapid movement human activities. The research described in [71] uses both

gyroscopes and accelerometers attached to the body to recognise actions in

Wing Tun to increase interaction in video games of martial arts, with a view

to using similar systems for martial arts education.

In [143], the authors present an on-body wireless sensor system for mea-

suring activities during snowboarding in real-time and the apparatus is

shown in Figure 2.11. They use inertial sensors to measure force, along

with an intelligent communication setup in a wireless network to capture

and analyse a snowboarders posture and motion on the snowboard. In [60],

the authors develop signal processing algorithms to measure the angular ro-

tations of wrist during golf swings, while in [71] it is described how to use

body-worn sensors, accelerometer and gyroscopes in particular, to record the

actions made by humans in martial arts. The data acquired is then used to

find the quality of the moves and level of expertise of the person making

those moves. In [8], the authors model the golf swing as a double pendulum

4http://wii.com
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Figure 2.11: Wireless inertial sensing setup to sense a snowboarder’s motions
during action [143].

system and use inertial sensors placed along the body and golf club to deter-

mine how closely the movements of the body follow predetermined motion

rules.

Commercial systems which used inertial sensors in the sporting area in-

clude Nike+5 , which monitors an athlete’s sporting activities. A device

is placed inside the shoe, which can keep record of running and jogging

exercises and the information can be aggregated over time to give an ac-

tivity history. This sensor can be integrated with auxiliary devices such a

smartphone and can be used for training purposes or to collaborate and in-

teract with other users. Polar6 also develop numerous products which can

record an athlete’s training and performance and even integrate into a team

sports scenario. One of the most popular inertial sensor applications today

is the various running tracking applications for smartphones such as Apple’s

iPhone7 where ideas which originated in the activity and context awareness

research community are now being harnessed by companies and independent

software developers and are accessible to anyone with a smartphone.

5http://nikeplus.nike.com/plus/
6http://www.polarusa.com/us-en
7http://www.apple.com/iphone/
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Other Application Areas

Inertial sensors have been employed in other areas to achieve activity recog-

nition. For example [116] uses body worn inertial sensors to recognise sol-

dier activities. The inertial sensors can log soldier activities during a mission

which can be used to automatically generate action reports or assist in covert

operations during a mission. The work described in [137] exploits the poten-

tial of activity recognition with inertial sensors to target mobile advertising.

2.5 Sensor Fusion

The vestibular system in the inner ear of humans and animals provides iner-

tial information which is necessary for navigation, body posture and orien-

tation. Humans cannot perform efficient head stabilisation and visual tasks

without this system. The information captured by the vestibular system is

used to execute visual movements such as tracking and gaze holding [49].

It is well known that human vision and the vestibular system fuse neural

signals at a very early processing stage [16]. The inertial information im-

proves the accuracy of the vision system and the visual cues aid the spatial

orientation.

Huge benefits can also be gained in the field of computer science by

fusing multiple sensor streams and later in this thesis we will introduce our

approach for fusing multiple sensor streams to achieve higher classification

accuracy than can be achieved by any one sensor stream alone.

Traditionally, inertial sensors have been used for navigation and also

for guidance of defence systems. Positioning, velocity and altitude are mea-

sured using precise accelerometer and gyroscope sensors, which are combined

with localisation technologies such as Global Positioning Systems (GPS) and

radars to name but a few. With all these informative signals generating
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masses of information, intelligent methods of fusing salient points of infor-

mation are required. Every sensor has strong and weak aspects and no sensor

is perfect at measuring a particular force. Sensor fusion is the process of fus-

ing the multisensory information to obtain interesting information, where

data is combined from various indirect and noisy instruments.

Sensor fusion has many different applications such as automatic tar-

get recognition (e.g., missile guidance), automatic vehicle guidance, combat

surveillance and automated threat detection systems, such as identification-

friend-foe-neutral (IFFN) systems [67]. Non military applications include

observing manufacturing processes, robotics [87], and also within medical

devices. The principle techniques used to combine the data is formed from

more established fields such as digital signal processing, statistical estimation

and artificial intelligence [68] [111]. In 1985, the Joint Directors of Labora-

tories (JDL) formed the Data Fusion Group and the JDL published a model

which divided the various processes concerned with data fusion into six levels

[163]. This widely used model is still used today and provides valuable guide-

lines for data fusion. Other popular approaches to fuse sensors are Bayesian

Fusion [113] or Kalman Filtering [23], where either of these approaches can

be used to combine data from various indirect and noisy instruments.

The purpose of sensor fusion is to use beneficial features of one sensor

to overcome the limits of features in another sensor. An example would be

where magnetometers are employed to eliminate integration drift associated

with gyroscopes. In this particular scenario, iron and magnetic equipment

will interfere with local magnetic fields and effect the orientation estimation.

Errors in the gyroscope drift will have different patterns than those found in

the local magnetic field and with this knowledge in mind, gyroscopic drift can

be reduced. There are two approaches to fusion: early and late. After each

sensor has completed its capture, the difference between early and late fusion
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lies in the approach each uses to merge the results of the different sensors

together. Later in this thesis we will introduce these fusion techniques.

2.6 Machine Learning

Data mining is a methodology which can infer new knowledge by analysing

trends or patterns from raw data. These patterns can lead to potentially

useful new knowledge that is not always obvious without intelligent compu-

tational analysis [164]. Machine learning is a technology which enables data

mining. In principle it requires computer programs which are trained to

find patterns in data. The following sections describe the main principles of

machine learning. First, we introduce Bayes’ theory, which is a fundamental

equation for statistical learning. This is then followed by an introduction to

classification and regression and the main differences between generative and

discriminative models are then introduced. Then we introduce supervised

and unsupervised approaches to machine learning before introducing the

main concepts of the two classification methods used in this theses (Instance

Based Learning and Bayesian Networks).

Bayes’ Theorem

Bayes’ theorem is widely used to find probabilities in machine learning and

is essential to Bayesian Networks. In mathematical terms, Bayes’ theory

denotes the relationship of the probabilities of A and B, P (A) and P (B), and

the conditional probabilities of A given B P (A|B) and B given A P (B|A).

In its most common form, it is:

P (A|B) =
P (B|A)P (A)

P (B)
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2.6.1 Regression & Classification

Regression and classification are two machine learning approaches to create

models of prediction from computer readable data. The objective of classifi-

cation is to learn a mapping from the feature space, X, to a label space, C.

For example, where feature space X ∈ Rd and the label space C = {0, 1},

the function f : Rd → C can be used to classify each example in X to its

most probable discrete value in C. It is this mapping (or function), f , which

is the classifier. The objective is to minimise the generalisation error.

The goal of regression is to learn a mapping from the input space, X,

to the output space, C. This mapping, f , is called a function. For ex-

ample, we might have, X ∈ Rd and C = R, then regression will use the

function f : Rd → R, to determine which indiscrete output a given example

belongs to. The major difference between regression and classification lies

in the dependent variables used. Regression uses numerical dependent vari-

ables only, whereas with classification, the dependent variables are clear-cut.

Classification has a fixed amount of unordered variables, while regression has

indiscrete values or discrete but ordered values.

2.6.2 Generative & Discriminative Models

There are two differing models commonly used in machine learning, gener-

ative and discriminative models. Essentially a generative model learns the

joint probability distribution p(a, b) and a discriminative model learns the

conditional probability distribution p(b|a), which is the probability of b given

a. At its most basic, if we have the given data in the form (a, b), (1,0), (1,0),

(2,0), (2, 1). Table 2.1 gives the calculations for p(a, b) and Table 2.2 gives

the probability distribution of p(b, a).

Discriminative algorithms provide a classification method for naturally

distributing a given example a into the class b. The distribution p(y|x) pro-
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y=0 y=1

x=1 1/2 0

x=2 1/4 1/4

Table 2.1: p(a, b)

y=0 y=1

x=1 1 0

x=2 1/2 1/2

Table 2.2: p(b, a)

vides a logical distribution to classify an example x in class y and algorithms

which use this model are called discriminative algorithms. Generative algo-

rithms model the data as p(x, y).

Overall, generative models allow for degrees of ambiguity, uncertainty

and generalisations. In addition, they tend to be efficient in handling large

amounts of data, and are hence most conducive to modeling time-series data

[1]. Popular schemes include Naive Bayes, Gaussian (Mixtures), Hidden

Markov Models, Bayesian Networks, to name but a few. Common discrim-

inative approaches include K-Nearest Neighbor, Support Vector Machines,

Neural Networks, to name but a few. While these techniques are different,

they share a common characteristic in that, towards finding the exact deci-

sion hypothesis that minimizes classification errors on the training data, each

aims to predict the class label directly based on the feature representation

[164].

The decision criteria for selecting either a generative or discriminative

supervised approach has been a constant source of debate in the field of

machine learning, resulting in a variety of studies on the subject being pub-

lished in the literature. For example, the authors in [144] argue that where

there is a low amount of training data, a generative model is most suitable,

since using a discriminative approach may lead to problems with overfitting.

The authors in [170] also claim that generative models are most applicable
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when there is a lot of ambiguity and not enough data to train against. The

authors in [144] suggest that discriminative models lack the sophistication

of generative models, and can be problematic since they will need manual

configuring (e.g. penalty functions, regularisation, and kernel functions),

and that the relationship between variables are not well defined, i.e. they

are “black-boxes”.

2.6.3 Supervised & Unsupervised

There are two main methods used in Machine Learning, supervised learning

and unsupervised learning. Unsupervised learning concerns the identifica-

tion of obscure structures from unmarked data. Given that the instances fed

to the system are unmarked, there is no evaluation metric which the learner

can use as a signal of how precise it is at distinguishing different instances.

In the supervised approach, machine learning is achieved by annotating

the data, which in turn helps to infer a function or a pattern within the

data. A training set is used in supervised learning which contains a series of

instances or examples which will have two properties, an input vector and

an intended output value (class value). After the training data is analysed,

the supervised learner infers a function, which is also called a classifier. It

is this inferred function which then predicts the most likely output class for

any previously unseen input instance.

In the supervised machine learning approach, there are three main areas.

Binary classifiers classify examples from a defined set into two classes, on

the basis that the examples of each class share some common properties.

An example of binary classification would be for enforcing quality control

within a manufacturing process; i.e. to decide if a product is in satisfactory

condition to be sold or if it should be marked as defective. The second

supervised learning approach is known as multinomial classification and this
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is the process of classifying examples (or instances) into two or more groups.

The third area is regression, which is explained above. In the next section

some commonly used concepts in machine learning are introduced. Then,

the remainder of this section discusses the two supervised machine learning

approaches which are used in this thesis, Bayesian Networks and Instance

Based Learning.

2.6.4 Concepts, Attributes and Instances

In Machine learning, it can be said that an input is made up of attributes

(features), instances (examples) and concepts (classifier). In general terms,

what we are attempting to infer from the learning process is an intelligible

description of what the data represents as a concept which can be understood

by the classifier and used to detect similar trends. In supervised learning,

which is used in this work, the learner is presented with a set of examples

(training set) from which it is expected find a way to learn how to classify

unseen examples.

The information the learner is supplied with is called the instance. Each

instance is a separate independent example of the concept to be learned.

The input to a supervised classifier is a set of instances and these instances

are contained within a training dataset. The characteristics of each instance

is determined by the attribute values which the instance contains. These

specific values are a measurement of some aspect of the concept to be learned.

2.6.5 Instance Based Learning

Instance based learning (IBL) is a classification method that compares new

problem instances with training instances, rather than explicitly perform-

ing generalisations. IBL algorithms, which are a form of lazy learning, are

derived from the nearest neighbour classifier [40]. In general, there is no
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preprocessing of training sets and to classify a new instance, all training

instances are compared with each test instance.

With IBL, training instances are unmodified and a distance function is

used to calculate which training instance is closest to the unknown test in-

stance. Essentially when the closest training instance has been detected, the

classifier predicts that the unknown test instance belongs to the same class

as the closest training instance. IBL can classify instances which contain

either numerical or nominal attributes. In this work, all the attributes are

numerical.

The Distance Function

Different distance functions may be used such as Euclidian and Manhat-

tan distance depending on the specific application. In this work, Euclidian

distance is applied and can be denoted as:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + ...+ (xk − yk)2

where k is the number of attributes. Since we are dealing with numerical

attributes the distance between two attributes is essentially the numerical

difference between the two.

Efficient Nearest Neighbour

The most common type of IBL is the Nearest Neighbour method, where the

distances between an unknown instance and each instance in the training set

is calculated. However training sets may have a large number of instances

and comparing each training instance to the test instance can be compu-

tationally expensive and time consuming. This method is proportional to

the number of training instances, as the quantity of linear comparisons will

grow as the number of training instances grow. Thankfully, there are more
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efficient methodologies for finding nearest neighbours and the most common

of these is called kD-tree, where k represents the number of attributes. This

approach models the instances as a binary tree that divides the input space

with a hyperplane and then splits each partition again, recursively. A split

is only made vertically or horizontally.

Figure 2.12: A simple kD-tree with four training instances: (a) the tree and
(b) the instances and splits on a 2D plane. [164]

Figure 2.12(a) gives a simple example with k = 2, and Figure 2.12(b)

illustrates the training instances on a two-dimensional plane, the hyperplanes

that make up the tree are also visible here. The hyperplanes are not decision

boundaries, the decision criteria is made on a nearest neighbour basis and

is explained below. In this simple example, the first split is horizontal (h),

through the point (7,4) this is the tree’s root. The left branch is not split

any further. The branch on the right side is then split vertically (v) at point

(6,7). There is no point on the left child, but the right child has the point

(3,8). As can be seen from this example, every region holds a single point

or no points.

This approach speeds up Nearest Neighbour calculations as it can locate



49

Figure 2.13: How to find the nearest neighbour using the kD-tree

the nearest neighbor of a given target point by following the binary tree from

its root to find the region containing the target. Figure 2.13 shows a space

similar to that found in Figure 2.12 with several additional instances and an

extra boundary. In Figure 2.13 the target is denoted as a star and is not

one of the instances in the tree. The black node is the leaf node in the tree

which is inside the same region as the target. Having located the leaf node

inside the same region as the target, we need to establish if there are any

other nodes in another region which are closer to the target. Therefore a

node which is closer will be inside the dashed circle as shown in Figure 2.13.

The shaded region in Figure 2.13 is the black nodes sibling, but the circle

does not intersect it, so this sibling does not contain a nearest neighbour.

This approach then backs up to the parent node in the tree and checks its

siblings (which is everything above the horizontal line in Figure 2.13). Here

the circle intersects the region so it needs to be explored. To explore this

space, we find both daughters of the current node and calculate if either of

these are located within the circle (the right point intersects the circle) and

if any do then this node which becomes the nearest neighbour. In practice
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this approach is far more efficient at examining all points to find the nearest

neighbour.

This type of IBL operates very effectively and every attribute has the

same level of influence on the final decision. However noisy exemplars can

cause incorrect decisions and one way to counteract this is to adopt the k-

nearest neighbour strategy, where a small number of k nearest neighbours

are located and used to form a majority vote of what class the test instance

correctly belongs to. In our research we implement Weka’s Instance Based

Learning classifier, IB1, which is a variation of K nearest neighbour.

2.6.6 Bayesian Networks

The second classification system which is used in this thesis is the widely

used Bayesian Network. A Bayesian network will graph the model of prob-

able relations in a set of probabilistic relationships within a set of variables.

As of late, Bayesian Networks have become one of the most used classi-

fication techniques for inferring new knowledge. The techniques used are

still advancing as researchers strive to find more accurate ways to infer new

knowledge [70]. The principle of Bayesian Networks is to use graphical mod-

els to represent knowledge. Algorithms which are optimised for searching

these graphs to find patterns are then utilised. The following section intro-

duces the principles of a graphical model.

Probabilistic Graphical Models

This approach is based on the concept of declarative representation. Using

this technique we build a computerised model of the system which we would

like to reason. This model translates our knowledge of how our system op-

erates into a computerised form. This computer readable form can then be

interpreted by various algorithms that can provide answers to many ques-
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tions. For example, in a medical diagnosis application, there are many differ-

ent possible diseases that a patient could have, many different symptoms or

diagnostic examinations, personal characteristics which may be symptomatic

of specific diseases and other circumstances to factor in. These domains can

be characterised by a set of random variables, where the value of each vari-

able defines a property of the domain. Then when we are provided with some

observations about some of these variables, our goal is to reason probabilis-

tically about the values of other variables. To achieve this using principled

probabilistic reasoning, we build a joint distribution over the possible out-

comes of a set of specific random variables. A reasoning algorithm can take

this model as well as some observations relating to a specific patient and

answer questions relating to the specific patients problems.

Figure 2.14: A sample Bayesian Network

To efficiently encode a complex distribution over a high dimensional

space, probabilistic graphical models use a graph based structure. The graph

in Figure 2.14 shows where the nodes represent the variables and the arrows

represent the direct probabilistic connections. In this graph, it can be learned

that there is no direct relationship between congestion and season, the two

interact with flu or hayfever. One usage of this graph is that it can be used

to represent a state of independencies that hold in the distribution. For

example the statement:
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P (Congestion|Flu,Hayfever, Season) = P (Congestion|Flu,Hayfever)

(2.6)

If we are interested in the distribution of the patent having congestion and

we can tell from the graph that she has Flu, or that she has hayfever, then

the value of season is not relevant (as can be inferred from Figure 2.14)

The second usage of the graph is that it defines a tree like structure for

efficiently presenting a high dimensional distribution. In this sense, we can

avoid having to calculate the probability of each relationship between each

variable as some variables are unrelated to others. This helps to breakdown

the distribution of the full joint distribution into a smaller product and this

in turn increases the efficiency of computational calculations.

In essence, a Bayesian Network is learnt by defining two components, (1)

a function for evaluation of a specific network which is based on the data and

(2) a method of searching through the networks. Learning Bayesian networks

involves lots of counting. A search will have a number of network structures,

and to obtain the conditional probability tables the data needs to be scanned

to obtain the counts needed. However counts can be stored efficiently using

the all dimensions (AD) tree , which is an analogous approach to the kd-trees

search, discussed in Section 2.6.5.

A Bayesian Network is extremely useful at classifying instances where

the training set is quite sparse, as is the case with event detection in tennis,

where the number of training instances will only run into several thousand

at the most. For this reason and because Bayesian Networks have been

widely employed in visual classification systems which have a similar scope

to this research, Bayesian Networks have been chosen as one of the machine

learning approaches used in this research.
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2.7 Conclusion

This chapter outlines the main research components which are related to this

work and used at varying levels throughout the following chapters in this

thesis. Visual feature extraction is a large field and the different approaches

described in Section 2.2 are all used to recognise human actions and activities

in this thesis. There are of course different approaches, which can be used

to detect a human subject in a visual scene, such as optical flow, but as

has already been pointed out, foreground extraction is well suited to indoor

environments where the background does not change often and there is few

foreground objects.

One problem however is that artificial lighting creates shadows and these

will generally become part of the foreground if the threshold is set low. In

order to combat this problem a shadow removal module is applied to each

frame in order to create a perfect silhouette of the human subject in the

scene. Without a robust shadow removal technique, it will become difficult

to classify the humans activities from the features extracted. Foreground

extraction is not a perfect approach and to obtain a single foreground blob

(which represents the human subject), we use two vital computer vision

techniques called erosion and dilation, which help to remove noise from fore-

ground objects.

Inertial sensors were introduced in Section 2.4 and an explanation of

what types of sensors are generally found in an inertial node is given. In

this work, accelerometers, magnetometers and gyroscopes are used and a

description of each is given in this section. The final part of this section

explains what is meant by a wireless inertial measuring units (WIMUs) and

the technical specifications of one of the WIMU devices which is used to

capture human motion is explained.

Finally, this chapter introduced the main concepts of machine learning,
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a state of the art technique used for artificial intelligence. It is beyond the

scope of this thesis to cover the complete theory of machine learning, instead

we briefly introduced the main concepts of the two classifiers used in this

work (Bayesian Networks and Instance Based Learning), each of which is

used to recognise human actions using visual or/and inertial sensors in the

following chapters.
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Chapter 3

Human Action Recognition

with Video

3.1 Introduction

Human action recognition (HAR) is one of the most active research areas

in computer vision today. The growing relevance is spearheaded by a wide

range of potential applications in numerous areas such as automatic video

event indexing, video surveillance and visual analysis of an athlete’s perfor-

mance for example. The earliest recorded investigations into human motion

analysis date back as far as the 1850s, when contemporary photographers

E. J. Marey and E. Muybridge photographed moving subjects and reported

interesting and artistic aspects relevant to human and animal locomotion

[136] (Figure 3.1).

Johansson’s pioneering moving light display (MLD) experiment is one

of the earliest works for studying and analysing human motions in the field

of neuroscience. In essence the problem can be summarised as, given a

succession of images with a person or persons performing an action, can

a computer system be developed which will automatically recognise what

56
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action is being performed? The question is quite simple but in practice the

solution to this problem is extremely difficult.

It should be noted that human actions and human activities are differen-

tiated in the context of this thesis. When we mention human actions we are

referring to single motion patterns which are performed by a single person

and are usually executed within a short duration of a few seconds. Exam-

ples of human actions include sitting, running, jumping or walking (which is

shown in Figure 3.2). However, human activities refer to multiple complex

actions which can be performed by one or more persons who are interact-

ing with each other to achieve a certain task. These tasks generally take

a much longer duration to complete. Examples of human activities could

include team based analysis, where a football team score a goal or a group

of people robbing a bank (Figure 3.3). There are significant difficulties in

automatically detecting and understanding semantics from human activities.

However, action recognition as targeted in this thesis could prove to be a

useful starting point.

In this chapter we examine existing challenges and literature for using

visual sensors in HAR. We then evaluate two common approaches for recog-

nising human actions from video. Both approaches are evaluated on a near-

field camera and also on an aerial view outdoor camera, whereby we then

conclude which approach is the most suitable for HAR in this work.

3.2 Research Challenges

Automatic detection of humans in a visual scene and recognition of human

activities and actions thereafter is currently a very active research field due

to the many challenges which make this problem difficult to solve, as outlined

in the following.



58

Figure 3.1: The Human Figure in Motion, Muybridge 1878.

Figure 3.2: Example of a simple human action captured over a sequence of
images, in this case the subject is walking [155].
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Figure 3.3: Indoor video view. This video shows an acted back robbery [59].
(a) Subject walks into the bank. (b) Bank robber is recognised to be an
outsider. Bank robber enters the secured safe. (c) A person walks out of the
bank. (d) Bank robber leaves the bank.

• Wide variety of articulated poses By pose, we mean a specific

position that the human body can take and a human action is a con-

secutive list of human poses. A human subject can perform a large

number of different poses and will even perform multiple poses simul-

taneously. Example poses include running, walking, sitting or boxing

and examples of simultaneous poses include walking while waving, or

pointing an arm in a particular direction whilst sitting down.

• Variable appearance and clothing No two humans will dress the

same and the visual appearance of two people based on height and

build will rarely have similarities, which makes the job of training a

model to detect generic human actions more difficult.

• Complex Backgrounds Identifying a human subject in a changing or

outdoor background is often difficult. Changes in the background make

an automatic human extraction process more challenging as moving

background objects can be confused with the human subject.

• Unconstrained Illumination Capturing video indoors or outdoors

can be challenged by changing illumination. In either case poor lighting

may be present, or the scene may undergo significant lighting change.
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• Occlusion, different scales Self occlusion is a significant problem

in wide area human action recognition with video where humans are

free to move around substantially in the scene and the camera will not

capture their full body.

Given the potential applications, the scientific problems which exist, the

performance and cost of current hardware and the focus on security issues

today, huge efforts have intensified to push forward research on human mo-

tion detection. The intensified drive forward is obvious by observing the

increasing number of conference papers and journals which are linked to this

field, especially in the surveillance area [118].

The video based human action recognition system which is detailed later

in this chapter, is initially employed in an indoor surveillance environment

to detect human actions and thereafter in an outdoor aerial view scenario.

Section 3.5 describes the two approaches used for human action recognition,

(1) contour features and (2) Histogram of Gradient Orient Of Motion His-

tory Images (MHIHOG). Experiments in Section 3.6 indicate how well each

method performs at recognising basic human actions. This comprehensive

set of experiments helps to underline which approach is the most suitable

for recognising human actions under the different scenarios with which this

work is concerned. There are of course, many different approaches in the

literature for detection of human actions using visual sensors and some of

the more relevant approaches are described in the following section.

3.3 Related Work

In [124], the authors recognise human actions by using a collection of spatio-

temporal events which are generated by image sequences and localised at

points that are significant in space and time. Spatio-temporal salient points
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are extracted by calculating the variance in the data of pixel neighbours

in both space and time. A measure of the distance between both sets of

spatio-temporal salient points is calculated using a method which is based

on Chamfer distance [24]. Liu et al. [105] propose to generate a semantic

bag of video words using sample videos with Pointwise Mutual Information

and diffusion maps. Spatio-temporal features are extracted from the actions

and after feature quantization the actions are represented by a semantic bag

of words. The training videos are converted to a bag of semantic words and a

Support Vector Machine (SVM) is used to build a classification model of the

training videos. An input action then under goes the same transformation

process and the unseen video is converted to a histogram of semantic words.

The classifier decides to which action the unseen video is most likely to

belong.

Motion History Images, which were described in the previous chapter,

have been commonly used to detect basic human actions in the past, however

they struggle to accurately represent complex human motions. The authors

in [21] use a method for representing motion in successively layered silhou-

ettes that directly encode system time in what is called the timed Motion

History Image (tMHI). This representation can be used to both determine

the current pose of the object and to segment and measure the motions

induced by the object in a video scene. These segmented regions are not

“motion blobs”, but instead motion regions naturally connected to the mov-

ing parts of the object of interest. The method is used to recognise waving

and overhead clapping motions to control a music synthesis program. [77] et

al. propose a novel method which calculates the histogram of oriented gradi-

ent (HOG) of a motion history image (MHI). Their algorithm first generates

a MHI with differential images, essentially the result of frame differencing

over each image which captures the human action. The second step com-



62

putes the HOG of the MHI and then a SVM is used to train a classifier with

the HOG features. This step does not require the human to be extracted as

a silhouette, which increases the overall performance.

Human actions can be represented as a series of postures over time in

a 2D scene and a commonly used approach for representing posture is to

use its boundary shape [73]. A comprehensive review of current approaches

used to detect human actions using one or more cameras can be found in

[73]. Since each border point in a digital image is similar to its neighbor

point, it is inefficient to use the whole human contour to describe a human

posture. There are, of course dimensionality reduction techniques such as

Principal Component Analysis [151], which can reduce the redundancy, but

these approaches are computationally expensive due to matrix operations. In

contrast to high dimensionality, simple information like the X/Y variance

of the human posture do not provide enough information to give enough

information to recognise a large number of basic human actions. However

Contour Features, overcome these issues and have been shown to be accurate

in detecting human actions.

Previous approaches which use contour features include Fujiyoshi et al.

[56], who use a process for analysing the motion of a human target in a

video stream. Moving targets are detected and their boundaries extracted

by extracting the human as foreground, using foreground extraction. From

the foreground images a skeleton of a human is formed as shown in Figure 3.4,

taken from [56]. Two features of motion are identified from the skeleton, the

posture and the repetitive movements of the skeleton. Both cues give clues

to human actions such as walking or running. This method has proven useful

and it is not necessary to build a priori human model when employing this

method. In addition, the computational cost is low, and it is an appropriate

solution for practical deployments. One issue with this approach is that the
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human actions need to be relatively simplistic.

The authors in [27] also use image skeletonisation to recognise basic hu-

man actions from a near view video. This action recognition method ex-

tracts features from the human motions using star skeleton for recognition

and these features are then modeled using Hidden Markov Models. Each

human action is represented by a sequence of temporal images, which are

transformed to an image feature vector using star skeletons from each image.

Each feature vector of the sequence is allocated a symbol which matches a

codeword in the code book using Vector Quantization [86]. Then the time-

sequential images are converted to a symbol sequence. To train the system,

the model parameters of the HMM of each category are optimised to give

the best representation of the training symbol sequences for all categories

of the human actions to be recognised. For human action recognition, the

model which best matches the observed symbol sequence is selected as the

recognised category.

3.3.1 Discussion

Contour features have been widely used to recognise human actions as the

previous section illustrates. The advantages of using this approach is that it

is computationally inexpensive, it gives a useful representation of the human

silhouette and different vector ranges can be easily implemented to reduce

or expand feature dimensionality size. In this thesis, we evaluate both MHI-

HOGs and Contour Features. MHIHOGs use Motion History Images which

utilises motion shape information of a video to recognise actions. The ad-

vantage of MHI is in its simplicity and low computational cost compared to

the optical flow method, for example. Moreover HOG are known to be a

very accurate technique for representing movement in video [44] [22] [77].
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(a) The outermost boundary pixels are identified by calculating
the distance from the center of the object to the edge.

(b) In a preprocessing step, morphological erosion and dilation is applied
and then the border is extracted

Figure 3.4: Image Skeletonisation [56].
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3.4 Human Motion Segmentation

Motion segmentation is a process which detects pixel regions which corre-

spond to moving objects. These mobile objects may potentially be targets

in images or video, which can be used for later processes such as activity

recognition and object tracking [76]. Human motion detection is the process

of recognising people in a captured scene and extracting the human subject’s

motions over time. The foundation of an effective human motion analysis

system requires accurate pose estimation and action recognition systems and

these processes are heavily reliant on an efficient human detection system

[73]. It is difficult to obtain high-level human action recognition without

successful motion segmentation. The two main approaches for motion seg-

mentation are foreground extraction and optical flow. In this work, the

former approach is adopted. Both of these approaches have been introduced

in the previous chapter.

Foreground extraction is a commonly used technique for motion segmen-

tation and is very effective in scenarios where there is a relatively static

background. In this research we use foreground extraction for motion seg-

mentation because it can generate efficient segmentation results in scenes

where the background is fairly static but the lighting changes over time, as

is the case in our application. Furthermore we chose foreground extraction,

over optical flow because the latter is vulnerable to image noise, colour and

changing lighting and has a significant computational cost.

Frame Differencing

The visual datasets used in this work contain a series of human actions per-

formed by various people in both an indoor and an outdoor environment.

In both datasets, each human subject stands idle before each action is per-

formed. After empirical analysis it was concluded that no action in this
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dataset exceeds exceed 4 seconds, so we can simply extract 4 seconds of

video every time we detect the beginning of a new action. This fixed win-

dow length can easily be adjusted for different datasets in future work. Using

foreground extraction we detect the beginning of a new action by analysing

the video and recognising this idle stance through low motion activity. When

the subject moves and this motion is above a fixed threshold (20% of the

human silhouette), we record this time as the beginning of a new action.

Different threshold sizes were tested but 20% is the most accurate for de-

tecting human movement in this dataset and again this threshold may be

adjusted for different datasets in future work.

To assess this action boundary detector, we developed an evaluation ex-

periment which measures the accuracy of this approach. For this experiment

we applied our detection algorithm to detect all the actions of five human

subjects. We applied our frame differencing algorithm to each subject in turn

and where the beginning of a new action was detected to within 1 second of

the actual start of an action it was deemed to be the correct. Accuracy to

within 1 second is sufficient for extracting actions features. This is because

in this dataset no action is shorter than two. Each subject performed seven

different actions and each action was executed ten times giving a total of 70

actions per human subject. The overall precision and recall for detecting the

beginning of a new action was .89 and .93, which is deemed to be sufficiently

accurate.

3.5 Feature Recognition Methodologies

The two approaches used to detect human actions in this thesis are Histogram

of Oriented Gradient of Motion History Images (MHIHOG) and Contour

Features. In the next two sections we explain how each approach is imple-

mented to detect human actions. As is the case when training any machine
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Figure 3.5: Indoor camera view

learning system, providing the classifier with features which give a strong

generic representation of the class in question is vital to obtaining suffi-

ciently accurate results. Several preprocessing steps are necessary to obtain

visual features which will help the classifier in the training and testing stage.

3.5.1 Histogram of Oriented Gradient of Motion History Im-

age

This approach is based on Motion History/Energy Images, which was dis-

cussed in Section 2.2.6 and is a commonly used approach to detect human

actions by representing human motion using temporal templates. Our pre-

liminary research into Motion History Images (MHI) has concluded that

this approach is most productive in representing basic human actions. More

complex actions tend to obstruct information related to the beginning of the

movement, which makes this approach unsuitable for complex human actions

such as boxing or running, where there is repetitive limb movements. An

example of this problem can be in rapid movement actions such as jogging

or boxing where the rapid movement of the arm forwards and backwards ob-

scures some of the visual detail captured by later frames. Another challenge

related to using traditional MHIs is how to best represent the information
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from the resulting images. In [45], the authors used Hu Moments [75] to

represent basic actions and these are known to give good representation in

a scale invariant and view invariant manner.

To mitigate against these drawbacks, we implemented a method based

on MHI and Histogram of Oriented Gradients (HOG), called MHIHOG. The

method was first described in [77], however our approach is a variation of that

detailed by the authors in [77] and has several differences. One significant

difference is that we normalise the HOG features so that the features from

human subjects of different sizes can be compared. The second difference

is that we train our features on an Instance Based Learning classifier to

compare which gives the most accuracy in classifying the HOG features.

The overview diagram of our proposed method is shown in Figure 3.6. Our

approach also obtains a HOG of the foreground MHI, unlike the method

detailed in [77].

To generate a motion history image, our approach processes four images

per second. Investigations were conducted for different sampling frequencies

but our tests concluded that due to the diversity in the actions in the dataset,

we obtain better classification results with a low sampling rate. When MHIs

are generated for each action a HOG is used to extract features from the

motion history image. The first step in this method creates a MHI with

frame differencing which represents the action. The second part computes

the HOG of the MHI. In our method, we adopt the approach introduced by

[77] and train a classifier to learn the actions using the HOG features of the

MHI.

3.5.2 Contour Features

Contour features are commonly used to identify basic human actions from

a 2-D scene [35] [56]. The concept of contour features is to connect from
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Figure 3.6: Overview of the process of extracting Histogram of Oriented
Gradient of Motion History Images

the center to the peripheral extremities of a human contour as illustrated in

Figure 3.7. After segmenting each action into four second video clips using

frame differencing, we segment the video into 120 frames in total (30fps).

For each frame, we extract the human subject using foreground extraction

and the resulting human silhouette is then sliced into pie segments (16 in

this case). Then the distance from the centroid of the human foreground to

the furthest foreground pixel along the pie line is calculated in a clockwise or

counter-clockwise order. The end result is that for each image we obtain is

16 features which give a good representation of the human posture. Contour

features are calculated for each image in the action sequence.

3.5.3 Action Classification

Using an Instance Based Learning, a model can be generated for each of

the actions that will be recognised. Instance based learning classifiers have

proved suitable for our needs and the time taken to generate classification
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Figure 3.7: Extracting contour features from the human silhouette

Figure 3.8: Overview of extracting Contour Features
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models is only a few seconds so we do not perform any linear or nonlinear

dimension reduction techniques. In both feature recognition approaches we

normalise the features to compensate for height variances between different

human subjects. The normalisation step scales the features so that the

variance is equal to 1. By normalising the features the classifier will be more

accurate at finding similarities between the actions performed by people of

different sizes. Each human subject is wearing different colours of clothing

but this does not cause a conflict when using foreground extraction, which

is in contrast to optical flow, which can sometimes be adversely affected by

different colours of clothing.

Once the training model is learned as per the method in Figure 3.9(a),

an unknown input action is tested against the training model. Figure 3.9(b)

shows the workflow used to test each input action against the training model.

The classifier then predicts which action from the training set is most similar

to the unknown input action.

3.6 Indoor Action Recognition Experiments

In this section we provide evaluation results of each Human Action Recogni-

tion (HAR) approach. The first experiment is to determine the accuracy of

each method in detecting human actions from a near-field rear view camera

in an indoor environment. This rear view angle is similar to the baseline

camera angles used in Section 6 to recognise tennis events. The indoor data

capture contains seven distinct human actions (crawl, walk, jacks, jump,

boxing, wave, sit on floor) and details of this dataset can be found in the fol-

lowing section. Experiments were conducted on a computer equipped Intel

Core 2 Duo Processor and 3GB of Random Access Memory. The computer

operates on Windows 7 and the software packages used were Matlab R2009a

and Weka 2.7.
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(a) Training Workflow

(b) Testing Workflow

Figure 3.9: Action Recognition Workflow

3.6.1 Indoor Human Action Recognition Dataset

The dataset used in this experiment was captured with a single camera

(640×480). At any time there is only one person in the scene. For the

indoor human action dataset, seven actions are performed ten times, by ten

people. The indoor actions performed were crawl, forward walk, jack, jump,

boxing, single wave, sit on floor. The camera captures each indoor action

from a rear view camera as shown in Figure 3.10.

Each person performed each action ten times and the subject kept their

arms by their sides when not performing an action. The human subjects

wore different clothing, were of different gender and body size to provide

sufficient variety. Figure 3.10 illustrates how each action was executed by a

variety of human subjects.

A single Wireless Inertial Measuring Unit (WIMU) was also attached
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(a) Boxing

(b) Crawl

(c) Jack

(d) Pick Up

(e) Sit On Floor

(f) Walk

(g) Wave

Figure 3.10: Human actions captured on an indoor camera



74

to a human subject’s right forearm so that the same dataset could be used

for HAR based on inertial sensors, containing a tri-axis accelerometer, gy-

roscope and magnetometer. It should be noted that seven different actions

were selected as this is more actions than any reported in existing works.

Most visual action recognition datasets do have nine actions but nine actions

would give an unfair bias when comparing the accuracy of action recogni-

tion between visual sensors and inertial sensors. This bias would be because

action recognition using inertial sensors is not as well developed as visual

sensors. The specifications of the WIMU used in this experiment can be

found in Section 2.4 and the data from the inertial sensors is examined in

Section 4.

3.6.2 Results

The first experiments in this section use the “leave one sequence out” cross

validation approach to assess the accuracy of the classifiers. This approach

means that one sample was omitted from the dataset and the remainder of

the dataset was used to train the classifier. The omitted sample is then used

to test the classifier and the result is recorded. Then the process repeats

itself until every sample action has been tested. Once all the samples are

tested, a confusion matrix showing the percentage accuracy of each action

is generated, as shown in Table 3.1.

Using an Instance Based Learning classifier, the MHIHOGs provide a

cross correlation accuracy of 92%. Table 3.2 shows the confusion matrix for

contour features using leave one out cross correlation. For contour features

the overall accuracy is 94%, which only contains a small number of incorrect

classifications of the 480 samples tested. Therefore the conclusion of this

experiment is that contour features are the most suitable for event detection

of basic human actions from a single camera.
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Crawl Walk Jacks Jump Boxing Wave SitonFloor

Crawl .96 .03 .01

Walk .95 .01 .4

Jack .02 .90 .01 .07

Jump .01 .03 .88 .02 .04 .02

Boxing .04 .94 .02

Wave .01 .01 .95 .03

SitonFloor .04 .02 .01 .93

Table 3.1: Confusion matrix showing the accuracy of recognised actions for
MHIHOG features on seven actions performed by 10 subjects in an indoor
environment using “leave one sequence out” cross correlation and classified
with Instance Based Learner (IB1)

Crawl Walk Jacks Jump Boxing Wave SitonFloor

Crawl .98 .02

Walk 1

Jack .88 .04 .08

Jump .04 .92 .02 .02

Boxing .03 .03 .88 .06

Wave .02 .02 .96

SitonFloor .02 .98

Table 3.2: Confusion matrix showing the accuracy of recognised actions for
Contour features on seven actions performed by 10 subjects in an indoor
environment using “leave one sequence out” cross correlation and classified
with Instance Based Learner (IB1)
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Instance based Learning vs Bayesian Networks

When we use a Bayesian Network to classify the same features the MHIHOGs

give an accuracy of 85% and the contour features give an accuracy of 87%,

proving that a lazy learner algorithm such as IB1 [2] classifies visual human

actions more accurately than a Bayesian Network.

Leave One Subject Out Classification

For this experiment, an IB1 classifier is trained on a random five human

subjects and then tested on an unseen person, otherwise known as leave

one subject out. This experiment assesses whether classifiers can be tested

on unseen human subjects. A leave one subject out approach is used to

train a model for each action, i.e. the training set contains no samples of

the human subject being tested. The Leave one subject out approach is an

efficient method to gauge if the classifier is accurate at classifying instances

from unseen human subjects and therefore not biased.

Crawl Walk Jacks Jump Boxing Wave SitonFloor

Crawl .68 .22 .10

Walk .33 .56 .11

Jack .11 .78 .11

Jump .30 .70

Boxing .60 .40

Wave .33 .67

SitonFloor .20 .80

Table 3.3: Confusion matrix showing the accuracy of recognised actions for
MHIHOG features on six actions performed by 10 subjects in an indoor
environment using leave one subject out and classified with IB1

The overall accuracy obtained using MHIHOG is 68%. Furthermore, the

confusion matrix illustrates that this approach does not perform well when

the actions involve repetitive limb movements such as those found in walking

or boxing. In contrast MHIHOG does perform well when the human actions

are basic in nature such as sitting on the floor or performing jacks.
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For our second experiment we apply contour features to the same data

set to determine which feature recognition methodology is the most accurate

at classifying human actions.

Crawl Walk Jacks Jump Boxing Wave SitonFloor

Crawl .97 .03

Walk .20 .75 .03 .02

Jack .36 .50 .14

Jump .10 .85 .05

Boxing .01 .23 .74 .02

Wave .08 .02 .18 .72

SitonFloor .03 .03 .94

Table 3.4: Confusion matrix showing the accuracy of recognised actions for
Contour features on seven actions performed by 10 subjects using LOSO
and classified with IB1

The overall accuracy when using contour features is .78, which is a sig-

nificant improvement over MHIHOG features. However contour features

use 1920 features per action, which is significantly more than the 80 features

which the MHIHOG generates. This means there is extra processing involved

with contour features but we consider this cost effective when it comes with

a 10% increase in accuracy. In conclusion, we have found contour features

to be significantly more accurate for HAR from a near-field indoor camera.

3.7 Aerial & Wide View Action Classification

It is not always possible to have the camera in a convenient near view posi-

tion for recognising human actions or activities. Wide area view and aerial

view cameras have also been used to detect actions and in either of these

views human action recognition is significantly more challenging. In Section

6, an aerial view camera is used to detect tennis events and to demonstrate

that aerial view action recognition is possible for detecting more traditional

human actions, this section now provides accuracy results for detecting hu-
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Figure 3.11: Aerial view of a variety of human actions [26]

man actions from a single aerial view camera.

3.7.1 Related Work

It is common to film from a distance when it is not physically possible to

set up a camera at close range, which is the case for many military and

surveillance operations [156] [26] or field sport analysis [173] [51]. Human

actions can be detected using a single view camera or using multiple views

in a distributed environment [25].

Chen et al. [26] recognise human actions from cameras where the size of

the human subject may be as small as forty pixels, which is common when the

actions are recorded from afar. There are several issues with this technique.

The first is that the image resolution is reduced and the quality of visual

information is reduced. They report that it is challenging to detect “waving”

from “walking” using a single motion classification technique and therefore

detect consecutive poses as Histogram of Oriented Gradients (HOG) and

actions are represented by a sequential number of Histogram of Oriented

Optical Flow (HOOF). Supervised Principal Component Analysis (SPCA)

is then employed to reduce the feature size of the histogram vectors.

As shown in Figure 3.11, the human subject’s limb in this scene is only

four pixels and the edges between the human and the background is not well

defined. In [26], the authors report that these problems result in an optical

flow which contains a lot of noise. To overcome this issue a novel descriptor

is proposed in [26] which joins human poses and movement data within a
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Figure 3.12: Walking action taken from our Aerial View Dataset

spatial-temporal volume. They use Histogram of Oriented Gradients (HOG)

to represent the human poses. In the work presented here, we investigate

the usefulness of our previously described approaches in this scenario. This

is motivated by the goal to have a single approach that works across both

scenarios.

3.7.2 Aerial View Human Action Dataset

To test our action recognition approach we created a dataset of human ac-

tions captured from an aerial view in an outdoor environment. The actions

performed were boxing, clapping, one handed waves, two handed waves,

jacks and walking. A fixed camera was positioned approximately nine me-

tres above the street and captures the scene of the street below as shown in

Figure 3.12. Eight people participated in the capture and each performed

each action ten times giving a total of 480 actions.

3.7.3 Experiments

In our first experiment we extract MHIHOG features for each action in the

aerial dataset and then obtain a measure of the similarity between the 480
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actions using leave one out cross correlation. The features are trained with an

IB1 classifier and as Table 3.5 illustrates the overall accuracy is very high at

91%. It is unsurprising that boxing gets incorrectly misclassified as clapping

since both these actions appear almost identical from an aerial view. In

the second experiment we detect the contour features of each human action

in the dataset and use leave one instance out cross correlation to detect the

accuracy of different actions. The accuracy for contour features using an IB1

classifier in the aerial outdoor environment is 92%. The confusion matrix

in Table 3.6 shows that very few actions are misclassified and similarly to

HAR using an indoor camera, contour features are more accurate at HAR

from an outdoor/aerial view camera.

Boxing Clap 2 Hand Wave Jack Walk 1 Hand Wave

Boxing .92 .06 .02

Clap 1

2 Hand Wave .02 .92 .06

Jack .02 .98

Walk 1

1 Hand Wave 1

Table 3.5: Leave one out cross correlation showing the accuracy of recognised
actions for MHIHOG features on six actions performed ten times, by eight
human subjects in an outdoor environment and classified with IB1

Boxing Clap 2 Hand Wave Jack Walk 1 Hand Wave

Boxing .98 .02

Clapping 1

2 Hand Wave .02 .98

Jack .10 .90

Walk .01 .01 .97 .01

1 Hand Wave .02 .98

Table 3.6: Leave one out cross correlation showing the accuracy of recognised
actions for Contour features on six actions performed ten times, by eight
human subjects in an outdoor environment and classified with IB1
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3.8 Weizmann Dataset Experiments

Finally, in this set of experiments we apply both the MHIHOGs and Contour

features to the popular Weizmann dataset [63]. This dataset is a collection of

90 low resolution human actions (180×144, deinterlaced 50 fps) and contains

nine people performing the ten actions one time each. The actions in this

dataset are bend, jump forward, run, side walk, skip, walk, single handed

wave, double handed wave, jumping jacks and jump in place. Table 3.7

shows our results for MHIHOGs and Table 3.8 shows our results for contour

features. Each confusion matrix summarises the recognition rates for “leave

one sequence out” cross correlation.

Instance based learning was used to classify the actions in this exper-

iment. MHIHOGs achieve a recognition accuracy of 69%, while contour

features achieve a higher accuracy of 84%. Contour features may use every

frame possible but our experiments have discovered that using a fixed win-

dow of 25 frames per action achieves the highest accuracy. In fact, when

a window of 40 frames per action was used, the accuracy dropped to 75%.

Therefore the highest overall accuracy was 84% and this was achieved using

contour features, with a window size of 25 frames per action and classified

with Instance based learning.

3.8.1 Discussion

The reason why MHIHOGs do not perform so well in this dataset is because

there are a high number of basic human actions to be detected and these

features appear very similar amongst many actions such as walking and

running, where a lot of information is lost with motion history images since

not every frame is used.

In [63], Gorelick et al. report accuracy results of 96%, though the re-

ported overall processing time required to extract features of a 50 second
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pre-segmented video (110×70) is 30 seconds on a Pentium 4, 3.0GHz. In our

approach, the overall processing time takes on average 8 seconds to extract

contour features from a 50 second pre-segmented video (180×144) on an

Intel Core Duo T2600 2.16GHz, which is a significant improvement on [63].

Bend Jump Run Side Skip Walk Wave1 Wave2 Jack Jump

Bend 1

Jump .67 .22 .11

Run .45 .11 .33 .11

Side .11 .11 .78

Skip .11 .44 .11 .34

Walk .22 .44 .34

Wave1 .89 .11

Wave2 .11 .11 .78

Jack .11 .11 .11 .67

Jump 1

Table 3.7: Confusion matrix showing the action recognition for MHIHOG
features on the Weizmann dataset using leave one out cross correlation and
classified with IB1

Bend Jump Run Side Skip Walk Wave1 Wave2 Jack Jump

Bend .89 .11

Jump .78 .22

Run .56 .11 .11 .22

Side 1

Skip .33 .45 .22

Walk .11 .89

Wave1 1

Wave2 1

Jack .78 .22

Jump 1

Table 3.8: Confusion matrix showing the action recognition for Contour
features on the Weizmann dataset using leave one out cross correlation and
classified with IB1
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3.9 Discussion

Two approaches for detecting human motion were investigated and evalu-

ated against different datasets, in different environments, of different sizes

and different resolutions, where the number of test subjects varies in dif-

ferent tests. Applying each action recognition method to differing datasets

evaluates how the action recognition methods perform in different scenarios.

There was no apparent trade-off between accuracy and frame resolution size,

though most cameras today do have high resolution. Results indicate that

contour features are significantly more accurate at detecting human actions

and the results are very encouraging. The confusion matrix for MHIHOG

illustrates how this approach has difficulty detecting actions which involve

high motion. The confusion matrix also proves that MHIHOGs are best

suited to simple motions, in much the same manner as motion history im-

ages perform best when the actions are simplistic. The issue with motion

history images is when the human performs complex actions the features

obtained are not discriminative. This approach introduces a lot of noise and

visual kinematic information is lost, as was the case when the subjects are

boxing or walking in our experiments.

However, contour features overcome these issues as information from each

frame is processed unlike motion history images, where motion can cause

overlap. Contour features are therefore the most suitable approach for HAR

from an indoor, outdoor and aerial view camera. Of course, no single visual

action recognition approach can completely overcome recognition issues such

as self occlusion or complex backgrounds with clutter and ongoing research

is seeking solutions to these problems. However, body worn inertial sensors

can potentially overcome the challenges with which visual sensors struggle.

The next chapter introduces an approach to action recognition using inertial

sensors and uses the same dataset to detect which sensor is most appropriate
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for human action recognition.



Chapter 4

Human Action Recognition

with Inertial Sensors

4.1 Introduction

In this chapter we introduce a novel approach to detect human actions using

a single inertial sensor worn by a human subject. One of the main premises

of wearable computing is to enable personal applications that can adapt

and react to the current context of the user. The term context is generally

broadly defined and can in principle encompass any kind of information

that relates to the current situation of the user or the objects surrounding

him or her [48]. This section covers an introduction to inertial sensors and

this is followed by an overview of the research challenges in this field. We

then introduce our own approach for detecting human actions with inertial

sensors.

Early work in activity recognition with wearable sensors can be found in

the early nineties, when advances in hardware technology made sensors and

hardware light enough to enable mobile computerised systems, which could

be attached to a human subject for long periods of time (e.g. as described in

85
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[146]). Although these research prototypes were still relatively bulky and a

long way from “vanishing into the background” as envisioned by Mark Weiser

[161], they held the exciting promise of making the computer perceive human

life from a first person perspective, thus enabling truly personal applications.

Early work centered on traditional, text and keyboard based applications,

and then gradually explored new methods of input and interaction. An

example of this scenario would be using wearable cameras [138] [147] or

microphones [34] and incorporating other context information such as the

user’s current location, the subject of a conversation or the identity of a

conversation partner in order to provide the user with relevant information

about his current situation in real time, or to store information for later

retrieval [133].

Measuring the physical activity of a person through the use of objective

technology has been a longstanding goal of the medical research commu-

nity, and accelerometers have been used for this purpose for several decades

[119], [165]. These early systems aimed to estimate global measures such

as the total energy expenditure or the oxygen requirement of the subject

while he or she was performing a number of different activities. Mobile sys-

tems incorporating inertial sensors that could separate and recognize specific

physical activities emerged at the turn of the last decade, stimulated both by

advances in hardware technology, machine learning methods, and by their

expected usefulness for the new paradigm of context-aware computing [61]

[131] [99].

Existing research in human wearable action recognition sensors spans

many areas, where some researchers focus on activity recognition in daily

living for healthcare [102], automatic recognition of activities in unlabeled

data [115], semi-automatic or unsupervised learning of activities [167] [81],

or combining various sensor modalities to increase recognition accuracy [149]
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[158].

4.2 Related Work

There are many different methodologies for recognising human actions and

activities from raw inertial sensor data. Given the nature of inertial sensors,

sensor data usually undergoes a pre processing step. In most cases, high fre-

quency noise in acceleration data needs to be detected and removed. Tech-

niques such as low-pass median [88], Laplacian [17], and Gaussian filters [94]

can be used to remove high-frequency noise. In certain cases, gravitational

acceleration needs to be removed from accelerometer data to help analysis

of meaningful dynamic acceleration. To achieve this, high pass filters can

be employed to recognise body acceleration from gravitational acceleration

[168]. The ability to represent raw data, while conserving relevant informa-

tion is vital for efficient recognition systems. This step can have a major

effect to the overall success and computation time of activity recognition

systems.

Sensors can capture enormous amounts of information and therefore it

is necessary to find abstractions of the raw data via relevant features. The

feature vector contains important patterns for identifying separate actions

[168] [35] and these vectors are then used for classification. One such method

of feature extraction is Fourier Transforms, which have the ability to hold the

primary information, while reducing the dimensionality of the sensor data

[69]. Discrete-Fourier Transforms are a specific version of Fourier Transforms

that use discrete input functions like sensor samples [166].

Time-domain features can be signal statistics and basic waveform char-

acteristics which are directly derived from a portion of the data. Ward et al.

[159] attach a triaxial accelerometer and a microphone to the human sub-

ject’s wrist to recognise human actions. They report that people commonly
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attach devices to their wrist on a daily basis, making this sensor placement

acceptable. In this work, they extract the mean, variance and count the

number of peaks in each axis as the features to represent each action and

can classify regular working man actions such as hammering, drilling and

sawing etc. to a high degree of accuracy. Extracting the variance from raw

accelerometer data has proven to give a high recognition rate of human ac-

tions and is a widely used approach [153] [128] [106] [160] [169]. In [128] ,

the authors report that variance of accelerometer features perform well when

the sensor is attached to the person’s dominant wrist.

4.2.1 Discussion

Filtering high frequency noise is a common signal processing step and in this

thesis, we use a standard filtering technique. Correct sensor placement is a

decision that needs careful consideration and attaching multiple sensors to a

person will result in the person being uncomfortable which may effect their

performance. For this work, we wish to attach as few sensors as possible to

the human subject and existing research has shown that sensor placement

on the wrist obtains very good results and also that people do not mind

having wrist attachments.

For feature extraction, our review has concluded that variance and stan-

dard deviation of raw sensor data can obtain high accuracy for detecting

human actions. This approach is also fast as it does not require a significant

amount of computational effort.

4.3 Action Recognition Methodology

This section details our approach for recognising human actions using a

single inertial sensor. The sensor is attached to the human subject’s wrist.

This placement is suitable for discriminating actions involving upper body
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Figure 4.1: System Overview for Inertial Classification of Human Actions

movements [10]. Using inertial sensors for this purpose overcomes many of

the problems with visual sensors, such as scene clutter and view invariance.

4.3.1 Approach Overview

Figure 4.1 shows an overview of the process used to recognise human ac-

tions using inertial sensors. Data preprocessing is used to filter the data and

temporal smoothing provides a constant sample rate. The data is then nor-

malised to compensate for variances in force generated by different human

subjects. The training data is generated using a ground truth which was

manually annotated. All actions are tagged and a classifier is built which

models each action. Test actions are identified by analysing the accelerome-

ter data to identify motion. In this approach, the beginning of a new action

is identified by recognising movement in a single axis of the accelerometer.

Since the human subjects will be stationary between actions, monitoring

accelerometer motion will help differentiate between activity and inactiv-

ity. The following sections provide more details of the various stages of this

approach.
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(a) Buffered Signal is received from wireless sensor

(b) Results of signal smoothing

Figure 4.2: Signal smoothing in (b) shows how buffered data is aligned
equally in time.

4.3.2 Signal Pre-processing

Inertial sensors capture an abundance of data, but in order to obtain a clear

signal which gives a good representation of the action being performed, sev-

eral signal pre-processing steps are necessary. In this work, filtering, signal

smoothing and normalisation are used to remove noise from the wireless

inertial sensors.

Filtering, Smoothing and Resampling

Filtering high frequency noise from the sensor signal is an important step

and in this work we employ a generic digital filter1 to remove high frequency

noise from the inertial sensor. The majority of inertial sensors today transmit

data wirelessly to facilitate real time analysis. Inertial sensors generally

transmit data in real time from the sensor nodes to a nearby base station.

1http://www.mathworks.co.uk/help/techdoc/ref/filter2.html



91

Figure 4.3: Example of inertial sensor attached to human subjects forearm.

However the raw sensor data can be transmitted in bursts to save battery

life on the nodes, which is an approach used by the manufacturers of the

inertial sensors used in this thesis. In this situation, however it is necessary

to temporally smooth the data (after it is received by the base station), so

that when buffered data is received, an even temporal distribution from all

sensors is achieved. Essentially the data samples are evenly distributed over

time. Figure 4.2 illustrates the process of smoothing the raw sensor data

after it is received by the base station. Signal smoothing is applied offline

to the accelerometer, magnetometer and gyroscope data. In this approach

we inspect the delivery timestamp on each received sample and where the

difference between two consecutive samples exceeds a threshold of .065, the

timestamps of all samples since the previous signal smoothing are adjusted.

The time adjustment At value added to each time is calculated as follows:

At = (t− pAt)/Ns (4.1)

where Ns is equal to the number of samples which have elapsed since

the previous time adjustment, t is the current time and pAt is the previous

time adjustment.
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After a smooth signal is obtained, the data needs to be resampled to a

suitable range and this step is again achieved offline. This step is necessary

as standard inertial sensors capture at a variable rate. The inertial sensor

we use have a variable sampling rate (averaging between 100hz-1300hz).

A uniform sampling rate per second will create feature vectors which give

better representations of the actions being performed. In this experiment a

sampling rate of 120hz was used, which provides a generous representation

of an action while allowing the classification process to operate without the

need to abstract the feature vector. For this resampling function, we simply

extract all samples received in a given second and take 120 evenly distributed

samples. Where the samples in a given second do not exceed 120, the array

is padded with duplicate samples from the given second.

Normalisation

No two human subjects will typically generate the same magnitude and

therefore it is necessary to normalise the signals of all three sensors to ac-

count for variance in actions performed by different subjects. A simple but

powerful normalisation process is used, which normalises the sensor signal

so that the mean is equal to 0 and the standard deviation is equal to 1. This

approach is applied to accelerometer, gyroscope and magnetometer signals

and helps the classification process to find similarities in different human

subjects. Each action performed is then manually annotated and these an-

notations are required for training a classifier.

4.3.3 Action Segmentation

Determining regions of inactivity when analysing human motion with iner-

tial sensors is a necessary pre-processing step. In this work we employ an

inactivity recognition step which uses a sliding window to analyse a single
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accelerometer axis and identify sudden peaks in activity which correlate to

the beginning of a new activity. The first step is to segment all actions

performed by a human subject and this is achieved by identifying locations

where the subject is stationary. Therefore if a period of inactivity can be

detected in the inertial sensor, where movement is detected in the sensors

after a period of inactivity, this is sufficient to segment unknown human

actions.

Automatic segmentation is achieved by analysing the accelerometer’s z

axis and using a sliding window of size 120 samples which corresponds to 1

second of data. We analyse the data in the window and measure the differ-

ence between the minimum and maximum values within the window. Where

the peak difference is above a predefined threshold, we assume the minimum

value is the beginning of a new action. Empirical inspection of several hu-

man subjects concluded a variable non critical threshold can be used, which

is defined by the average magnitude generated by the human subject. After

the beginning of a new action has been recognised, the data for the next 3

seconds is extracted and this represents an unknown action. Different sample

sizes were tested but the highest classification accuracy was achieved when

a sample of 3 seconds was obtained. Figure 4.4 illustrates where a human

subject performs a number of sit on chair actions, the green line indicates

where the action segmentation algorithm recognised the beginning of a new

action.

To assess this action boundary detector, we developed an evaluation ex-

periment which measures the accuracy of this approach. For this experiment

we applied our detection algorithm to detect all the actions of five human

subjects. We applied our action segmentation algorithm to each subject in

turn and where the beginning of a new action was detected to within 1 sec-

ond of the actual start of an action it was deemed to be the correct. Given
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Figure 4.4: Accelerometer z-Axis while person performs a series of sit on
chair actions. The green vertical line represents where the action recognition
detector detects the beginning of a new action.

that we use 3 seconds of data for classifying actions using inertial sensors

this level of accuracy is sufficient for classifying basic human actions. Each

subject performed seven different actions and each action was executed 10

times giving a total of 70 actions per human subject and 350 actions overall.

The precision and recall scores for detecting the beginning of a new action

is .76 and .84 respectively.

4.3.4 Classification

To train the classifiers a supervised learning approach was used as shown

in Figure 4.5. Having tested on various classifiers the IB1 classifier was

selected. Bayesian Network are commonly used classifiers for training inertial

sensors [93] [154] [37], but our research has found IB1 obtain high accuracy

results. Given that this was also the case for visual sensors, this approach

was adopted for further exploration. The process in Figure 4.5 is as follows.

A ground truth was used to manually segment and group all the actions

performed by each human subject. A fixed window length was used to

segment each clip and this window length is generic across all actions. Each

feature vector was tagged as a specific action and added to the training set.

The IB1 classifier was then applied to the training set to obtain the Actions

Model in Figure 4.5. Once segmentation of the test data was complete and
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Figure 4.5: Training & testing a classification model for inertial sensing of
human actions

the training classifiers for each action learned, the classifier predicts which

action in the training model the input action is most similar to.

4.4 Experiments

For this experiment we used the indoor2 human action recognition dataset

which was also used in the previous chapter (Section 3.6.1). The inertial

sensor was attached to the person’s right forearm and each of the seven

actions was performed ten times. Table 4.1 shows the gyroscope classification

2Note that we only use the indoor dataset as inertial sensors are unaffected by the
indoor/outdoor distinction
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scores for the actions trained on a random four people and tested on an

unseen person who is not present in the training set. Table 4.3 shows the

accelerometer classification scores and Table 4.2 shows the magnetometer

scores. In this experiment accelerometers, whose accuracy is 70%, perform

the best of the three sensors.

In the next experiment we assess whether increasing the number of hu-

man subjects in the training set improves the accuracy. Table 4.4 illustrates

the results of this experiment where we train the classifier on ten human

subjects then classify on an unseen person. We then train the classifier on a

random five people and again test on an unseen person. As the results show

there is no significant improvement on classification accuracy as the training

set grows.

Crawl Walk Jacks Jump Boxing Wave SitonFloor

Crawl .70 .13 .02 .07 .02 .04 .02

Walk .90 .02 .06 .02

Jack .02 .73 .10 .16

Jump .12 .06 .69 .08 .06

Boxing .10 .02 .22 .14 .24 .08

Wave .02 .21 .10 .65 .02

SitonFloor .06 .10 .08 .04 .16 .56

Table 4.1: Confusion matrix showing the accuracy of recognised actions for
Gyroscopes features on seven actions trained by 5 subjects using Leave
One Subject Out. The overall accuracy is 63%.

Crawl Walk Jacks Jump Boxing Wave SitonFloor

Crawl .83 .05 .12

Walk .06 .86 .08

Jack .02 .67 .04 .10 .16

Jump .12 .11 .24 .36 .01 .15

Boxing .18 .30 .28 .04

Wave .20 .12 .69

SitonFloor .17 .25 .06 .02 .52

Table 4.2: Confusion matrix showing the accuracy of recognised actions
for Magnetometers features for seven actions trained by 5 subjects using
Leave One Subject Out. The accuracy is 60.4%
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Crawl Walk Jacks Jump Boxing Wave SitonFloor

Crawl .48 .25 .06 .02 .19

Walk .04 .82 .13 .01

Jack .03 .76 .01 .06 .14 .01

Jump .01 .10 .03 .82 .01 .03

Boxing .16 .08 .74 .02

Wave .01 .21 .06 .72

SitonFloor .05 .22 .01 .03 .69

Table 4.3: Confusion matrix showing the accuracy of recognised actions for
Accelerometer features on seven actions performed by 10 subjects using
leave one subject out and trained on an IB1 classifier. Accelerometers leave
one out achieves 70% accuracy.

Sensor Training Size 10 Training Size 5

Accelerometer 72 70

Gyroscope 63 63

Magnetometer 65 60

Table 4.4: Human action classification, comparison of different training set
sizes. We trained the IB1 classifier on 5 people and also on 10.

4.4.1 Discussion

Accelerometers were found to be the most accurate inertial sensors for de-

tecting human actions, whereas the other two sensors were not accurate at

classifying human actions using the “leave one subject out” approach. Table

4.4 shows that the accuracy does not improve significantly as the number of

human subjects in the training set increases from five to ten. This is most

probably because the classifier only needs training instances from five dif-

ferent human subjects and doubling the number of human subjects is not of

benefit to the classification process. Although gyroscopes and magnetome-

ters are not accurate alone, in the following section we explore the potential

for fusing these sensors to increase human action recognition accuracy.

However, body worn inertial sensors can potentially overcome the chal-

lenges with which visual sensors struggle. The next chapter introduces an ap-

proach to action recognition using inertial sensors and uses the same dataset
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to detect which sensor is most appropriate for human action recognition.

4.5 Conclusion

In this chapter we presented a novel approach for detecting human actions

using a single inertial sensor attached to a human subject’s wrist. The algo-

rithm presented was evaluated against a dataset where ten people performed

ten different human actions, ten times each. This chapter first evaluated

which sensor (accelerometer, magnetometer or gyroscope) is the most ac-

curate at detecting human actions. The outcome of this experiment was

that accelerometers are the most accurate when classified using an Instance

Based Learner.



Chapter 5

Multimodal Human Action

Recognition

5.1 Introduction

This chapter introduces the approach used for sensor fusion of inertial sensors

and visual sensors. In the next section the literature concerned with the

fusion of inertial and visual sensors to achieve human action recognition is

explored. We stress that it is beyond the scope of this thesis to investigate

the wider area of sensor fusion and instead we only focus on sensor fusion

techniques which are relevant to this thesis. We then provide details of the

approach used in this work which uses data from inertial and visual sensors

to detect basic human actions in an indoor environment.

5.2 Related Work

In this section we explore the different forms of sensor fusion relevant to

this research. The first section looks at related work in the fusion of inertial

sensors and then we explore the combination of visual and inertial sensors.

Finally we discuss related work in the area of early and late fusion schemes.
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5.2.1 Fusion of Inertial Sensors

In [176], Zhu et al. use two inertial sensors, one on a human’s waist and

the other on the foot. Each inertial measuring unit contains accelerometers

and magnetometers. First the data from the two inertial sensors are fused

for coarse-grained classification in order to classify the general type of the

activity into one of the three following groups, zero displacement activity

(standing or sitting), transitional activity (sitting-to-standing, standing-to-

sitting), or strong displacement activity (walking upstairs, walking down-

stairs). A second step performs a fine-grained classification on the data to

recognise a finer granularity of the action being performed. e.g. walking

upstairs, or walking downstairs. The first classification step uses a neural

network and the second step uses a Hidden Markov Model (HMM) to further

distinguish the activities with promising results. In another approach to fuse

inertial sensors, the authors of [4] placed one inertial sensor on the chest and

a second on the rear leg and then fused the acceleration samples of the chest

and the thigh. They were able to classify activities such as standing, lying,

sitting and dynamic activities such as walking.

5.2.2 Combining Visual and Inertial Sensing

Nowadays since mobile electronic devices are shipped with small inertial

sensing devices, research in the area of fusing inertial and visual senors within

these devices has grown. This is largely because inertial sensors will more

accurately calculate orientation data than vision-based tracking. For exam-

ple, in [82] the authors use a gyroscope attached to a camera to calculate the

current location of feature points that have been used in the previous frame.

This enables Kanade Lucas Tomasi (KLT) feature tracking to adjust to big-

ger optical flows without losing track. Bazin et al. [14] use the knowledge of

rotation from a gyroscope to measure the relative change in orientation of
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the camera between two images. The second image is then warped so that

its aligned with the first image and then a matching algorithm is used to

find similar features of the two images.

To help create an augmented reality, the authors in [172] use a frame-

work which combines visual sensors with gyroscopes to obtain six degrees of

freedom (6DOF) pose tracking. They use a Kalman Filter and evaluation

results prove that the combined method improves tracking stability over a

single sensor. In [177], the authors recently introduced a novel approach to

recognise indoor human daily activities by combining motion data and local-

isation information. In this approach, one inertial sensor is attached to the

leg of the human subject to capture motion data and a visual motion capture

system records localisation information. It is reported that this combination

has the advantage of significantly reducing the obtrusiveness to the human

subject at a moderate cost of vision processing, while maintaining a high

accuracy of recognition. Bayesian Fusion is employed to fuse the motion

data with the data from the localisation system.

5.2.3 Early & Late Fusion

Snoek et al. [141] define early fusion as a fusion approach which merges

the features of each modality before any machine learning is conducted. In

their approach, feature vectors from each sensor are concatenated to obtain

a fused multimedia representation of visual, textual and audio sensors. After

the multimodal features are concatenated a supervised learning approach is

used to classify the semantic concepts. One advantage of early fusion is that

the concatenated vector is a true representation of all multimedia streams

and also that only one machine learning stage is required to classify the

sensors.

Late fusion schemes have also been successfully employed to classify fea-
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tures. Westerveld et al. [162] use individual probabilistic models to classify

text and video using a late fusion approach. In their approach, the textual

model is based on the language modeling approach to text retrieval and the

visual information is modeled as a mixture of Gaussian densities. The scores

are joined afterwards to give the accuracy score. The authors in [141] de-

fine late fusion as an approach which first learns the concept scores from

individual unimodal features and afterwards these results are fused to learn

concepts. Late fusion will allow the accuracy of each sensor to be recognised

since individual sensor data is not touched in any way before the first ma-

chine learning stage. However as pointed out in [141], late fusion is expensive

with regards to learning effort, as a classification stage is required for each

unique modality. In addition to this, after the learned concepts are merged,

a further learning step is required to obtain the final fusion prediction.

5.3 Early Fusion

In the early fusion approach used in this work, after the features are extracted

from each sensor, the data is concatenated into a linear vector. In our ap-

proach, feature vectors from accelerometer, gyroscope, magnetometer, video

contours are concatenated to obtain a fused multimedia representation of

visual and inertial sensors. After the multimodal features are concatenated

an instance based learning approach is used to classify the required actions

as shown in Figure 5.1.

5.4 Late Fusion

In this thesis, we propose two late fusion approaches which are based on the

late fusion approach presented in by the authors in [141]. In the first late

fusion approach (Late Fusion 2 mode), which is illustrated in Figure 5.2, we
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Figure 5.1: Early fusion scheme. Features are fused before a concept is
learned

first concatenate the data from the three inertial sensors before performing

late fusion. As Figure 5.2 illustrates, concatenation of inertial sensor data

means that this approach effectively treats video and inertial sensor as two

individual modalities. A supervised learning classifier is then used to obtain

confidence scores of how confident we are of a classifier predicting a given

class from each individual sensor modality. For each action, we classify the

inertial sensor raw data and thereafter classify the visual contour data. The

prediction from each modality is then examined and we assume that the

sensor which gives the highest confidence is the correct prediction. Figure

5.2 illustrates this process.

The second approach (Late Fusion 4 mode) differs in that each individ-

ual inertial sensor (accelerometer, magnetometer and gyroscopes) is treated

as a unique modality, therefore concepts are learned from four individual

modalities (including visual contour features). Figure 5.3 illustrates this

approach.
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Figure 5.2: Late Fusion 2 mode. Features from two individual sensors are
used to learn a concept. Then another classifier will learn from the concepts
of individual sensors

Figure 5.3: Late Fusion 4 mode. Features from four individual sensors are
used to learn a concept. Then another classifier will learn from the concepts
of individual sensors
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5.5 Multimodal Experiments

The same dataset which was described in Section 3.6.1 is used for the follow-

ing experiments. Action segmentation was achieved using frame differencing

of the video and this approach is detailed in Section 3.4. Anywhere an action

is detected we extract data from this location to represent each action. The

visual features for each action are extracted using contour features only and

four seconds of data is extracted for video, where only 3 seconds of data

is used for inertial sensors. For the training data, we use the ground truth

to manually select the actions used to train each model. The training set

contained actions from all humans subjects apart from the person whom the

model was tested on (i.e. the leave one out method). The inertial and visual

data was manually synchronised offline.

5.5.1 Inertial Experiments

In this experiment we use “leave one subject out”, to classify the inertial

sensors using early fusion. Table 5.1 illustrates the accuracy scores when

different inertial sensors are fused using early fusion. The highest accuracy

is 76% which is 4% higher than the results obtained from the best single

modality, in terms of highest accuracy obtained. This is obtained when

accelerometers, magnetometers and gyroscopes data is fused together using

leave one subject out and training the classifier with 10 human subjects.

Accelerometers & Magnetometers & Gyroscopes 76 %

Accelerometers & Magnetometers 72 %

Magnetometers & Gyroscopes 68 %

Accelerometers & Gyroscopes 67 %

Table 5.1: Using the leave one subject out approach, an IB1 classifier is
trained on ten human subjects. Early fusion of different sensors and tested
on an unseen human subject.
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5.5.2 Visual and Inertial Fusion Experiments

In this experiment, we use the data from both the inertial and visual sen-

sors and apply the data to both the early and late fusion approaches which

were described in Section 5.3 and Section 5.4 respectively. As Table 5.5 il-

lustrates, the accuracy for the best late fusion approach is 14% lower than

early fusion. Table 5.3 illustrates the results using late fusion 4 mode and

Table 5.2 shows the confusion matrix for 2 mode late fusion, which is the

most accurate late fusion approach we investigated. Table 5.5 illustrates the

differences in terms of accuracy between both Late Fusion approaches. Ta-

ble 5.4 highlights exactly where early fusion obtains its high accuracy. Using

early fusion of visual contour and WIMU combined, we obtain an accuracy

of 81%, which is 5% higher than early fusion with accelerometers, magne-

tometers and gyroscopes only. However, visual and inertial fusion uses 1920

visual features and 2340 inertial features per instance, which almost doubles

the amount of features in each instance. Therefore visual and inertial early

fusion is the most accurate approach, but is also the most computationally

expensive.

Crawl Walk Jacks Jump Boxing Wave SitonFloor

Crawl .69 .18 .05 .05 .03

Walk .70 .10 .20

Jack .12 .63 .25

Jump .05 .66 .14 .05 .10

Boxing .12 .51 .37

Wave .20 .03 .77

SitonFloor .20 .04 .01 .75

Table 5.2: Confusion matrix showing the accuracy of Late Fusion (2-
mode) using Video Contour and WIMU features and a Leave One
Subject Out approach
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Crawl Walk Jacks Jump Boxing Wave SitonFloor

Crawl .80 .04 .04 .12

Walk .06 .72 .22

Jack .03 .08 .67 .10 .12

Jump .23 .07 .04 .45 .07 .14

Boxing .18 .68 .14

Wave .32 .16 .50 .02

SitonFloor .04 .08 .34 .02 .52

Table 5.3: Confusion matrix showing the accuracy of Late Fusion (4-
mode) using Video Contour and WIMU features and a Leave One
Subject Out approach

Crawl Walk Jacks Jump Boxing Wave SitonFloor

Crawl .88 .04 .04 .02 .02

Walk .05 .94 .01

Jack .64 .05 .10 .21

Jump .03 .05 .05 .76 .01 .01 .09

Boxing .12 .04 .67 .17

Wave .03 .01 .16 .80

SitonFloor .01 .04 .04 .91

Table 5.4: Confusion matrix showing the accuracy of Early Fusion with
Video Contour and WIMU fused features, using Leave One Subject
Out

Fusion Method Accuracy %

Early Fusion 81 %

Late Fusion (2-mode) 67 %

Late Fusion (4-mode) 64 %

Table 5.5: Early Fusion vs Late Fusion
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5.6 Discussion

Several experiments are conducted in this section. Firstly we detected that

accelerometers are the most accurate at detecting actions from a single iner-

tial sensor. In the fusion section, results prove that early fusion of all three

inertial sensors is more accurate at detecting human actions than using any

single inertial sensor. In addition, we conclude that early fusion is more

accurate than late fusion by 14%. We also proved that early fusion of both

visual and inertial sensors combined obtains slightly higher accuracy than

early fusion of inertial sensors. However, combining visual and inertial fea-

tures doubles the size of each training instance and will be significantly more

computationally expensive to classify.



Part III

Towards Next Generation

Coaching Tools for Racquet

Sports
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Chapter 6

Multi-Sensor Event

Recognition in Tennis

6.1 Introduction

Tennis is one of the most popular court based racquet sports in the world

because of the relative simplicity of the rules and the small amount of equip-

ment needed. Despite this popularity, automated tennis video analysis has

not attracted much research. The main technological advancement has been

in verification of referee decisions, which has been very popular in profes-

sional tournaments. In assessing how best to present information to guide

the coaching process in tennis, it is argued in [132] that a combination of

both visual and verbal strategies can be effective if used correctly. In fact,

empirical evidence has suggested that in tennis, the use of videotaped replay

and loop-film technique has merit and can be given consideration for use in

instructional settings [114].

This chapter introduces a system which, using the human action recogni-

tion tools developed elsewhere in this thesis, can automatically index many

of the main tennis events performed by both players in a match. However,
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there is one assumption made: that a tennis match must follow the rules of

tennis as laid down by the International Tennis Federation1 . Two cameras

are fixed at each end of the tennis court and a third camera is fixed over-

head. The overhead camera is used to calculate player and ball locations

and the two baseline cameras are used to provide player identification and

to determine in which hand the player holds the racquet. All events are

stored in a database along with the relevant video resulting in a powerful

coaching analysis system where no manual editing of video is necessary. It

should be noted that this thesis does not address which feedback should be

provided to enhance a player’s performance, but instead provides a visual

platform where coaches can visualise trends over multiple matches so that

the information can then be easily assimilated by athletes.

6.2 Related Work

In this section we explore related work in the area of event recognition in

sport. There is not a lot of published research which directly relates to tennis

event detection, so we first explore literature of event detection and video

summarisation in sport in general. Following this, related work concerning

event detection using visual sensors is explored. Finally, this section looks

at current uses of inertial sensors in a sporting context.

6.2.1 Event Retrieval in Sports Video

The ubiquitous expansion of multimedia data has driven the need for the

development of automatic systems and tools for content-based multimedia

analysis [28]. This research field has been very active in recent times due

to the commercial interest and entertainment value which can be offered to

large audiences. In particular, automatic indexing and video summarisation

1http://www.itftennis.com/technical/rules/
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of broadcast sports video have been very active fields. In [28], the authors

discuss that with an abundance of media available, viewers prefer to retrieve

key events in a sporting match, rather than watch a complete sporting event

from start to finish. There are numerous approaches for shot classification

and highlight extraction for specific sports video, which have been developed

based on a combination of extracting low-level visual/auditory features and

sports genre-specific rules [29]. Other approaches use ball and/or player

tracking techniques for detecting semantic events caused by player-ball in-

teractions.

Much of the published research on event detection in sporting video is

general audience oriented, where automatically indexed events are chan-

nelled to the audience automatically. In the context of communication, au-

tomatic video annotation is of particular interest since video transcoding

can overcome communications bottlenecks. Another application for sports

video analysis is in home video applications, where video summaries or user

annotations are required to provide functionality for searching tools in large

personal archives. However, sporting professionals, such as soccer coaches

are more interested in the tactical events and useful statistics, which can be

inferred from detected events [178]. Zhe et al. [178] explain that manual

annotation systems, which provide manual editing tools along with event

retrieval interfaces are no longer useful, given the abundance of information

which coaches amass over time. Coaches prefer comprehensive statistics,

which can be used to infer tactical patterns and help to improve performance

during or after a match. To manage the ongoing video annotation opera-

tions, coaching teams frequently employ video editors to capture, annotate

and organise information, which is then used to build tactical analysis and

useful statistics. These video editing duties are extremely time-consuming

and the possibility of using automatic multimedia event retrieval technolo-
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gies is accelerating research in this area, especially by using visual sensing

technology.

Managing visual data is becoming a bigger problem due to the increasing

amount of content which is produced. To simplify the problem, identifying

semantic indexes which can describe events within the video is very help-

ful. Manual annotating is simply too tedious and time consuming, making

automated video indexing techniques a necessity [11].

High-Level Event Analysis

With the large volumes of sport video being captured by both broadcast-

ers and amateurs, recent years has seen an increase in technologies which

can provide high level analysis. In soccer, camera image streams are used

to answer high-level analysis questions such as: What attacking plays char-

acterise each team? What are the main characteristics of a specific team

player? What team roles do these players have? Are they capable of their

assigned team role? Can they accomplish their given duties? How does a

particular team attack and create an opportunity to score? What are the

main skills of each player? What kind of team formation is being used? In a

number of team based field sports, there is an appetite for real time analysis

of events from referee associations, the sports press and supporters. Auto-

matic video analysis tools have the potential to detect erroneous refereeing

decisions, by monitoring video sequences to prevent misinterpretations due

to occlusion or viewpoint error or simply due to an overwhelming number of

events taking place concurrently.

To detect and track the ball in soccer videos, Yu et al. [173] use a

trajectory based algorithm. Ball candidates are first selected from feature

objects (the goalmouth and ellipse). A Kalman filter is then used to generate

candidate trajectories from the ball candidates. A confidence measure then
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Figure 6.1: The first goal scored (a) a long range of the score, (b) camera
zoom to player, (c) crowd response, (d) a replay, (e) another replay, and (f)
long range view of the resumption of play. [51]

decides which of the candidate trajectories is the correct ball trajectory.

High-level events such as ball touching or ball passing are then inferred,

which is then used to detect team ball possession analysis.

In soccer, multi-modal information analysis is commonly used to auto-

matically detect high level events. In [51], the authors use a rule-based and

model-based system is used, which exploits heuristic rules and detects the

goal event in soccer. In their approach, the authors in [51] capture a close-up

of the goal event with an emotional scorer and also a goalie occurring close

to shots of the crowd reaction to the goal. This is immediately followed by

several slow-motion replays of the goal from different camera angles. Be-

tween the long range shot which first shows the goal to the resulting kick
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off long shot, the authors in [51] define a cinematic template that needs to

satisfy the following sequence of rules:

• Time allocation for a goal will last between 30 and 120 seconds;

• There must be one or more close-up/out of field shots: These may

range from a player close up or a view of the crowd;

• There must be a minimum of one slow motion replay, as a reply of the

goal is always played several times.

Figure 6.1 provides an illustration of the template for the first goal in the

Spain1 sequence of the well known MPEG-7 data set. In this example the

break duration is 54 seconds. The method for detecting goals firstly detects

slow motion replay shots and thereafter it detects long shot views that mark

the beginning and end of the goal sequence. Another commonly sought high

level event in soccer is referee detection. The approach presented in [51]

exploits the fact that referee’s clothing is always distinguishable from the

clothing worn by both teams. They use a dominant color region detection

algorithm which is applied when there is a medium or out of field/close-up

shot.

6.2.2 Event Detection in Tennis

Event detection in tennis can be achieved using either visual [47] or inertial

sensors [31] [3]. The techniques used to detect events vary from one sensor

to the next, but either sensor can be used individually or data from both

can be fused to infer conceptual knowledge of specific events [122]. The next

section explores the state of the art for visual event detection in tennis and

the following section examines the impact inertial sensors has had in the

research field of event detection in sport, since inertial sensors are currently

not as widely used in tennis as visual sensors.
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Visual Event Detection in Tennis

There has been much research on tennis stroke recognition using video pub-

lished over the last decade, where the main focus has been on using broadcast

video to detect strokes played. In almost all of the prior works a camera po-

sitioned at height behind one baseline was used to classify events. Zhu et

al. [179] extract features of tennis motions using optical flow and classify

strokes using SVMs. They classify strokes into either a left-swing or right-

swing class, which corresponds to a backhand and forehand stroke. Shah et

al. [140] extract a skeletonisation of the tennis player’s body and feed an

orientation histogram of this skeleton into Support Vector Machine classi-

fiers to distinguish forehand, backhand and ‘neither’. Bloom and Bradley

[20] detect a tennis stroke keyframe when the ball and racket collide, they

then employ heuristics based on the player and racquet locations to perform

stroke classification. Petkovic et al. [127] use Contour features and six Hid-

den Markov Models to classify tennis strokes as forehand, backhand, service,

smash, forehand volley and backhand volley.

In our previous work [122] that provided the basis for much of the work in

this thesis, we detect tennis strokes in an instrumented environment, where

players are positioned in a fixed region on the court. This approach used

cameras positioned behind the player whereby for each frame in a tennis

shot, the player is segmented into a foreground region and then sliced into

pie segments to extract action features (also known as contour features).

We used these features to classify strokes into serves, backhands or fore-

hands using either SVM classifiers or K-means nearest neighbor clustering.

This approach however had several limitations which are explained in the

discussion section at the end of this (related work) section.

An advanced approach which recognises a tennis player’s motions is pre-

sented in [180], where the authors segment a tennis player from video data
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(a) Original image (b) Initial segmentation

(c) 3D model after fitting to the
lines

(d) Final segmenta-
tion

(e) Pie features

(f) Skeleton features (g) Influence function

Figure 6.2: Image segmentation and feature extraction. [180]

in a number of steps. Firstly, the approach identifies the tennis grass as a

dominant green colour. They conclude that field color distribution can be

modeled by a 3-dimensional Gaussian. The results of this can be seen in Fig-

ure 6.2(b). Zivkovic et al. then use morphological opening and closing and

the player is recognised as the biggest region in the bottom half of the image.

The initial segmentation (Figure 6.2(b)) is also used, after thinning, to fit

a model of the tennis court lines. The 3D model is constructed having in

mind the visibility of the lines. After fitting the 3D model, more knowledge

is obtained about the scene at a higher semantic level (Figure 6.2(c)).
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Inertial Event Detection in Sport

Only recently with the reduction in size and cost of inertial sensing, has

there been a growth of research in the area of inertial sensing for sports

analysis. Inertial sensors can capture enormous amounts of data on acceler-

ation, orientation and movement of body limbs for example, which make it a

useful tool for in-depth analysis, when modeled correctly. Cheng et al have

developed SEnsing for Sports And Managed Exercise (SESAME), which fo-

cuses on collecting details of athletes’ motion, particularly details of their

foot motion which are the most rapidly changing and the most important

factor that affects sprinters’ performance [31].

In tennis, inertial sensors have also been used for skill analysis, in terms

of how to improve a player’s swing, for example. One such contribution,

investigates the possibility of using wearable gyroscope sensors for skill as-

sessment and skill acquisition in a tennis serve [3]. A marker-based method

using the Vicon motion capture system2 was used to calculate the angular

velocity of the upper arm internal rotation, wrist flexion, and shoulder rota-

tion for a range of athletes during the first serve in tennis. Participants from

amateur to elite players participated in this study and results showed that

the peak values of the upper arm internal rotation, wrist flexion, and shoul-

der rotation just before impact are indicative in classifying the participants’

skill level. The correct positioning of three gyroscope sensors on the player’s

arm, to detect the same trends as those from the marker-based methods

were then determined. As a result it was determined that gyroscope sensors

could be used for skill assessment and skill acquisition for a first tennis serve

[3].

2http://www.vicon.com/
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6.2.3 Discussion

To visually detect events in soccer video, the authors in [51] employ a rule

based event detection system to detect goal events. Different template based

approaches can be constructed for different sports, by understanding the

heuristics of the specific sport. For example, in tennis we know that the

first stroke in a rally is always a serve event. Therefore, in theory this

simple heuristic may help to infer the serve event. motivated by this, an

appropriate ontology for tennis is presented in the following section.

There has been a lot of published research which detects strokes in tennis,

but the majority of this is from broadcast video. Whilst all these techniques

can be used to gain useful analysis for coaches none of these methods use non-

broadcast video. The players are always professionals, making the task of

stroke detection from video slightly easier than for non-elite athletes because

professionals tend to execute similar kinematic movements during a specific

stroke. In this thesis, we want to solve the problem of stroke detection for

all levels of players from beginners upwards and moreover we want to detect

other key tennis events such as rallies, games and player and ball locations.

As was discussed in the related work, we previously published work which

detects tennis strokes played from a specific region on the court using either

inertial or visual sensors [122]. However this approach did not work well in

a real match where the players can be located in any region of the court.

The reason there were issues adopting this visual analysis approach to a real

tennis match were because pie features were not able to discriminate between

different stroke types, if the strokes are not played from a fixed region of

the court. This is due to occlusion and scaling factors. In relation to the

inertial sensors, the stroke recognition approach in [122] was not accurate

in a real tennis match, because there was more noise generated by players

during a real match, i.e. from practice swings, running and sudden change
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of directions when running. Later in this chapter we introduce a refined

approach for stroke detection using internal sensors, which filters these noise

events.

Inertial sensors do provide a highly accurate and portable approach for

detecting human actions as was found in the last chapter. Placement of a

single inertial sensor on a tennis player’s wrist should not impede their play.

As the related work discusses, inertial sensors have been successfully used for

skill assessment and skill acquisition, but they also offer great potential to

detect strokes played and later in this chapter we examine how to implement

this approach and evaluate the accuracy of detecting events using a single

inertial sensor attached to the player’s wrist.

6.3 Tennis Event Ontology

In order to construct an event recognition system for tennis, we use the

following framework, which explicitly and clearly defines the main events in

a tennis match.

• A stroke is the act of hitting a ball with a racquet, which at a coarse

level is either a forehand, backhand or serve.

• A valid stroke is a stroke where the ball is hit from the racquet over

the net without bouncing and doesn’t land outside the legal boundaries

in the opponent’s side of the court.

• A rally is a collection of valid strokes, beginning with a valid stroke

and is terminated when any player fails to complete a valid stroke.

• An ace is when a player completes the opening stroke of a rally (serve)

and this stroke is not returned by the opponent.
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• A tennis point is awarded to the player who successfully completes

the final valid stroke in a rally.

• The players change ends at the end of the first, third and every

subsequent odd game of each set. The players also change ends at the

end of each set unless the total number of games in that set is even, in

which case the players change ends at the end of the first game of the

next set. During a tie-break game, players change ends after every six

points.

• A game contains a count of the total number of points won by each

player. When a player’s score reaches the fourth point and they are

winning by two clear points the game is awarded to that player. If the

scores don’t have two clear points between them, the game continues

until one player takes the lead by two points.

• A set is a score count of the games won by each player and a player is

deemed to have won the set when the number of games won by that

player reaches six and they have won by two clear games. Tie breakers

are employed to decide a set where both players reach six games won

in a set. Tie breakers are not used in the final set.

• A match is a sequence of sets and a player is deemed to have won a

match when the player reaches 3 sets.

6.4 Event Selection

To understand which events within a match are of interest to coaches we held

several meetings with coaches to extract an achievable set of requirements.

We also spent time examining what events coaches currently index manually

using existing sports coaching software tools. Our requirements gathering
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sessions resulted in an achievable set of events. The following events were de-

cided upon by analysing what events coaches currently index: Serve type (T,

Body, Wide), first serves made/missed, return of first serves, return of sec-

ond serves and strokes which hit the net. Through a series of meetings with

tennis coaches (two professional coaches and two club coaches) we learned

that player and ball positioning would also be a useful statistic if there was

an interface where coaches could run queries based on the locations of players

and ball movements. All coaches expressed a desire to be able to run queries

to retrieve the number of occurrences where a player plays a specific stroke

from inside a user specified area on the court. Coaches also agreed that a

tool to find rallies within a match would be a useful component for finding

interesting patterns. They remarked that this level of detail is simply too

time consuming with manual indexing but can help to determine interesting

patterns in a play.

We are not currently able to detect scores or unforced/forced errors,

both of which are were sometimes manually indexed by the coaches we in-

terviewed. In relation to forced/unforced errors there is certainly scope for a

semi-automatic event indexing approach to accurately detect forced/unforced

errors and this is a target for future research. We also found that coaches also

record the frequency with which an event occurs and this event frequency

counter has been built into our system.

6.5 Tennis Sensing Infrastructure & Dataset

The visual instrumentation includes three low cost cameras, with pan, tilt

and zoom (PTZ) capability. One camera provides an overhead view of the

court and the other two baseline cameras are positioned at either end of the

court, as shown in Figure 6.3. The two cameras at the center of the baseline

at either end of the court are AXIS 215 PTZ cameras, which are positioned
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(a) (b) (c)

Figure 6.3: Three cameras required to automatically index a match into key
events

2.8 meters above the court and have very high zoom functionality, as well as

physical pan and tilt. The overhead camera is positioned at 13.8 meters from

the ground. This camera is an AXIS 212 PTZ camera, which has a wide

angle lens (140◦) and includes fast digital PTZ functionality by sub sampling

from a high-resolution sensor. The system supports additional cameras for

visual feedback, but automatic tennis event detection only requires the three

cameras mentioned above.

The specifications of the WIMU used in this experiment can be found in

Section 2.4. A single WIMU is attached to the dominant forearm of a tennis

player as shown in Figure 6.4. The WIMU receiver was positioned at the

side of the court beside the net.

Figure 6.4: WIMU as positioned on a player

Twelve complete matches were recorded from players of various skill lev-
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els, corresponding to 825 minutes in total. A ground truth was generated

offline by manually annotating each tennis event which is to be automati-

cally indexed. Each match was the best of three sets, played according to

the rules of the ITF. Each player wore a single WIMU attached to his/her

arm and the video data was recorded from all three cameras. The WIMU

and the video data were manually synchronised offline before the event de-

tection algorithms were applied. Six of the matches were played by players

who play tennis at least once every two weeks and the other six matches

from players who play once every two months at most. The diversity in skill

levels is necessary to test whether we can detect events played by players

from varying skill levels.

The infrastructure used in this thesis may be assembled indoor or out-

door. In the case of an outdoor setup, two 13 meter poles at either side of the

net could be assembled and a cable could run from the top of one pole to the

other. A single aerial view camera would then be mounted to the centre of

the cable to capture the overhead movements of the ball and players. Aerial

view instrumentations are common nowadays to capture overhead shots of

American football games in action and also in soccer pitches. In both Amer-

ican football and soccer, the camera is mobilised via a network of overhead

cables, to allow it to move across the field, making each instrumentation

much more complex than would be required in tennis.

It was not feasible for the research reported here to mount such an out-

door structure. However, our aerial view experiments in Section 3.7.3, have

proved that human actions can be inferred from an outdoor aerial view to

a high degree of accuracy. Moreover, as long as the court surface is not

yellow in colour, which is the colour of a tennis ball, ball tracks can be easily

inferred from an overhead camera using the approach used in Section 6.7.2.

The inertial sensing approach described here transfers directly to outdoor
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scenarios.

6.6 Inertial Event Detection

In this section, we describe our approach to automatically index a tennis

match based on strokes played using a single inertial sensor, which is at-

tached to a tennis player’s forearm (as shown in Figure 6.4). This section

builds on the research conducted in Chapter 4, which detected human actions

using a single inertial sensor attached to a human subject’s right arm. For

tennis stroke classification, we classify the main types of tennis strokes (fore-

hand, backhand and serves) played in a competitive match. This approach

delivers a new contribution which can classify tennis strokes performed in a

competitive match by players of different levels using either accelerometers,

magnetometers or gyroscopes. The two-level classification process used in

this approach can filter any player movements where they are not perform-

ing a tennis stroke whilst the second step classifies candidate tennis strokes

into serves, backhands or forehands. We evaluate the accuracy of using ac-

celerometer, gyroscope and magnetometer sensors to perform tennis stroke

classification on previously unseen players.

Automatic detection of tennis events is necessary to reduce the time a

coach will spend manually indexing a recorded match. The advantage of

using inertial sensing to index tennis strokes is that it does not suffer from

the limitations of visual sensing, visual sensing can suffer from self occlusion

and player orientation issues, which are inherent in wide area scene analysis.

6.6.1 Tennis Stroke Detection

In this section, we give an overview of our tennis stroke detection system

using inertial measuring units only. As each inertial sensor contains ac-

celerometers, gyroscopes and magnetometers, we can detect strokes played
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using any combination of these three sensors.

A single inertial sensor placed on a player’s dominant arm will register

a spike in its accelerometer data due to the impact of the ball on the tennis

racket. Detecting such data-spikes provides the temporal location of tennis

strokes. To detect ball contact impacts, we first compute the acceleration

magnitude for each sensor sample, simply by taking the length of the 3D

acceleration vector. We then select all impacts which generate a magnitude

which is above an adaptive threshold value. A players average magnitude

for all strokes in match will vary from one player to the next and this adap-

tive threshold is calculated as thus. The top 400 accelerometer magnitudes

for each player in a single match are taken and the mean threshold value

is obtained from this set. Then by selecting the adaptive threshold value

from Table 6.1, we identify all locations where the player’s magnitude is

above his/her adaptive threshold value. We select the value with the largest

absolute magnitude in the data. A 1-second window around this peak is

extracted to represent a candidate stroke in progress. In general all ten-

nis strokes will not take any longer than 1 second to complete. Adopting

a greedy approach, this window is removed from the data and the proce-

dure is then repeated to find the remaining candidate strokes, until we have

extracted all candidate strokes which generate an accelerometer magnitude

above a players threshold.

Player’s Average Range Adaptive Threshold Used

<3.5 3

3.5-4.5 4

4.5-6 5

>6 6

Table 6.1: Adaptive Threshold table

However, there are other actions which a tennis player will perform dur-

ing a match that will generate a spike in accelerometer magnitude and there-
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fore it is necessary to identify which of these spikes are tennis strokes and

which spikes are generated from a player performing a non tennis stroke. A

non-stroke action can include using the racket to lift a ball of the court sur-

face or twirling the racket in a players hands whilst waiting on an opponent

to serve, which is in fact quite common. Also problematic are activities such

as running, practice swings and arm movements performed during rest pe-

riods. For this reason, a two level classification system to classify candidate

strokes is used.

Stroke Classification

The classification of tennis strokes is accomplished in two steps as shown

in Figure 6.5. The top level of this process filters non-stroke events, which

generate an accelerometer magnitude from various arm movements during

a match. The second stage of the classification uses either accelerometers,

magnetometers or gyroscopes to classify all the candidate strokes into either

serves, backhands or forehands.

Figure 6.5: Two-level classification: Step one filters noisy data and step
two classifies the remaining candidate strokes. Both steps a Instance Based
Learning classifier
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Filtering Non-Tennis Stroke Events

To filter non-stroke events, we use the accelerometer data from 8 players

during a tennis match to create two global feature vectors, one global feature

vector contained a mixture of serves, backhands and forehands as played in a

competitive match. The second global feature vector contained all non-stroke

events. The model was trained using a Instance Based Learning classifier,

which are known to be effective at classifying instances with a high attribute

list.

Each W-second accelerometer instance with a magnitude of 3g or greater

was fed into the binary classifier and any instance which was predicted as

a non-stroke event was filtered from the dataset. The remaining candidate

strokes were passed to level two of the classification process to predict if the

stroke is a backhand, forehand or serve.

Candidate Stroke Classification

To classify candidate strokes into serves, backhands and forehands, we first

trained three classifiers for each stroke. For each serve, we trained a classifier

with accelerometer data from a subset of serves by various players, then a

second serve classifier was trained with gyroscope data of serves and a third

serve classifier was trained with the magnetometer data for serves. Similarly,

three classifiers were built for forehands and backhands.

Having filtered out noise from the data we have the temporal locations

of all candidate strokes that a single player has performed during a match.

Using the temporal locations we can select each candidate stroke in turn.

For each candidate stroke, we then select the accelerometer data at this

time and compare it to the serve classifier, forehand classifier and backhand

classifier for the accelerometer data. The model is then able to predict if the

candidate stroke belongs to the serve class, forehand class or backhand class.
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An identical approach is used for gyroscopes and magnetometer classifiers.

6.6.2 Experiments

In this section we discuss the experiments to assess how accurate tennis

stroke recognition is using inertial sensors. The results and findings from

these experiments are also discussed in the subsequent sections.

Filtering Non-Stroke Events

Step one in the two stage classification process detects which spikes in the

accelerometer data are likely to be tennis strokes and which can be considered

non-strokes. To verify the accuracy of this binary classifier, we performed

10 fold cross validation on the entire dataset of accelerometer instances from

all players which were above 3g in magnitude.

As the results show, this filtering process has a very high accuracy rate

at removing any non-stroke events. This filtering is necessary to create ac-

curate candidate stroke classification in step 2 of this classification process.

With respect to Table 6.2, precision is the number of correct results re-

turned, divided by the number of all returned results. Recall is the number

of correctly classified strokes divided by the number of results that should

have been returned, while Acc. is the percentage measure of the correctly

classified instances.

Category # Precision Recall % Acc.

Candidate Strokes 2090 0.911 0.910 91

Non-Candidate Stroke events 5749 0.904 0.909 91

Table 6.2: Detecting all non tennis stroke events which are generating a
spike in the magnitude of accelerometer data.



130

Stroke Recognition

A series of experiments on stroke recognition are reported in Table 6.3, which

shows results for advanced (Adv.), intermediate (Inter.), and novice players.

The accelerometer stroke classification section in Table 6.3 illustrates how

the stroke classifiers performed when trained on 7 players and tested on a

unseen player. It also illustrates the results when trained on a random 4

players and then tested on an unseen player. The gyroscope section and

magnetometer section in Table 6.3 report results in a similar way.

Testing classifiers on players not in the training set

To evaluate how accurate each sensor is at predicting strokes from a player

who is not in the training set, we trained the classifiers with 7 players and

tested on the remaining unseen player. For each player the classifiers were

retrained using all the other players to find if stroke classification can be

achieved by testing on an unseen player. The results are displayed in the 7

player training size section in Table 6.3.

As the results in Table 6.3 show, stroke classification can indeed be accu-

rately achieved without training the classifiers on the player who performed

the candidate stroke. It should also be noted that since the classifiers were

trained on a variety of players from different skill levels, 79% accuracy is

very encouraging. As expected however the gyroscopes perform the worst

of the 3 sensors, this is because the measure of temporal orientation during

a given stroke will be significantly different between players of different skill

levels. This is in contrast to a tri-axis accelerometer, which measures accel-

eration on three planes, which will be more effective at classifying strokes

from different skill levels.



131

Figure 6.6: Inertial Event Detection Overview

Evaluating classification performance as training size decreases

We trained the stroke classifiers on 4 players and tested on an unseen player.

The results from this experiment were compared to the results from training

on 7 players. In either of the three sensors, there was no significant decrease

between training on 7 players or training on 4 players, as the accuracy results

in Table 6.3 illustrates. The T-test difference value is .32 between the results

from the two training sizes , which proves that the results do not change as

the training set changes the number of players in the set.

Sensor Fusion Comparison

In this experiment we trained the classifiers with a combination of the data

from three sensors to identify if stroke recognition performance is improved

using early fusion. The classifiers were trained using seven players and again

tested on a player not in the training set. Using this leave one player out

approach, we retrained the classifiers for each player. The results can be

seen in Table 6.6. Interestingly, we discovered that using a combination of

accelerometer, gyroscope and magnetometer sensors gives an overall stroke

recognition performance of 90%. This accuracy rate is 10% higher than that

of accelerometer classification, which gave the highest results in the single

sensor classification in Table 6.3.
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Training Size: 7 players 4 Players
2543 strokes strokes

Player Test Strokes % %

Accelerometer Stroke Classification

Adv. Player A 597 79 78

Adv. Player B 197 85 81

Adv. Player C 177 81 82

Inter. player D 220 69 68

Inter. player E 333 85 80

Inter. player F 325 88 85

Novice player G 163 72 85

Novice player H 225 86 83

Overall Accuracy 81% 80%

Gyroscope Stroke Classification)

Adv. Player A 597 68 68

Adv. Player B 197 82 87

Adv. Player C 177 83 79

Inter. player D 220 63 71

Inter. player E 333 76 55

Inter. player F 325 77 68

Novice player G 163 88 75

Novice player H 225 88 72

Overall Accuracy 77% 72%

Magnetometer Stroke Classification)

Adv. Player A 597 79 76

Adv. Player B 197 75 81

Adv. Player C 177 65 77

Inter. player D 220 86 54

Inter. player E 333 78 82

Inter. player F 325 80 71

Novice player G 163 79 85

Novice player H 225 82 73

Overall Accuracy 78% 75%

Table 6.3: Tennis Stroke classification classified with an Instance Based
Learner, testing on a player not in training set. One classifier is trained
on 7 players and the other is trained on a random 4 players to illustrate
performance decrease as the training set decreases.
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Early Sensor Fusion Overall Accuracy %

Accelerometer & Gyroscope 83

Accelerometer & Magnetometer 88

Gyroscope & Magnetometer 88

Accelerometer & Gyroscope & Magnetometer 91

Table 6.4: To analyse the benefits of sensor fusion before classification, we
performed experiments training from 7 players and testing on an unseen
player.

6.6.3 Inferring Rallies, Games & Change of Ends

The first step in this approach is to filter all the feeder strokes, which occur

when a player hits balls to a serving opponent before a player serves. Feeder

strokes are non competitive and also very common. They can be found by

finding backhand or forehand strokes which are not preceded by a serve. To

find all rally boundaries, we then group all forehands and backhands which

follow a serve until a new serve occurs. To detect game boundaries all rallies

are grouped together until the serve changes from a player to the next. Since

players change ends at the end of the first and every subsequent two games as

defined in the Tennis Ontology (Section 6.3), we can use the game boundaries

to infer a new change of end event. We applied our event detectors to the

dataset in Section 6.5. Rallies were considered correct if indexed to ±2

seconds, while a game was considered correct if indexed to ±10 seconds.

Since there is an average break in play of no less than 5 seconds between

rallies an accuracy rate of ±2 seconds is sufficient. There is usually a break in

play between rallies of no less than ten seconds, while players will normally

collect balls or change ends between games and therefore if we are correct

to ten seconds this will be sufficient for indexing a game boundary. The

precision and recall for detecting rallies was .86 and .76, while the precision

and recall for detecting games was .92 and .92 respectively. Precision is the

number of correct results returned, divided by the number of all returned

results. Recall is the number of correctly classified results divided by the
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number of results that should have been returned.

6.6.4 Discussion

Overall, accelerometers perform the best of the three sensors at stroke recog-

nition when trained on multiple players, but when we fuse the data from the

three sensors using early fusion and train the classifiers on a large data set

this gives the best performance as illustrated in Table 6.6. By integrating

results inferred from inertial sensors with visual sensors, it may be possible

to infer new events and sensor integration is detailed later in this chapter.

6.7 Visual Event Detection

This section first outlines the algorithm steps for detecting events using

video only and the remainder of this section explains each of these steps

in detail. This visual event detection technique combines various computer

vision modules with tennis heuristics to detect multiple tennis events in a

step by step fashion.

6.7.1 Visual Event Detection Algorithm Overview

1. Player and Ball Tracking: The overhead camera is used to detect

player movements and ball movements

2. Serve Detection: Player localisation from (1) is used to determine

when players are in a given serve zone and the opponent is in a respec-

tive return zone.

3. Change of End Detection: Player identification is based on change

of end times detected in step 2., since only two players are on the court,

we can assign each player and ball track to each player once we know

the side of the court a given player is located within.
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Figure 6.7: Visual Event Detection Overview

4. Backhand and Forehand detection: A “Dominant Arm Detector”

uses the baseline camera to infer if a player is serving with their left

hand or right hand. Once we know which hand the player is holding

the racquet with, we use the overhead camera to detect if a player

performs a left swing or a right swing when striking a ball during a

rally.

5. Rally Detection: The occurrence of a rally can be inferred from serve

detection and forehand or backhand detection.

6. Game Detection: The start of a new game can be inferred from

serve detection as we recognise when the serve switches from Player A

to Player B and vice versa.

6.7.2 Player and Ball Tracking

Using the overhead camera, we can track the tennis ball using motion im-

ages for ball candidate detection followed by linking candidates into locally

linear tracks. To detect both players from the aerial view camera, we use

background subtraction and hysteresis-type blob tracking to track the tennis

players positions. The performance of both modules has been evaluated in

a publication [36], which this author was involved in, however it is outside

the scope of this thesis to reevaluate the performance of this module as it is

not considered a key contribution of this work. Instead we use this module
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Figure 6.8: Player A is inside serve zone (left side) for two seconds and
Player B is inside return zone for four seconds, therefore Player A is serving.

and its functionality to infer new events such as stroke subcategories, for

example.

6.7.3 Serve Detection

This section introduces two approaches for detecting a serve event. The

first approach uses what we refer to as serve zones and is introduced in the

next section. The second approach is based on the output data from the

ball tracking algorithm (Section 6.7.2), however for serve detection with ball

tracks we enhance the ball tracks by adding a filtering step as outlined below.

Approach 1: Serve Zones

As was discussed in Section 3.7.1, there has been much research conducted

which detects human activities from an aerial view camera. With the knowl-

edge learned from previous related work in this area, this thesis introduces a

rule based method to detect serves from an overhead camera by using player

localisation coordinates along with tennis heuristics. Using the information

from the player tracks in Section 6.7.2, we can locate both players positions

and map these coordinates to the tennis court to determine each player’s

location on the court. Then, by determining both players locations on the

court at all times during a match, we are able to recognise a serve event.
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Conroy et. al. [38] states that a “receiving player is usually beyond the

baseline on the opposite side of the court. However in practice, the receiver

can be closer to the net, or within the baseline”. A server though, is always

located behind the center of the baseline and will alternate serves between

the left and right of the center mark on the baseline. Taking these starting

positions for a server and receiver into account, we created two distinct

zones to detect a serve event, one zone to locate a server (serve zone) and

the second zone for the receiving player who returns the ball following a serve

event (return zone). By observing video footage of where tennis players are

located on court whilst a serve event is in progress, we conclude that a serve

will originate from four unique serve zones and a serve will be returned by the

opposing player from four unique return zones. There are eight zones used

to identify serves, four are serve zones (S1, S2, S3, S4), whilst the remaining

four zones are return zones (R1, R2, R3, R4), as illustrated in Figure 6.9.

The rule for serve detection is as follows. For two players P1 and P2,

let P t
1 and P t

2 be the positions of P1 and P2 at time t respectively. If P t
1 is

within the bounds of the serve zone Sx for s seconds and P t
2 is within the

bounds of the return zone Rx for q seconds, then P1 is declared as serving

from Sx. A similar rule exists to detect if P2 is serving. After analysing

precision and recall results with different s and q values, s was set to four

seconds and q was set to four seconds and these values were used to detect

serves in all the matches in the dataset.

Serve zone coordinates were obtained by observing the typical locations

of players when serving from each serve zone. A similar approach was used

to detect return zone coordinates. A number of evaluations were carried out

whereby, we manually tested an initial set of coordinates based on obser-

vations and by analysing the precision and recall results, we modified the

respective zone coordinates until the error in the precision and recall results
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Figure 6.9: Serve zones 1, 2, 3, 4 and the corresponding return zones R1,
R2, R3, R4 are used to detect a serve based on both player’s locations.

Figure 6.10: Pattern for serve direction and change of end, one change of
end occurs for every change of serve direction

were minimised.

Approach 2: Ball Hit Analysis

In this approach we use the ball and player tracks (Section 6.7.2) along

with tennis heuristics to infer the temporal locations of all strokes using the

overhead camera. We filter out any anomaly strokes which are not preceded

or succeeded by a stroke within a given time frame (usually two seconds),

these strokes are deemed to be non competitive strokes, where players feed

balls to each other between serves. Then we select all the serves, as a serve

is always the first stroke in a rally and it should not be preceded by a stroke

within a small interval of it occurring.
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6.7.4 Change of End Detection

To detect a change of end event using video, we use a three step approach

which combines a rule based event detector with tennis heuristics and a

person identification method. The steps required for detecting the change

of end event are introduced below.

1. Serve Direction Filtering

The first step uses serve direction patterns (see Figure 6.10), which can be

inferred from Serve Detection (Section 6.7.3). After careful examination of

tennis match patterns, we have concluded that there is only one change

of end (COE) event for every change of serve direction event (COSD). By

serve direction, we mean the flight of the ball after it is struck by the racquet,

during a serve. There are only two serve directions possible in tennis, left

court to right court and right court to left court. The serve direction pattern

over an entire match will change from left to right and vice versa every two

games as indicated in Figure 6.10. This is because Player A will serve the

first game and then a change of end event occurs between the end of the

first game and the start of the second. However, Player B will then start

serving the second game from the same side of the court from which Player

A served the first game. Therefore the serve direction is the same for the

first two games. Player A will serve for game three and since no change of

end event occurs till the end of game three, the serve direction changes at

the end of game two. Therefore we can assume that only one change of end

event is present between two COSD.

2. Player Tracking - Candidate Change of End

After we have identified all candidate COSD events, we need to find the best

choice for a change of end between two COSD events. We use player tracks



140

(Section 6.7.2) to retrieve a temporal location where both players approach

and/or walk from one side of the net to the other, as they will need to walk

past the net at the change of ends. The event is automatically tagged if both

players are within 2 meters of the net at any time between two consecutive

serves. Sometimes the player tracks can get confused when two players walk

close to each other, so we cannot rely on player tracks alone to retrieve a

change of end event. If the player tracking in this step finds more than one

candidate change of end event, between two COSD events, we need to check

if there is a new player serving after a candidate change of end event and

this is achieved with the following step, Serve Authentication.

3. Serve Authentication

If necessary, a final step can be used, which exploits a recent fashion trend in

tennis where players tend to wear colorful clothes. This trend can be cred-

ited to the fact that most professionals nowadays are sponsored by clothing

companies and as a result amateurs also tend to wear distinguishable cloth-

ing. This approach takes all the candidate change of end events between

two COSD events and finds the best match. The rear view camera is used

to inspect the colour features of a serving player in the previous serve and

next serve. Colour features have been used in combination with other visual

descriptors for identification of different people in the past [125] and our

person identification approach, which also uses colour descriptors is detailed

in the following.

To identify if a new player is serving, the previous serve is extracted

and 60 frames are extracted from the rear view camera, which gives us two

seconds of the serve. The player is extracted as a colour foreground from

each image and the resulting HSV image is then split into three channels

(Hue, Saturation and Value). We discard the first two channels (Hue and
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(a) (b) (c) (d)

Figure 6.11: Player foreground is extracted and the colour features of the
players are compared using the Bhattacharyya coefficient to detect a change
of end event.

Saturation), as analysis concluded that the Value channel alone provides suf-

ficient information to accurately detect a change in the player’s appearance.

We then create an image histogram from the Value channel, which repre-

sents the brightness in the player foreground. We then apply an identical

image processing technique to the next serve after the candidate change of

end and the similarity distance between the histogram for the previous serve

and the next serve is calculated using the Bhattacharyya coefficient, which

has been widely used to compare image histograms [89]. Calculating the

Bhattacharyya coefficient is based on identifying the overlap between two

samples as outlined in the following formula,

B =
n∑

i=1

√
(Σai.Σbi) (6.1)

where the two samples are a and b, n is the number of partitions, and Σai,

Σbi are the number of members of samples a and b in the i’th partition. A

new player is deemed to be present in the image when the difference between

the previous and next serve exceeds a threshold.
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6.7.5 Detecting a Player’s Dominant Arm

The biomechanical movements of a typical serve are quite similar from one

player to another. However, there are clear differences between the serve of

a left handed player and right handed player in that a left handed player

will throw the ball upward with their right hand and swing the racquet with

their left hand. While the reverse is true for right handed players. Using

this biomechanical observation, we can automatically infer if a player is left

handed or right handed using the camera behind the baseline as illustrated

in Figure 6.12. In order to successfully predict if a player is performing a

forehand or a backhand using the overhead camera (Section 6.7.6), we need

to know if the player is left handed or right handed. The Serve Detector in

Section 6.7.3 gives us the temporal and localised positions of serves. With

this data we then use the camera behind the baseline of the serving player to

extract a rear view of the player’s serve. We then use the following approach

(which is based on contour features, introduced in Section 3.5.2) to determine

whether the player is right or left handed.

Using the camera behind the baseline as illustrated in Figure 6.12, we

segment the player as the foreground for each image in a serve, the player

is always the largest foreground connected component in the image. In each

frame, we use background subtraction to determine pixels belonging to the

tennis player, as illustrated in Figure 6.12(b). To extract contour features,

we divide the player foreground region into 16 pie segments, centered on the

player centroid. Over the entire stroke, we extract pie features for each video

frame. We then normalise the features in order to make them invariant to

the player’s distance from the camera, by computing the median of all pie

feature values and dividing all features by this value. Figure 6.12 illustrates

the pie features we extract from video clips of tennis strokes.

A binary classification system was built to predict if a player is serving
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(a) Camera image (b) Foreground (c) Radial map

Figure 6.12: Contour feature extraction.

with their left hand or right hand. Using the image-based pie features of

all 60 frames for each serve, an Instance Based Learner was trained with an

even distribution of serves from left handed players from various skill levels.

Similarly, we trained a second classifier with serves from right handed players

of varying skill levels. Then, for each new match, we select the first ten

serves detected by the serve detection (Section 6.7.3) from each player, we

compare the input serve to both classifiers and aggregate the ten predictions,

to ascertain whether the player is left handed or right handed.

6.7.6 Forehand and Backhand Detection

One clear difference between a backhand and a forehand is the positioning of

the ball in relation to player (left or right of the player) during the execution

of a stroke. In this work, we use this heuristic to detect forehands and

backhands from the overhead camera. First, we automatically remove the

serves from the collection of ball hits. Using only the overhead camera, we

have developed two new approaches to detect if a stroke is a forehand or

a backhand. Both approaches use only the overhead camera and the ball

tracks. The first approach detects whether the ball is positioned to the left

or right of the player when a stroke is executed and the second approach

trains a classifier with the pie features of the players actions during a stroke.
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(b) (c)

Figure 6.13: Player centroid and ball location are compared on the y-axis to
determine if the ball is struck above or below a player

Left swing/ right swing analysis

Given that we know the starting position of each ball track (Section 6.7.2),

we can infer which ball hits are serves, since the first ball hit in a rally will

always be a serve. We remove the serves from our collection of ball hits.

We also filter any non-competitive strokes which commonly occur when one

player feeds a ball to another between serves. For each remaining ball hit in

turn, we use the ball tracks (Section 6.7.2) for that stroke to find the origin

of the stroke and the (x,y) position of the ball at the start of the stroke. We

then extract the player as foreground from the video and obtain the centroid

of the player as shown in Figure 6.13. This leaves us with the position of

the player and the position of the ball at the beginning of a stroke. Next we

detect whether the ball is above or below a player at the start of the stroke

and given that we know whether a player is right or left handed (Section

6.7.5), we can infer if a stroke is a forehand or backhand. This technique is

similar to [20], where their algorithm detects when the ball and racket collide

and heuristics are then employed based on the player and racquet locations

to perform stroke classification.
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Forehand & Backhand Detection with Contour Features

Since the player and racquet movements can be detected during a stroke

using the overhead camera, we extract visual features from these movements

and then use an Instance Based Learner classifier to learn if the player swung

the racquet to the left or right side. This approach also uses ball hit temporal

locations to extract 35 frames per stroke. We then extract the player as

foreground from the overhead camera and compute the pie features for each

frame in the stroke. Noise is removed from each frame, and we concentrate

on a specific region of interest, which is calculated from the first ball track.

All candidate forehands and backhands are then sorted into two groups,

those that originate from the left side of the court and those that originate

from the right side. If the candidate stroke originated from the left side,

it is tested against a binary Instance Based Learner classifier which was

trained on left side strokes only. The classifier has two classes, one for balls

struck above the player and a second for balls struck below a player. The

classifier is then able to predict if the stroke which occurred on the left side

was struck above or below a player. We merge this knowledge with the

dominant arm detector (Section 6.7.5) to infer if the stroke is a forehand

or a backhand. A similar supervised classifier approach is used to detect

forehands and backhands that originate from the right side of court.

6.7.7 Rallies & Games

Both rallies and games can be inferred by combining the tennis events above

with basic tennis heuristics. To detect the rally event, we first tag a serve

as the start of the rally. By empirical observation, we conclude that a rally

then continues for each sequential non-serve stroke, within two seconds of

the previous stroke, until there is at least a five second gap between the

next stroke. A new serve will also indicate a new rally has begun. Once we
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have identified which player is serving we know that the game boundaries

are located wherever the serve event switches from Player A to Player B and

vice versa.

6.8 Experiments

This section first details the experiments used for measuring the accuracy

of the visual event retrieval system. For the purposes of sensor comparison,

the results of how well inertial sensors performed in detecting events from

the 12 matches in this dataset are reproduced in Table 6.5. The dataset

of tennis matches is detailed in Section 6.5 and the results in the following

section are based on experiments conduced on this dataset.

Event Detection Procedure

For each tennis match, we detected the tennis events firstly on the video

data and then with the inertial data. A manually annotated ground truth

for each match was used to measure event detection accuracy for each event.

When all the matches were fully indexed, we took each sensor in turn and

calculated the median score of how accurately each tennis event was indexed

over all the matches in the dataset.

Video WIMU

Event* Method P R Method P R

Serves
Serve Zones .79 .82 Acc+Gyro+Mag BC 1 .79
Ball Hits .68 .88

FH & BH*
Left/Right .71 .84 Acc+Gyro+Mag BC .99 .78
Overhead Pie Features .74 .77

Dominant Arm Baseline Pie Features 1 1 - - -

Change of End Histogram Differential 1 1 Inferred 1 1

Rallies Inferred .78 .71 Inferred .86 .76

Games Inferred .75 .75 Inferred .92 .92

Table 6.5: Tennis event detection results using video or inertial sensors. *FH
& BH = forehand and backhands; P = Precision, R = Recall

A comparison of how well each sensor is able to detect each event is
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given in Table 6.5. It can be seen from this table that inertial sensors are

significantly more accurate at detecting events than visual sensors. This is

due to the high accuracy of stroke recognition obtained from inertial sensors.

This table gives the median score of how accurately each sensor can detect

a given event when tested on all the matches in the dataset. If a serve,

forehand or backhand event was indexed to ±1 seconds it was considered a

correct match and this level of precision is more than sufficient for an event

retrieval system. A change of end event needed to be indexed anywhere

between the end of one game and the first serve of the following game to be

correct. Rallies were considered correct if indexed to ±2 seconds, while a

game was considered correct if indexed to ±10 seconds. It is clear from the

results that inertial sensors are more accurate at detecting all of the events

and it is our belief that this score would be much higher if all the players

were regular tennis players. This is because novice players do not possess a

well defined serve, forehand or backhand stroke.

With respect to the visual event recognition system, the change of end

event is generally detected by the first two filtering steps. In fact, player

tracking (Step 2) was usually all that was required to detect the change

of end event, but sometimes the players would collect balls at the net and

therefore Step 3 was invoked to find the best candidate change of end between

two change of serve detection events. In the event of no change of end event

being detected between two change of serve direction events, the system will

flag an anomaly at the next change of serve direction event (see Figure 6.10)

and can correct itself, by using the change of end times from the inertial

sensors. When all the core tennis events are indexed, it is straightforward to

infer other events, such as first serves made/missed, return of first/second

serves, and when a player hits the net, for example. We do not give precision

and recall results for these further events as they are simply an amalgamation
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of the core events in Table 6.5 and the player and ball tracks. However, the

following section details how these high level tennis events are detected.

6.9 Sensor Data Integration

Event indexing is first executed from separate sensors and then both sen-

sors are synchronised, before selected events from each sensor are imported

into a relational database. This indexing system may work in real time in

the future, but for now data integration is performed offline. The visually

detected events which are imported are player and ball tracking and change

of end events. The inertial sensors provide forehand, backhand, serve events

for both players. Structured Query Language (SQL) integration queries then

map all player strokes in the database to the relevant player and ball tracks

using a rule-based query. Each high-level event in the following section is

detected offline, which allows users to retrieve complex high-level queries in

a matter of seconds.

6.9.1 High-level Query Generation

Having detected the strokes played (inertial sensors), along with the player

and ball tracks (visual sensors), we can detect the movement of the ball after

a specific stroke is executed by a given player. An offline rule-based query

then detects if the serve is a T, Body or Wide. A T serve is when the ball

intersects with the middle of the T zone in the opponents service box after

it has bounced in the service box. A body serve is when the ball crosses

the opponents service box at roughly the middle of the box. A wide serve

is when the ball exits the opponents service box at the close to the court

boundaries. A similar rule-based query detects if forehand is a in-to-in, in-

to-out, cross, line. A forehand in-to-out originates from the players left

side of court and the ball then travels diagonally across the court into the
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opponents side of the court. Forehand line originates from the players right

side of court and the ball continues down the right side into the opponents

half of court. Forehand cross is when the ball is struck from the players

right side of court and the ball then travels diagonally across the court into

the opponents side of the court. A similar coordinate system is used to find

backhand cross and backhand line strokes.

A rule based query engine is executed offline to identify first serves

made/missed. This module uses heuristics based on the server’s move-

ments immediately after a serve. The rules of tennis state that if the first

serve is illegal, the second serve must be taken from the same side of the

baseline. Therefore if a serve is executed and the servers location remains

on the same side of the baseline for the next serve, then we can infer that

the previous serve was missed, otherwise the first serve was made. Following

on from the knowledge of first serves made/missed, the strokes played by

the returning player are analysed offline to infer the return of first serves

and return of second serves. A rule-based query identifies which player

is returning and what type of stroke is being executed.

Ball tracks are used to detect which strokes result in the ball hitting the

net. This query, which is again executed offline, simply records the origin

of a each stroke played. If the ball track terminates in what is defined as the

net region, it is assumed that the ball has hit the net.

A volley is usually played when a player returns the ball, while posi-

tioned close to the net, hence the ball does not have time to hit the ground

and is volleyed. To detect forehand and backhand volleys, a query detects

forehands and backhands with inertial sensors and then cross examines each

detected stroke with the relevant player track to infer if the player is within

volley range of the net. A smash stroke will have a player executing the

same motion as a serve except the smash will be played during a rally, un-
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Figure 6.14: Event Retrieval & Detection Overview

like a serve which is always the first stroke in a rally. To detect a smash,

a rule-based query analyses the inertial stroke recognition data and labels

any strokes which are classified as a serve, but occur while the player is

positioned inside the baseline as a smash.

6.9.2 Evaluation

There is no published work which detects strokes using inertial sensors, there-

fore to compare our approach to [127], we selected the same six events as

reported in [127] to be recognised: forehand, backhand, service, smash, fore-

hand volley and backhand volley. 240 sequences were selected, which are

performed by 5 players during real matches. Three of the players we used

are advanced players and the remaining two were intermediate and beginner

level. Inertial sensors are used to detect serves, forehands and backhands.

Forehand volley, backhand volley and smashes were detected as described

in Section 6.9.1. Stroke recognition classifiers were trained with one group

of players and the evaluation set contained strokes from unseen players as

described in Section 6.6.2. Although not directly comparable to [127], our

recognition results for this experiment are 82% which is in line with the re-
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sults found in [127]. Where an event was detected to within 1 second of the

correct event time it was deemed correct. Furthermore, our dataset contains

novice players, unlike in [127] where only professional players from broad-

cast video are used. This proves that our system can work on players of all

levels. This stroke recognition system was evaluated on an Intel Core 2 Duo

Processor and the combined training and recognition time of a single event

took on average 7 seconds.

Event Accuracy

Serve 93

Forehand 81

Backhand 78

Forehand Volley 72

Backhand Volley 75

Smash 91

Table 6.6: This table gives the accuracy results for the experiment in Section
, where 40 instances of each event from 5 different players are detected

6.10 Conclusion

This chapter presented novel methods to detect key tennis events using either

visual or inertial sensors. Related work on automatic event detection in

sport, using either visual or inertial sensors was first outlined. After this, a

tennis ontology was introduced which defines the key events in tennis. We

then introduced the sensor instrumentation and event detection methodology

for detecting key events in a court based racquet sport, such as tennis. It is

also possible that these event detection algorithms could be used for similar

sports, such as badminton or pickleball. The experiments sections evaluated

the algorithms ability to detect the key events and we are very encouraged

by the accuracy of both the inertial and visual detection algorithms.

One of the aims of this thesis is to assess if automatic event recognition

can be beneficial to sports coaching tools. The following chapter introduces
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a novel automatic sports coaching solution for the sport of tennis that builds

upon the event detection framework described in this chapter.



Chapter 7

Match Point: A Visual

Coaching System

7.1 Introduction

In this chapter we present a video analysis tool for tennis coaching which

coaches can use to query and retrieve the results of tennis event detection

presented in the previous chapter. This chapter also explores if automatic

event detection can benefit tennis coaches. Existing tennis coaching software

lacks the ability to automatically index a tennis match into key events and

therefore a coach who uses existing software is burdened with time consum-

ing manual video editing. The proposed automatic video analysis system

can be used to coach from beginners upwards and allows coaches to build

advanced queries, which existing video coaching solutions cannot facilitate,

without tedious manual indexing. The user interface provides a novel user

query panel which coaches can use as a graphical query tool to retrieve and

playback video of strokes played by a player from a specific region of interest

on the court. Matches are grouped by players so coaches can retrieve videos

of particular events from multiple matches for video feedback and tactical

153
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analysis.

7.2 User Interface

In this section we present the coaching system which coaches and players

can use to playback tennis events and analyse play statistics. The system is

called Match Point and the user interface (Figure 7.1) consists of three main

panels. The Match Timeline displays all the matches played by a given

player. Each time line represents a single match. The User Query Panel

allows users to draw a rectangle for each player and also a stroke direction.

The user can then retrieve all strokes which are played while both players are

simultaneously inside their respective rectangles. The Events Panel provides

an interface for users to build specific queries related to stroke patterns such

as “play each video instance in the match where Player A performs a “first

serves missed” event”, for example. When a user searches from either the

user query panel or the events panel all the results are displayed along the

match time line and can be played in the video screen by clicking on that

event.

7.2.1 Automatic Match Indexing

After the match has finished, the videos are ingested into the system simply

by dropping them into the ingest folder. Additional match information is

manually entered into the system such as the full names of both players. If

either of the two players have been recorded by the system before, the user

selects this player from the existing players menu. No further user input is

required and the user can activate the automatic event detection algorithms

by clicking a button. The algorithms are executed offline and can take several

hours to complete depending on the duration of the match.
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Figure 7.1: Match Point Event Retrieval System, (A) User Query Panel (B)
Event panel to retrieve events (C) Match timeline panel is used to display
events.

7.2.2 Match Timeline Control

To populate the match timeline with matches from a respective player, the

user selects a player from the player panel on the left side of the interface.

In the event that a player is captured in multiple matches, multiple match

timelines will appear below each other. Each match timeline also visualises

all the games in a match. Each game is represented by a brown rectangle

along the match timeline. The length of each game is clearly visible and

coaches can focus on events which occur on short or long games with this

feature. Additional information is also available here such as the player

names, match date and match duration. When a user selects specific events

from either the User Query Panel (Section 7.2.4) or the Events Panel (Section

7.2.3), all the retrieved events are displayed along the selected match time

line control. Video playback is only possible by selecting an event from a

match time line panel.
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7.2.3 Events Panel

The events panel provides an interface for users to view match statistics and

playback video of each event in the panel. For example, the user might want

to view the video of all the T-Serves executed by Player A from the left

side of the baseline. Each event retrieved will then be represented along the

match timeline as a vertical tick and the user can click on the relevant event

tick along the match timeline to playback the video of the event.

The events panel provides many analysis statistics and video playback

of each event in this panel is instantaneous. The frequency of T, body and

wide serves from the deuce and add side of the baseline is visible, which can

be used to gauge if a player is under/over using a particular serve. This

level of pattern finding in a player’s play is easily highlighted with the event

counter, which counts the frequency of each event as shown in Figure 7.2.

In addition to serve subtypes, the event panel displays how many first serve

events a player has made and missed and how may of these were T, body or

wide serves, or those serves which hit the net.

The number of times a player performs a forehand in to in, in to out,

cross, line or a backhand cross or line during a match can be analysed in

the events panel. The events panel also contains the number of forehands

and backhands which hit the net. Another useful playback feature is to

find rallies which contain more than n shots where a given player ends the

rally by hitting a particular stroke, where n is defined by the coach before

searching. Finally the events panel can quickly playback a player’s return

of first or second serve during a given match. Video playback of all the

aforementioned tennis events is possible by clicking on the relevant button in

the events panel. This will populate the match timeline with each event and

the coach can playback any event by scrolling through the match timeline.
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Figure 7.2: Sample Events panel showing individual player statistics over a
single match. The indices represent how often in the match the given player
performs the specific event.

7.2.4 User Query Panel

An important contribution of this system is the User Query Panel, which

allows users to visually construct a query by drawing rectangles and line ob-

jects which represent both players’ locations and the ball in flight. The user

can then retrieve all strokes which are played from a given region of interest

where the ball travels along a user specified shot line. It is also possible to

filter the results returned by any combination of serves, backhands and fore-

hands. Results are displayed along the match timeline for efficient retrieval.

Analysing the frequency with which players perform specific strokes from a

given region on the court has been highlighted as a potentially useful feature

by the tennis coaches we interviewed.

The process to find all strokes played by a given player from a particular

region on the court is as follows. A coach draws a rectangle anywhere on the

court as shown in Figure 7.3, its possible to draw one rectangle or two to

find strokes played while both players are inside their respective rectangles.
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Figure 7.3: User Query panel detects number of times a player performs a
stroke from a given region of the court.

Finally the flight of the ball is inferred by drawing a ball line on the panel.

Stroke types may be filtered using options as shown in Figure 7.3. The

experiments in the next section illustrate how this feature performed in a

user study.

7.3 User Study

This section evaluates the practicality of the overall system for tennis coach-

ing. This user study was designed to commit users to (1) understand how

the system works, (2) understand what features are available in the system

and finally for the users (3) to use all the features of the system in order

to give them a subjective view of how practical the system is. All exper-

iments were videotaped to compile accuracy scores of the users ability to

complete the test queries. After users had completed all experiments they

were asked to anonymously complete a questionnaire. By making the ques-

tionnaire anonymous, users are given an unbiased platform to express their

opinions on the overall system experience.

To evaluate the system, we performed a number of experiments with
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ten users, six of whom were tennis coaches and four were regular tennis

players. The experiments evaluated all the components of the interface and

a comparison of the user interface was made with Dartfish, which is a state

of the art video analysis application for sport. Retrieval experiments were

conducted in a room equipped with two desktop PCs, each with a 23 inch

monitor, with an instructor present. Each user completed a training session

on our system in advance. A similar level of training was then provided for

Dartfish, where necessary.

It should be noted that five of the six tennis coaches are Dartfish experts

and two of the tennis players regularly use Dartfish. Four of the coaches were

professional coaches and two coach in local tennis clubs. The four regular

tennis players were recruited from a local tennis club. There are currently

no automatic event retrieval systems for sports coaching, so we compare our

system to Dartfish, which is the most popular sports coaching analysis tool

and has functionality for manual event annotation. Problems or questions

on how to use each system were discussed during the training sessions.

7.3.1 Experiment One: Event Panel Evaluation

The aim of the first user experiment was to provide the users with a hands

on experience of using the event panel in Figure 7.2 to retrieve various match

events, which coaches regularly review for learning purposes. The users were

given a task list of five events to retrieve using the events panel in the Match

Point system. The events to be retrieved are shown on the next page and

were chosen by analysing which tennis events coaches have manually tagged

using Dartfish in the past. Therefore each of the events to be detected

was previously manually indexed by coaches using Dartfish in the past. A

questionnaire was used to assess the user’s experience and to assess whether

coaches and players found using the event retrieval system beneficial for
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learning purposes. The outcome of this experiment is discussed in Section

7.3.5.

1. First Serves Made and First Serves Missed from the left or right side

of the baseline. The user must also observe if the serve is a T Serve,

Body Serve,Wide Serve or net.

2. Return of first serve and return of second serve. The user must also

observe if the return is a backhand cross, backhand line, forehand in

to in, forehand in to out, forehand cross or forehand line.

3. Rallies, which are greater than four strokes and end with Player A

playing a forehand in to in.

4. Rallies, which are greater than four strokes and end with Player B

hitting the net whilst playing a backhand cross.

5. Rallies, which are greater than four strokes and end with Player A

playing a forehand in to out.

7.3.2 Experiment Two: User Query Panel

This experiment aimed to investigate whether users can utilise the dynamic

drawing features of the User Query Panel to accurately retrieve instances

where a player performs a stroke played from a specified region of interest

on the court. This experiment was carried out with ten users (six coaches

and four players). To correctly retrieve an event, the user was shown an ani-

mation of a tennis court with two boxes which represented general locations

of each player and a line to represent the ball trajectory. The user then had

to construct the query on the User Query Panel. Each user was first trained

on how to use the user query panel and then completed two training queries

before being asked to retrieve the three queries below. When the results
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were displayed on the match timeline panel, each user was then asked to

view each of the retrieved results for validation.

1. Find all serves played by Player A whilst Player B is located within a

specified region.

2. Find all serve returns by Player B, which are backhands played from

a given region of interest on the court.

3. Find all backhands which traveled a particular direction and were

played by Player A from a given region of interest.

7.3.3 Experiment Three: Event Retrieval - Match Point vs

Dartfish

The aim of the this experiment is to assess, in terms of system usability,

which coaching interface is the most efficient user interface for event retrieval

in the context of tennis video analysis. For this experiment, we prepared

Dartfish by manually tagging two matches fully with the five events from

Experiment 1. Each user was then trained how to perform event retrieval

with Dartfish and then asked to retrieve a random event from a random

match. We stress that in this experiment we are only evaluating the Usability

of the user interface between both systems. No existing coaching software

automatically annotates video into tennis events so we can only compare

system Usability, in terms of how well the interface performs, which is a

very important factor in how well an athlete will assimilate information.

7.3.4 Evaluation Questionnaire

When each user completed all the relevant experiments, they were asked

to fill in the following user questionnaire. These questions are designed to

assess how well Match Point performs for coaches and tennis players alike.
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All questions were answered by a score of how true the statement is, where

0= false, 1 = almost false, 2 = weak false, 3 = weak true, 4 = almost true,

5 = true. Questions 8 to 10 are relevant to coaches only and the results of

this questionnaire are shown in Figure 7.4. The questions are designed to

collectively obtain information on the aspects being evaluated in the user

assessments. These questions resulted in a large amount of quantitative

data which was obtained from an online survey website. There is no direct

relationship between the users and authors and because the questionnaires

were answered anonymously there is a good environment for users to give a

critical evaluation of the overall system.

1. Learning to operate Match Point is straightforward.

2. Exploring new features by trial and error is straightforward with Match

Point.

3. Match Point can reliably detect specific tennis events, which are queried

by the user.

4. Match Point’s Query Court panel is efficient at finding strokes played

from a given region of interest on the court.

5. I found event retrieval easy with match Point.

6. It is easier to visualise tennis events using Match Points timeline con-

trol, game bar and event tick, than with the Dartfish application.

7. I prefer to use Match Point instead of Dartfish for tennis video analysis.

8. Using the system would improve my performance.

9. Using the system would enhance my effectiveness on the job.

10. Using the system would make it easier to do my job.
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Usability Evaluation

As an additional part of the user questionnaire, we evaluate the user inter-

face using Nielsen’s Heuristic Evaluation, which is one of the most common

usability heuristics for user interface design [121]. We selected six heuristics

for Usability evaluation and these were deemed most relevant to the user

interface. The experimental setup for this study was as follows: when each

evaluator had concluded all their system training , evaluation exercises and

were therefore familiar with the user interface, they were asked the following

questions which were to be answered by applying a score of how true the

statement is (0 = false, 5 = true)0= false, 1 = almost false, 2 = weak false, 3

= weak true, 4 = almost true, 5 = true, where . All ten test users answered

this test and the results are shown in Figure 7.4 and discussed in the next

section.

1. Visibility of system status. The system always keeps users informed

about what is going on, through appropriate feedback within reason-

able time.

2. Match between system and the real world. The system speaks the

users’ language, with words, phrases and concepts familiar to the user,

rather than system-oriented terms. It follows real-world conventions,

making information appear in a natural and logical order.

3. Recognition rather than recall. Minimize the user’s memory load by

making objects, actions, and options visible. The user should not have

to remember information from one part of the dialogue to another.

Instructions for use of the system should be visible or easily retrievable

whenever appropriate.

4. Consistency and standards. Users should not have to wonder whether
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different words, situations, or actions mean the same thing. Follow

platform conventions.

5. User Feedback. The user receives appropriate system notification in

response to user actions.

6. Help users recognize, diagnose, and recover from errors. Error mes-

sages should be expressed in plain language (no codes), precisely indi-

cate the problem, and constructively suggest a solution.

7.3.5 User Study Evaluation

Several experiments were used to assess individual system components. If the

experiments were only examined on a small number of people the reliability

of individuals could be questioned, so increasing the number of testers to ten

reduces the ability of single testers to have a significant impact on the final

accuracy score. However, the testers were trained on how to use individual

system components directly before the test, so that they were familiar with

each component.

In experiment one, the events to be retrieved using our system were

selected by observing what events coaches have manually annotated using

Dartfish in the past. Our system can automatically annotate all the events

used in this experiment. Therefore, the first benefit of using Match Point

is that using our system will reduce the time a coach will spend manually

annotating videos of matches. The accuracy for Experiment 1 in Table 7.1

is a measure of how often users successfully completed each test within the

allocated one minute time frame. When a user was unable to complete

the experiment within the allocated time or had to ask for assistance the

experiment was marked as a failure.

Coaches unanimously agreed that counting the frequency of stroke sub-

categories is a significant step forward for video coaching tools as it would
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simply take endless hours to manually tag this level of detail and this statistic

has not been previously collected, to the best of our knowledge. For exam-

ple, the frequency of T, body or wide serves performed by a specific player

has been identified as an interesting statistic by the system users because it

allows coaches to find patterns in how often players are executing each style

of serve. We also count the number of times each serve type is executed

within the deuce or add side, as baseline positioning whilst serving has been

highlighted as an interesting statistic by our coaches during requirements

gathering.

Experiment two evaluated the User Query Panel, which allows users to

build queries of a particular stroke, executed from a specific region of interest

on the court. If the user correctly constructed the query using the graphical

tools and therefore successfully retrieved the relevant events after running

the query, the result was deemed correct, otherwise the query result was

incorrect. It was found that after sufficient training, coaches and players

alike were easily able to build queries on the query panel and then playback

the video of each returned result on the match timeline with ease. Since

each result is represented by a vertical line on the match timeline, the user

can gauge how often this stroke was performed from the given region. The

retrieval results in Table 7.1 highlight some issues where the users did not

retrieve the correct results and this typically occurred when a user did not

draw the ball line along the correct plane.

Experiment No. Events Mean Accuracy

1 5 .83

2 3 .77

Table 7.1: Match Point user retrieval Experiments 1 & 2

The event retrieval task in Experiment Three highlighted that our sys-

tem is designed for inter and intra match analysis, whereas Dartfish is not,
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Heuristic Score

1 80%

2 90%

3 95%

4 80%

5 50%

6 40%

Table 7.2: Nielsen’s Usability Evaluation

as new Dartfish users struggled to load different matches with Dartfish. Our

system has several features which make it more attractive for video retrieval,

such as the easy-to-use time line, the game boundary marker and the vertical

line which represents an event along the match timeline and users have re-

flected these observations with the user questionnaire. To obtain the Match

Point accuracy scores for Experiment Three, users were allocated one minute

to retrieve each event using Match Point and if they were unable to com-

plete the experiment within the time frame or required assistance, the test

was recorded as a failure. The user was then requested to find the same

events from particular matches using Dartfish. Users who were familiar

with Dartfish passed this experiment with ease, but new Dartfish users, who

had received the same amount of training as was granted to Match Point’s

training exercises, struggled with Usability issues, such as loading the events

of match for the first time. The accuracy for this experiment using Dartfish

was 71%, whilst Match Point achieved a score of 74%. Table 7.3 illustrates

how accurately the users correctly retrieved each event using the different

sensors.

The user questionnaire results in Figure 7.4 conclude that coaches, some

of whom are Dartfish experts found Match Point significantly better for event

retrieval. All users preferred Match Point’s user interface over the leading

video analysis software for sport. However Match Point’s user interface is

designed specifically for tennis, while Dartfish is designed for all sports. As
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Event Dartfish Accuracy (%) Match Point Accuracy (%)

1 75 81

2 67 68

3 71 72

4 63 74

5 77 77

Table 7.3: Event retrieval results - Match point v Dartfish (experiment 3)

the evaluation questionnaire results in Figure 7.4 highlights, users found

that using Match Point is more straightforward with the customised layout

of events. What was also encouraging was the discovery that all users were

able to build informative queries such as those in Experiment One and Two

after only a short duration of system training and the accuracy in event

retrieval is shown in Table 7.1.

The Usability evaluation in Section 7.3.4 assessed the user interface, in

this experiment we selected six relevant heuristics and each user completed

the evaluation after using the system. The scores obtained from the first four

heuristics are encouraging, however the low scores for heuristics five and six

can be attributed to this system being a prototype and therefore it will be a

future work to improve user feedback and error messaging. Improvements in

these areas would significantly help the system to become more acceptable

to the users in a production environment and the findings of this experiment

are helpful for future work.

7.3.6 Tactical Analysis

An additional evaluation of the tactical analysis was conducted to highlight

what coaches can learn from Match Point that may give them novel insight.

Since our system has the ability to record every stroke sub category and

also records the location where each stroke was played, along with the ball

direction of the stroke, we use this information over multiple matches to gain
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insightful statistics on a given players tactical patterns. Example findings

which were made by our users were to highlight where a given player has

missed a high number of first serves during the first game of a match. An-

other tactical statistic was that we were able to see that one of our advanced

players overuses the Wide serve from the deuce side of the baseline. This

pattern in a serve could help an opponent, if they became aware of it. This is

because they would have a competitive edge in this scenario, knowing what

serve to expect and therefore standing in the optimal position to play the

best return stroke.

Figure 7.4: User study with six coaches and four players.

7.4 Discussion

A comprehensive event retrieval interface was presented and coaches may

retrieve events using multiple interface components. It was agreed by the

tennis coaches that they prefer Match Point as an event retrieval interface

when compared to a leading state of the art sports coaching software. The
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experiments have also proved that Match Point can infer knowledge which

is simply not possible with manual annotation without applying significant

human effort. For example, for every serve, the system can infer if it is T,

Body or Wide. The system can also index every rally in the match, including

the rally length. First serves made, first serves missed and return of first

serves/return of second serves are also automatically indexed. In conclusion,

we found that sports coaching software could be significantly enhanced by

utilising automatic event recognition techniques, as proposed in our system.

The event retrieval task in Experiment Three highlighted that our sys-

tem is designed for inter and intra match analysis, whereas Dartfish is not.

Our system has several features which make it more attractive for video re-

trieval, such as the easy-to-use time line, the game boundary marker and the

vertical line which represents an event along the match timeline. The user

questionnaire results in Figure 7.4 conclude that coaches, who are Dartfish

experts found Match Point significantly more better for event retrieval. All

users preferred Match Point’s user interface over the leading video analysis

software for sport. However Match Point’s user interface is designed specifi-

cally for tennis, while Dartfish is designed for all sports. As the questionnaire

in Table 7.4 highlights, users found that using Match Point is more straight-

forward with the customised layout of events. What was also encouraging

was the discovery that all users were able to build informative queries such

as those in Experiment One and Two after only a short duration of system

training.
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Chapter 8

Conclusions

The research reported in this thesis examined the use of visual and inertial

sensors in sports coaching tools. We evaluated event detection algorithms

for detecting human actions using both visual and inertial sensors. The

algorithms were then adopted for use in detecting events in tennis and from

these events a fully automatic event retrieval system was designed. The

following sections reviews the key aspects of each chapter.

8.1 Chapter Summary

In Chapter 1 we introduced our thesis, providing a brief overview, hy-

pothesis, motivation and a list of central questions explored throughout the

research carried out. We discussed existing research trends in the area of

sports coaching software and identified different types of existing coaching

tools, in particular analysis tools, video coaching tools and instrumented

coaching environment software solutions. The limitations of video coaching

tools and instrumented coaching tools are then identified and from these lim-

itations we developed our research objectives. The research objectives were

to enhance the coaching experience by automatically indexing key tennis

events using visual and inertial sensors and then presenting this information

171
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to coaches through an interface which they can use to efficiently retrieve

interesting key points during a match.

Chapter 2 described the technical background on visual and inertial

sensing before reviewing literature for machine learning. The final section

in this chapter looks at state of the art machine learning techniques, which

are used for event classification.

Chapter 3 described existing work used to detect human actions using

visual sensors. We introduced two approaches for human action recogni-

tion using video (MHIHOGs and contour features) and both were evaluated

against an indoor dataset and an aerial view outdoor dataset of basic human

actions. We also benchmarked the algorithms against the popular Weizmann

dataset. The finding from this chapter was that contour features are highly

accurate for event detection of human actions and they are also computa-

tionally inexpensive, making them a suitable choice in this work.

In Chapter 4, we explored the challenges which arose when using inertial

sensors to recognise human actions. This was followed by introducing the

technique used in this work to recognise human actions using inertial sensors.

Experiments were conducted to evaluate recognition accuracy and then we

fused different inertial sensors together and evaluated both early and late

fusion techniques. Our investigations concluded that the best accuracy for

recognising human actions is to use early fusion of multiple sensors.

Chapter 6 took the visual and inertial sensing algorithms detailed in

the earlier chapters and modified these event recognition techniques for de-

tecting events in the sport of tennis. We determined an achievable set of

tennis events to be automatically detected by analysing existing coaching

practices and interviewing tennis coaches. The chapter explained the pro-

cess used to detect tennis events from each sensor in turn and experiments

were conducted on each modality to determine the accuracy of each sensor.
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The findings from this chapter were that early fusion of inertial sensors was

more accurate at detecting tennis events than visual sensors. However, vi-

sual sensors can detect ball movements which provides a wealth of data for

interesting queries based on ball locations during a match.

Chapter 7 described the novel content management and retrieval sys-

tem. This retrieval system allows coaches to generate advanced queries which

would not previously have been possible, without an inordinate undertaking

of manual annotation on the part of a tennis coach or tennis expert. An eval-

uation study evaluated if such a system can significantly improve coaching

techniques and also how this next generation coaching software compares to

a state of the art commercial coaching tool. The finding from this chapter

is that automatic indexing is beneficial to tennis coaching.

8.2 Thesis Contributions

This thesis makes several contributions. The most significant contribution is

the introduction of an early fusion technique to automatically detect human

actions using a single inertial sensor attached to a human subject’s wrist.

Using early fusion we fused accelerometer, magnetometer and gyroscope sen-

sor data to detect what actions the human subject is performing. We first

applied this technique to recognise human actions in Chapter 4. By adapt-

ing the early fusion approach for human actions, this thesis also makes a

contribution of event detection in tennis using early fusion of accelerometer,

magnetometer and gyroscope sensors. This was achieved using the same

fusion technique as that used to infer human actions with only small con-

figuration changes (as outlined in Chapter 6) and in both applications early

fusion increases action recognition by almost 10% (compared to single sensor

classification) when tested on humans who are not present in the training

set.
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In Chapter 6, a new approach vis introduced to visually detect tennis

events. This algorithm infers tennis events by recording a tennis match using

only three cameras. From the videos of two cameras positioned behind the

baseline and a third overhead camera, we introduce a novel approach to

detect all tennis strokes and recognise what stroke is played. Rallies, games

and change of end events are also detected using video. The overhead camera

tracks both players and the ball during competitive play and these tracks

can be used to infer further tennis events such as stroke subcategories. This

level of detail has never previously been automatically detected before.

A third contribution is the novel content management and retrieval sys-

tem (Match Point), which allows users to ingest the sensor information for

a particular match and provides a user interface that can query the system

to find events. This system can automatically index the key events in ten-

nis using either visual or inertial sensors, or a combination of both. The

query engine which this system provides allows users to run queries which

are simply not possible without automatic indexing of key tennis events.

8.3 Future Work

The experiments and studies performed in this thesis suggest there are sev-

eral areas which merit further research. This section explores these areas

which may lead to profitable lines of inquiry. It will be difficult for automatic

event detection algorithms to detect all the events a coach is interested in

indexing, therefore a semi-automatic approach to event indexing may need

to be explored. In such an application, automatic event indexing would

be performed first and these events would provide a foundation, on top of

which manual event indexing would be performed afterwards. This would

certainly allow coaches to index forced/unforced errors, which is a statistic

that coaches currently index with existing manual coaching tools. Detecting
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these events involves a subjective view from an expert and it is difficult to

automatically detect these events with computational learning approaches.

Coaches have also recommended that automatic detection of the scores

at all times would enable them to infer interesting events during important

parts of the matches. For example, a coach is more interested in analysing

a serve which hits the net when the game score is even in the last set of

the game, rather than at the beginning of a game when the player is not

under as much pressure. Automatic score detection may be achieved using

a camera at each side of the court to detect if a ball has landed within the

legal boundaries. Knowing if a stroke was executed properly and landed

within the legal court boundaries is the foundation upon which a successful

score detection system would be built. This is achievable although the low

cost cameras used in our research are not of sufficient quality to detect ball

bounce.

Currently our event detection algorithms take several hours to complete.

Computational optimisation of the techniques could significantly reduce the

time delay required for automatic event detection and may open up the

possibility of realtime event detection. Reducing the duration for event

detection to within one hour would be a significant step forward for this

system as this would allow coaches to analyse a matches played on the same

day.

Differential GPS offers the potential to track players outdoor to within

10cm. There may be scope to use this approach to track outdoor tennis

players and integration with our system would allow us to automatically

track a player, as well as inferring strokes played, rallies and games using

just a WIMU and differential GPS. This would mean that a large amount

of tennis events could be automatically detected in an outdoor match at

any location without assembling the camera infrastructure, which is time



176

consuming.

8.4 Final Word

The work in this thesis examined existing sports coaching tools for rac-

quet sports and specifically tennis. We identified limitations with existing

solutions and from here identified key tennis events which could be automat-

ically indexed to reduce the time spent manually indexing sports matches.

Event indexing algorithms were created for visual and inertial sensors and

the different approaches used for detecting events from each sensor were

evaluated against multiple datasets. A novel coaching user interface was

assessed which allowed coaches to analyse the automatically detected events

and a user study concluded that automatic event detection can significantly

improve the coaching experience for racquet sports. We believe that auto-

matic indexing is an exciting and challenging research topic and that the

work reported in this thesis constitutes a useful contribution to the state of

the art.
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and Li-qun Xu. Anti-social behavior detection in audio-visual surveil-

lance systems. In PRAI-HBA - Workshop on Pattern Recognition and

Artificial Intelligence for Human Behaviour Analysis, 2009.

[98] Rakesh Kumar, Naveen K. Chilamkurti, and Ben Soh. A comparative

study of different sensors for smart car park management. In IPC ’07:

Proceedings of the The 2007 International Conference on Intelligent

Pervasive Computing, pages 499–502, Washington, DC, USA, 2007.

IEEE Computer Society.

[99] Kristof Van Laerhoven and Ozan Cakmakci. What shall we teach our

pants? In Proceedings of the 4th IEEE International Symposium on

Wearable Computers, ISWC ’00, pages 77–, Washington, DC, USA,

2000. IEEE Computer Society.

[100] C. Laugier, Th. Fraichard, Ph. Garnier, I. E. Paromtchik, and

A. Scheuer. Sensor-based control architecture for a car-like vehicle.

Auton. Robots, 6(2):165–185, 1999.

[101] Insup Lee, George J. Pappas, Rance Cleaveland, John Hatcliff,

Bruce H. Krogh, Peter Lee, Harvey Rubin, and Lui Sha. High-

confidence medical device software and systems. IEE Computers,

39:33–38, 2006.

[102] Jonathan Lester, Tanzeem Choudhury, and Gaetano Borriello. A

practical approach to recognizing physical activities. In Proceedings



191

of the 4th international conference on Pervasive Computing, PERVA-

SIVE’06, pages 1–16, Berlin, Heidelberg, 2006. Springer-Verlag.

[103] Zhenjiang Li, Kunfeng Wang, Li Li, and Fei-Yue Wang. A review on

vision-based pedestrian detection for intelligent vehicles. In Vehicular

Electronics and Safety 2006 ICVES 2006 IEEE International Confer-

ence, pages 57–62. IEEE, 2006.

[104] K J Liszka, M A Mackin, M J Lichter, D W York, D Pillai, and

D S Rosenbaum. Keeping a beat on the heart. In IEEE Pervasive

Computing, volume 3, pages 42–49, 2004.

[105] Jingen Liu, Yang Yang, Imran Saleemi, and Mubarak Shah. Learning

semantic features for action recognition via diffusion maps. Computer

Vision and Image Understanding, 116(3):361–377, 2012.

[106] Clemens Lombriser, N B Bharatula, Daniel Roggen, and Gerhard

Troster. On-body activity recognition in a dynamic sensor network.

In Proceedings of the ICST 2nd international conference on Body area

networks, pages 1–6. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 2007.

[107] Xi Long, Bin Yin, and Ronald M Aarts. Single-accelerometer-based

daily physical activity classification. Conference Proceedings of the In-

ternational Conference of IEEE Engineering in Medicine and Biology

Society, 2009:6107–6110.

[108] David G Lowe. Distinctive image features from scale-invariant key-

points. In International Journal of Computer Vision, volume 60, pages

91–110. Springer, 2004.

[109] Hendrik Johannes Luinge. Inertial sensing of human movement. PhD

thesis, Enschede, October 2002.



192

[110] Paul Lukowicz, Andreas Timm-Giel, Michael Lawo, and Otthein Her-

zog. Wearit@work: Toward real-world industrial wearable computing.

IEEE Pervasive Computing, 6(4):8–13, 2007.

[111] R C Luo and M G Kay. Multisensor integration and fusion in intel-

ligent systems. Ieee Transactions On Systems Man And Cybernetics,

19(5):901–931, 1989.

[112] J Maitland, S Sherwood, L Barkhuus, I Anderson, M Hall, B Brown,

M Chalmers, and H Muller. Increasing the awareness of daily activity

levels with pervasive computing. 2006 Pervasive Health Conference

and Workshops, 36(4):1–9, 2006.

[113] R Manduchi. Bayesian fusion of color and texture segmentations. Pro-

ceedings of the Seventh IEEE International Conference on Computer

Vision, 2(c):956–962, 1999.

[114] G Miller and C Gabbard. Effects of visual aids on acquisition of se-

lected tennis skills. Percept Mot Skills, 67(2):603–6, 1988.

[115] David Minnen, Thad Starner, Irfan Essa, and Charles Isbell. Discov-

ering characteristic actions from on-body sensor data. In IN PROC.

OF IEEE INTERNATIONAL SYMPOSIUM ON WEARABLE COM-

PUTING, pages 11–18, 2006.

[116] David Minnen, Tracy Westeyn, Daniel Ashbrook, Peter Presti, and

Thad Starner. Recognizing soldier activities in the field, page 236241.

Springer, 2007.

[117] Thomas B. Moeslund and Erik Granum. A survey of computer

vision-based human motion capture. Comput. Vis. Image Underst.,

81(3):231–268, 2001.



193

[118] Thomas B. Moeslund, Adrian Hilton, and Volker Krüger. A survey of
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