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ABSTRACT Musculoskeletal conditions, often requiring rehabilitation, affect one-third of the U.S. popula-
tion annually. This paper presents rehabilitation assistive technology that includes body-wornmotion sensors
and a mobile application that extends the reach of a physical rehabilitation specialist beyond the clinic to
ensure that home exercises are performed with the same precision as under clinical supervision. Assisted by a
specialist in the clinic, the wearable sensors and user interface developed allow the capture of individualized
exercises unique to the patient’s physical abilities. Beyond the clinical setting, the system can assist patients
by providing real-time corrective feedback to repeat these exercises through a correct and complete arc of
motion for the prescribed number of repetitions. An inertial measurement unit (IMU) is used on the body
part to be exercised to capture its pose. In this paper, we present a kinematics data processing approach to
defining custom exercises with flexibility in terms of where it is worn and the nature of the exercise, as well
as real-time corrective feedback parameters. The system is tested on two exercises perfromed by a healthy
individual to demonstrate the feasibility and accuracy of the approach. We demonstrate how it can improve
exercise adherence by assisting users in reaching the full prescribed range of motion and stay on the ideal
plane of motion and improve hold time. Preliminary results from an ongoing clinical trial are presented.

INDEX TERMS Assistive technology, biomechanics, telemedicine, wearable inertial sensor.

I. INTRODUCTION
Musculoskeletal injury rehabilitation, such as the one used
to treat rotator cuff tendinopathy, requires highly individual-
ized intervention to address patient-specific physical limita-
tions such as dressing, toileting, grooming, and occupational
demands to return to normal function. The current methods of
home exercise instruction do not provide adequate monitor-
ing or flexibility to support individualized patient education
programs. When a patient performs home exercises, there
is no feedback to ensure that exercises are being performed
correctly, which has been identified as a barrier to exercise
adherence [1]. Lack of confidence or low self-efficacy has
been directly connected to poor exercise adherence and poor

The associate editor coordinating the review of this manuscript and

approving it for publication was Sung-Min Park .

treatment outcomes [2], [3]. This issue is further supported
from the social cognitive theory perspective, which identi-
fies that in order to change behavior, an intervention has
to address issues of self-efficacy to be effective [4], [5].
Extending this concept to rehabilitation by providing exercise
feedback beyond the clinic to empower the patient to manage
their injury requires a novel approach that introduces automa-
tion while maintaining personalization by the rehabilitation
specialists for the patient.

In the clinical setting, rehabilitation specialists such as
physical therapists, occupational therapists, athletic trainers
or physicians (referred to as healthcare providers for the
purposes of this paper) prescribe and individualize exer-
cises in order to minimize the patient’s pain and address
their current level of disability [6]. Throughout rehabilitation,
these exercises are constantly modified based on the patient’s
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response, symptoms, and physical capacity [7]. The patient
is asked to perform the same exercises at home or outside of
clinical supervision to facilitate recovery [8]. There are many
methods used to illustrate home exercise performance and
encourage exercise independence. The most common form is
written instruction using static images with arrows. However,
clinicians must constantly modify an illustration or rewrite
verbal instructions to meet individual patient needs following
exercise instruction. This can potentially confuse the patient
and reduce their confidence in performing the exercises inde-
pendently. In addition, treatment adherence with prescribed
home exercises is a common concern [1] and is associated
with poor patient outcomes [2], [3]. We present a system
that extends the reach of the healthcare provider by pro-
viding both real-time feedback on individualized prescribed
exercises and a less burdensome method to monitor exercise
adherence.

FIGURE 1. RehabBuddy extends the reach of the rehabilitation specialist
to the home. In the clinic, the patient is prescribed exercises, which are
recorded by the system. Beyond the clinic, the system assists the patient
in performing the correct number of repetitions and hold times.

Our approach, named as RehabBuddy, as illustrated in
Fig. 1, is based on body-worn inertial measurement units
(IMUs) capable of body motion capture outside of a lab-
oratory environment. The devices are attached to the body
around the joint being rehabilitated, such as the arm in the
case of a shoulder injury. The IMU data is processed to
find the three degree-of-freedom (3DOF) rotation of the
exercise, as well as other parameters such as the body
pose relative to inertial space (e.g., whether the patient is
lying down or standing). The current standard of care in
the clinic is that the patient is educated by the healthcare
provider to perform the exercises correctly. Once the patient
is instructed, RehabBuddy will allow the healthcare provider
to record prescribed home exercises. With the aid of a
mobile application, the RehabBuddy will provide patients
with reminders to perform the correct number of repetitions
of each exercise, while providing a graphical demonstration
of the exercises to help the user to recall them and provid-
ing real-time feedback on how accurately they are perform-
ing the exercises. These elements are expected to have a
significant impact on compliance and ultimately on patient
outcomes.

II. MOTIVATION
Healthcare providers incorporate home exercise programs to
promote patient self-reliance and improve the patient’s func-
tional scale by reducing physical impairments of weakness
or inflexibility [9], [10]. The effectiveness of home exercise
in improving function, reducing pain, and returning toward
normal function is well established and a critical adjunct
to clinic-based rehabilitation [11]–[13]. However, two con-
sistent problems arise in treating patients and evaluating
treatment effectiveness: (i) objective measure of adherence
and (ii) low exercise adherence [2], [14]. Measuring exercise
adherence is challenging, as it is currently limited to a self-
report diary, which is often an overestimation of activities and
burdens the patient [15]. A system that objectively records
prescribed home exercises would provide an accurate rep-
resentation of the exercise dosage being performed outside
the clinic. Exercise adherence is commonly poor, with a
completion rate ranging from 33–66% in patients with mus-
culoskeletal injuries [16], [17]. Greater exercise adherence
improves outcomes [18]. The primary factors associated with
low adherence to home exercises in patients with muscu-
loskeletal disorders are (i) discomfort when performing the
exercise, (ii) time barriers to performing exercises, (iii) lack
of confidence in performing exercises alone, and (iv) depen-
dence on health care provider input to resolve challenges
with the patient’s disability [1]. These factors, along with the
manner in which the healthcare provider provides directions
to the patient and the patient’s motivation to carry out the
treatment intervention, directly affect adherence [19].

Providing biofeedback is beneficial to improving the
patient’s physical limitations and can be done in many
forms [20]. Specifically, inertial sensors have been used to
improve the patient’s balance and modify incorrect move-
ments and postures in the clinical setting [21]–[24]. While in
the clinical setting, patients have input from the healthcare
provider when exercising. However, a greater need exists
at home for similar input to be offered. RehabBuddy can
objectively monitor exercise adherence and can be used at
home to provide exercise feedback without the presence of
a healthcare provider.

III. RELATED WORK
A. SENSING AND PATIENT MONITORING
Wearable sensor technology used for activity monitoring may
be an option to assess data on exercise adherence. The use
of inertial sensors for motion capture and analysis is well
documented in the literature [25]–[32] and includes com-
mercial fitness activity trackers. Examples related specifi-
cally to physical therapy include several projects [33]–[36]
designed to track patient activity for the purpose of remote
monitoring by the healthcare provider, yet with no real-time
feedback component. The primary limitation and challenge
with passive monitoring systems is that they are prone to
gross false-positive detections because of the large amount of
time the devices must be active and the presence of activities
of daily living that must be discerned from the rehabilitation
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exercises. RehabBuddy addresses this by being an interactive
system instead of a passive listener as the patient performs the
exercises. Our system is started by the patient indicating they
are ready, and the system prompts the patient to begin pro-
gressing through the exercise poses while monitoring quality
and quantity of performance.

B. REHABILITATION REAL-TIME FEEDBACK
Iosa et al. published an extensive literature survey on themed-
ical use of inertial sensors in human movement analysis [37].
They identified a wealth of literature on patient monitoring
and assessment in post-processing, and concluded that ‘‘it
is conceivable that in the next few years, wearable inertial
devices will allow human movement analysis to go a step
further, from assessment to a combined approach including
assessment and rehabilitation at the same time.’’[45] Another
recent survey of wearables used for upper extremity reha-
bilitation includes some systems that provide feedback [38].
However, none targets musculoskeletal rehabilitation, which
requires patients to exercise targeted muscles by moving and
holding precise postures. Rather, the prior work discussed is
primarily targeting patients recovering from a stroke, where
gross movement is desired, and motivation is the main con-
cern. There is a void in the literature on effective methods for
real-time patient guidance and feedback for musculoskeletal
rehabilitation is an open research area.

Some emerging rehabilitation systems are based on visual
approaches for motion capture, such as using the XboxKinect
or a similar technology [39], [40]. While there is potential
with these approaches, there are limitations, which are over-
come using wearable inertial sensors. (i) The use of IMUs is
portable and not constrained to a specific location; patients
often perform their exercises at the workplace and on the
go. (ii) Items used in rehabilitation, such as elastic bands
or wheelchairs, are known to interfere with a vision-based
motion capture system. (iii) Also, some exercises utilize ele-
ments of the environment, such as rolling a ball on a wall
to strengthen the shoulder or tying a resistive band to a door
handle. It is difficult to guarantee that a vision-based motion
capture system such as a Kinect will have a clear view for
all types of exercises needed. RehabBuddy overcomes the
limitations of visual motion capture systemswith the freedom
and portability of body-worn IMUs without infrastructure
assistance.

Using wearables, a system named PT-Vis uses visualiza-
tion approaches for a feedback system for knee injury rehabil-
itation [41], [42]. Through trials with six knee injury patients,
they found great utility and promise in using wearable sen-
sors to provide visual and numeric feedback on joint angle
and progress to assist with knee rehab. The patients report
positive experiences on the usefulness of feedback. However,
PT-Vis uses a flex sensor to provide a single degree of free-
dom (DOF) measurement of the knee angle. Flex sensors
and similar approaches such as an optical linear encoder
(OLE) [43] would not work for a multi-joint structure with
more degrees of freedom like the shoulder. Also, with

RehabBuddy, we go beyond providing feedback only on
range of motion to also provide feedback on taking the correct
pose along the correct plane of motion. This requires sensing
in more degrees of freedom, which IMUs provide.

Using IMUs, the Rehabilitation Visualization Sys-
tem (RVS) utilizes two sensors to track knee exercises
[44], [45]. RVS provides patients with a demonstration of the
exercise and on a separate screen provides real-time feedback
on the range of motion for the knee and leg elevation. In a
randomized clinical trial, they found improved outcomes for
patients who used RVS, which is encouraging for our pro-
posed general solution. Interactive Virtual Telerehabilitation
(IVT) is a similar system that also uses IMUs, intended for
tele-rehabilitation, and is used to track knee exercises [46].
The third project in this category is the Automated Rehabilita-
tion System (ARS), which also focuses on knee exercises and
is intended for use in the clinic where the physical therapist is
training several patients at once. RVS, IVT, ARS, and a fourth
unnamed similar project [47] are all designed specifically for
the knee, with pre-defined exercises but with no ability to
tune them (except for ARS) or capability to define custom
exercises. They demonstrate the potential and effectiveness of
a wearable approach using IMUs.With RehabBuddy, the goal
is a general solution to be able tomount the sensor on any joint
and prescribe an arbitrary arc of motion. This provides the
ability to individualize physical therapy to a patient-centric
approach which is key for wide applicability and use.

IV. REHABBUDDY DESIGN
A. SENSING APPROACH
Each wearable sensor node is based on a set of orthogo-
nal inertial sensors, commonly referred to together as an
IMU. Pose estimation is done using a sensor fusion algo-
rithm, where the 3DOF orientation/pose of the device can
be tracked in inertial space. The sensor suite and algorithm
are commonly used in unmanned vehicle control systems
to provide stability and are often referred to as an Attitude
and Heading Reference System (AHRS). This pose estimator
is used to process the raw data (rotation rates, accelera-
tion, and magnetic field) and produce the orientation angles
in a world reference frame defined by the gravity vector
and magnetic north. The sensor fusion algorithm utilizes
knowledge of dynamics to propagate the orientation changes
based on the rate gyroscope data and fuses the propagated
estimate with the direct orientation estimate based on the
accelerometer and compass. This way, the AHRS can tolerate
shocks and vibration and maintain a stable estimate of the
device’s orientation. The RehabBuddy’s worn sensors mea-
sure and report their 3DOF orientation, typically referred to as
‘‘pose’’.We used off-the-shelf units, Shimmer3 IMUmade by
Shimmer Sensing.

B. IN THE CLINIC: EXERCISE CAPTURE AND TAGGING
Currently, a patient’s visit entails progress assessment and
training on a set of exercises that the patient is expected
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to carry out until the next visit. The prescription is highly
individualized and depends on the phase of healing, cur-
rent symptoms, and functional level. Unfortunately, as previ-
ously established, exercise adherence is often low, negatively
affecting patient outcomes.

RehabBuddy introduces a new step into the visit, where the
healthcare provider instruments the patient with the wearable
IMUs at the joint of interest. Then, the mobile application on
a tablet is placed in a training mode to allow the healthcare
provider to sequentially move the patient through the specific
exercise. The tablet user interface is designed to allow the
healthcare provider to indicate the beginning and end poses
and specify the number of repetitions to be performed each
day and hold times for each exercise. These parameters serve
as reminders for the patients when they are on their own and
are also used to build feedback visualizations.

The core measurement that each IMU along with its sensor
fusion algorithm produces is the orientation/pose estimate in
three-dimensional space (R3) in the world reference frame.
The pose can be represented in several ways, including a
Direction Cosine Matrix, Euler Angles, the Eigen Axis and
Angle representation, and Quaternions [48]. We note that
conversion between these forms of representing pose is a
direct calculation. The orientation of an object, like Rehab-
Buddy’s worn sensor units, is represented as a rotation in
R3 between the world reference frame and the object’s body
frame. In this discussion, we use Quaternions to represent
orientation. An orientation quaternion can be defined as:

q = qw + iqx + jqy + kqz (1)

q = cos
(
θ

2

)
+ iexsin

(
θ

2

)
+ jeysin

(
θ

2

)
+ kezsin

(
θ

2

)
(2)

θ = angle (q) = 2cos−1qw (3)

where q is an orientation quaternion defined by a rotation
around the axis e⇀ =

[
ex , ey, ez

]
by an angle θ . Equation (1)

relates the mathematically favorable Quaternion form for ori-
entation representation with the more intuitive representation
of orientation, the Eigen-axis (e⇀) and Angle (θ) representa-
tion (2), which represents a 3DOF rotation by a single rotation
about an arbitrary axis. The Eigen-axis represents the plane
of motion between two reference frames, while the angle
represents the range of motion (3).

Toward tracking exercises using a body-worn IMU,
we develop an exercise representation. To calculate the exer-
cise arc, we capture the starting and target poses and calculate
a difference quaternion that represents the ideal range and
plane of motion path that encapsulates the correct form of
the exercise:

eqexercise_arc = wq(t exercise definition start pose)−1

× wq(t exercise definition target pose) (4)

eqtarget = eqexercise_arc (5)

where wq(t exercise definition start pose) is the quaternion cap-
tured while the user is standing in start pose in the world

reference frame, and wq(t exercise definition target pose) is the
target quaternion captured while the user is standing in the
final end pose, both defined in the world reference frame.
We then find the difference quaternion eqexercise_arc which is
the difference quaternion between the two, which represents
the target pose relative to the start pose as the reference
frame. This effectively defines the exercise reference frame
and eqtarget as the target pose in that frame which represents
the ideal motion of the exercise in a single quaternion.

C. DETECTING PLANE OF MOTION, RANGE OF MOTION,
AND COUNTING REPETITIONS
Defining an exercise reference frame allows an account for
differences in start position from when the exercise is defined
to when it is utilized in tracking the motion during exercise
execution. When the user wishes to begin exercising, they
need to stand in the initial pose and indicate this on the app
to capture the exercise execution start pose:

wqstart = wq(t exercise execution start pose) (6)

eq(t) = wqstart−1wq(t) (7)

wq(t exercise execution start pose) is the quaternion that the user
sets as the start pose upon beginning to perform the exercise
which we define as the start pose wqstart. This new start pose
wqstartis used to transform the current pose of the sensor wq(t)
in the world reference frame to find eq(t), which represents
the orientation of the IMU in the exercise execution reference
frame. The set start position defined in (6) can be reset if the
patient shifts from that position and finds the measurements
to be incorrect. To change the frame of reference, the start
position (6) is overwritten with a recorded start position from
the patient’s new frame of reference. This is used to move the
exercise from the current world reference frame to the initial
world reference frame using (7). This places the target pose
and the original saved exercise arc into this new start pose’s
frame of reference, with result being the exercise is updated
to reflect the new frame of reference based on the start pose
update.

Next, we calculate the exercise feedback variables. Our
method is based on conceptualizing a triangle of quaternions
representing (i) the rotation from start pose to target pose
eqtarget, (ii) the rotation from the start pose to the current
sensor pose eq(t), and (iii) the rotation from the current pose
to the target pose eqerror(t) defined as:

eqerror(t) = eq(t)−1eqtarget (8)

θideal = angle(eqtarget) (9)

θcurrent(t) = angle(eq(t)) (10)

θerror(t) = angle(eqerror(t)) (11)

ROM error = θideal − θcurrent(t) (12)

POME = θcurrent(t)+ θerror(t)− θideal (13)

We calculate the relative pose between eq(t) and eqtarget to
find eqerror(t) which reflects the error between the patient’s
current pose and the exercise target pose which the patient
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should be in as defined in (8).Range and plane of motion
information is converted from quaternion representation to
the more intuitive angle-axis form. The angle of eq(t) in
angle-axis form (10) represents the total angle by which the
patient has moved from the start pose, without regard to
the axis of rotation. This is the range of motion (ROM) as
described by the system. Quaternion eqerror(t) is the error
in both range of motion and plane of motion relative to the
end pose. Translating the quaternion to angle-axis form and
taking the angle of eqerror(t) (11) represents the total angle by
which the range of motion differs from the target pose. It is
how many degrees the user must move before they reach the
target pose.

FIGURE 2. Illustration of angle measurements between the start pose,
current pose, and target pose. The three are used to estimate the plane of
motion error.

Fig. 2 illustrates the angle measurements used to estimate
plane of motion error. If the patient moves perfectly in the
correct arc of motion, the sum of θerror(t) and θcurrent(t) should
equal θideal, being the ROM from start to target expressed
in degrees. But θideal is the shortest path between the start
and target poses along the POM, so if the user is off-plane,
the path in degrees from start pose to current pose to end
pose will be a longer one than the optimal path. This can be
visualized as a triangle between the start pose, target pose and
current pose. By subtracting this ideal angle from the angle
of the total displacement in degrees, θcurrent plus θerror, the
difference gives a measure of the error in the plane of motion.
This value is reported back to the patient as the error by which
they must adjust their current pose to once again be correctly
following the ideal path ofmotion. This is defined as the plane
of motion error (POME) in (13).

In summary, with the IMU reporting current orientation at
a rate of approximately 50 Hz, the user’s progress from their
start pose to their end pose and back again can be detected,
as θcurrent(t) starts at zero at the start pose increases until it
matches that of θideal. This is programmed using a simple state
machine that tracks the user’s progress from start pose to end
pose to back to start pose.

D. THE REHABBUDDY APPLICATION
There are three components of the RehabBuddy application.
First it uses user poses calculated by an IMU and reported as a

quaternion over Bluetooth to create a defined exercise. Then,
that exercise is used to provide user feedback as they perform
repetitions of the defined exercise recorded by quaternions in
the same way. Third, the user’s pose as reported by the IMUs
during exercise is logged to a csv file so that this information
can undergo post-processing and the trials can be recreated
from the exercise, which is stored as a file during the exercise
definition process.

To create the exercise, first the healthcare provider names
the exercise and sets the number of repetitions to be per-
formed as well as the length of time the user should hold
the start and end poses while performing the exercise. Then,
the healthcare provider moves the user into the start pose
and presses the record start button, at which point the app
defines the start pose by taking the average of the quaternions
captured while the patient is holding their arm still in this start
pose. Next, the healthcare provider guides the user through
the motion of the exercise until their arm is in the stop
pose and uses RehabBuddy to record the stop pose in the
same way. The application then uses these two quaternions
to calculate the ‘‘exercise arc’’ quaternion encompassing the
trajectory of the exercise performed correctly as described
in Section IV.B. This ideal exercise quaternion is named and
saved with the exercise’s repetition and hold time parameters.
This saved exercise can now be selected from a menu and the
user can proceed to a page with a screen containing a line
graph of the range of motion path of the exercise and a bar
graph depicting the error in the plane of motion.

Fig. 3 shows this feedback system as it is currently
designed in the app. The panel in the middle tracks the user’s
sets and reps and has a countdown timer that helps the user
track how long they should hold at the end pose. To the right
of that is the guide path that shows the user their current
range of motion and guides them to move to their target,
the plateau at which they will then hold before following the
range of motion path back down to the start pose. Providing
reliable feedback about how long they have been holding
their poses will encourage users to hold those poses longer.
To the right of the guide path is the error bar, which shows the
user the magnitude of how far from the plane of motion their
current pose is, which helps them adjust their current pose
toward the plane of motion. Plane of motion is important as
some patients, in particular those who experience pain, may
perform exercises incorrectly to avoid pain by compensating
with another joint.

E. VERIFICATION WITH A CAMERA-BASED APPROACH
To validate the IMU sensor output, we used an RGB-D
camera as a reference sensor, namely the Intel RealSense.
The reported images and depthmeasurements were processed
by Skeleton Tracking software developed by Cubemos. This
method was utilized to provide us with a secondary reference.
The RGB-D camera frames are fed into the pose estimation
software. There, each joint in the frame is detected and
estimated in 3D space based on human pose inference and
reported depth and RGB measurements. The result is a 3D
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FIGURE 3. RehabBuddy tablet application showing exercise feedback.
Exercise feedback system is being tested in a clinical trial.

FIGURE 4. Demonstration of camera-based position reference using
skeleton inference and an RGB-D camera.

map of the user’s position as shown in Fig. 4. This skeleton,
composed of reported joint positions, can be transformed
into vectors describing the motion of the person at a given
frame. Selecting a pair of joints that are of relevance to the
exercise in question, a vector estimating the limb is formed.
For instance, the forearm is a vector that can be created
between thewrist and the elbow joints. By tracking this vector
over time, exercise execution performance can be recorded
in a way similar to that limb’s motion as tracked by an
IMU. To capture an exercise using the RGBD data, first the
shortest angle between the start vector and the end vector is
calculated, denoted as θstart−end . Second, each frame’s two
joints of interest are used to create a limb vector. Third, the
shortest angle between this limb vector and the start vector is
calculated, denoted as θstart−limb. Fourth, the shortest angle
between the limb vector and the end vector is calculated,
denoted as θlimb−end . The range of motion θROM is the angle
between the start and current moving vector (the limb vector)
θstart−limb. The plane of motion error θPOMerror is the sum of
the angles between the start and the current limb position and
that limb and the end position, minus the ideal angle between
start and end.

θROM = θstart−limb

θPOMerror = θstart−limb + θlimb−end − θstart−end

The ROM and POME calculated using this alternative
RGB-D method is graphed on top of the ROM and POME
calculated using the IMU data to get a second reference for
comparison. We found general agreement between the pose
estimates from the IMUs compared to the RGB-D skeleton
inference. Fig. 5 shows an example recording comparing the
two methods for five repetitions of an exercise.

FIGURE 5. Exercise execution performance comparing RGB-D and inertial
measurement units (IMU) estimates. The general agreement provides
confidence in the IMU-estimate accuracy.

V. EXPERIMENTS
The system was tested in a series of trials to demonstrate the
system’s ability to guide the user to perform exercises to the
correct range of motion and hold times while detecting when
they move out of plan. The subject is one of the co-authors,
a healthy individual, performing two common shoulder exer-
cises. The purpose for this technical paper is to demonstrate
the correctness of the approach and offer preliminary obser-
vations on the effect of the feedback on exercise performance.
As of this writing, a clinical trial with patients is underway
whose results will be published in a future clinical paper.

A. PROOF OF CONCEPT DEMONSTRATION OF THE
APPLICATION
Displayed in Fig. 6 is an arm elevated into abduction, a com-
mon exercise that is defined by the start pose with the arm
at the side and the correct end pose as shown in Fig. 6(b).
These are the two poses used to calculate eqexercise_arc as
described in Section IV.B. The exercise describes a forward
elevation of around 85 degrees. For demonstration purposes,
Fig. 6(c) and 6(d) also show deliberate incorrect execution
of the exercise for demonstration purposes, where the arm is
moved out of the desired plane of motion, too far forward,
and too far back.

As shown in Fig. 7, the feedback error bar reflects the dif-
ference between a correct intermediate pose and an incorrect
one and is used as feedback to guide the user to adjust to a
pose like that in Fig. 6(b).
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FIGURE 6. Arm abduction exercise, (a) start pose, (b) end pose, (c) arm
too far back, (d) arm too far forward.

FIGURE 7. Left: App feedback when correctly holding end pose. Right:
App feedback (with red bar plot) when arm is held too far back during
end pose.

For this demonstration trial, the user performs six repe-
titions of the exercise highlighted in Fig. 6. The user was
receiving feedback for the entirety of the test. The first two
repetitions were to be done as close to correct as possible,
the second two were done moving off-plane too far back,
and the final two were done off-plane too far forward. Fig. 8
shows the resulting ROM and POME plots. The differences
in resulting plane of motion errors graphed in red on the
bottom plot highlight the difference between a rep following
the correct plane of motion and either of the two types of
incorrect ones, despite each repetition achieving the same
range of motion.

B. TRIAL 1: ARM ABDUCTION
For trial 1, the quaternions were recorded from a trial cal-
culating the ROM and POME while the user followed the
exercise with the guide system providing feedback. Then
for comparison, the user repeated the exercise again without
being given this feedback. The exercise was the same as in
the demonstration, a forward flexion of around 85 degrees
defined in Fig. 6. Fig. 9 shows the four resulting graphs of
7 repetitions with and then without feedback. The exercise’s
range of motion is graphed in blue, and the error generated
when moving off the plane of motion is given in red.

Table 1 below shows a summary of the results for Trial 1.
For the range of motion graphed in Fig. 9, the average,

FIGURE 8. Graph of feedback for repetitions: first two were done
correctly, subject deliberately moved arm too far back for the second two
repetitions, and too far forward for the final two repetitions.

FIGURE 9. Range of Motion (ROM) and Plane of Motion Error (POME)
over time during an elevation exercise.

standard deviation, and the percent error are calculated at a
per-repetition basis based on the average range of motion
when the user is near the end pose for each of the seven
repetitions. This is achieved by taking all values above a cer-
tain threshold calculated by taking the average of the highest
90th percentile of the range of motion points recorded. When
the exercise was done without feedback, the average range of
motion was about 10% higher than it was when the exercise
was done with feedback. This shows that the 85-degree target
ROM was hard to hit and, in this case, the subject routinely
overestimated. In cases where over extension could lead to
re-tears, this feedback could be helpful.

For the plane of motion error graphed in red above, the
mean and standard deviation are calculated over the entirety
of the exercise. The ideal plane of motion error is zero
throughout the exercise. When the exercise was done with-
out feedback, the average plane of motion error was more
than double than it was with feedback. This shows that the
feedback system does help keep the user closer to the desired
exercise plane of motion by helping them gauge their current
success.
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Average hold time was calculated as well, based on the
length of time the user held each repetition’s end pose. In this
exercise, the outcomes were similar, although the user did
hold about a second longer when using the feedback system.

TABLE 1. Results for forward elevation exercise with and without
feedback. The feedback prevented over-extension, reduced range of
motion (ROM) error, and plane of motion error (POME).

C. TRIAL 2: DIAGONAL MOTION
The first trial was a linear exercise of arm abduction which
involves along a single plane of motion for the shoulder.
For trial 2, we demonstrate the systems capability of allow-
ing clinician use any plane of motion with diagonal pro-
prioceptive neuromuscular facilitation diagonal pattern of
flexion/abduction/external rotation. The motion resembles
drawing a sword. The exercise’s start and end poses are shown
in Fig. 10. Again, the quaternions were recorded from a trial
calculating the ROM and POME while the user followed the
exercise with the guide system providing feedback. Then for
comparison this was followed by the user performing the
exercise again without being given this feedback.

FIGURE 10. Sword draw exercise, (a) start pose, (b) end pose.

Fig. 11 shows the four resulting graphs of five repetitions
with and without feedback. Table 2 is a summary of the ROM
calculated in the same manner as described for trial 1. This
time the user was close to the desired ROM of 146 degrees
graphed in green with and without feedback. However, the
average hold time was about 50% longer when using the
system feedback. For the POME, without feedback, the user
had about twice as much average error as they did when they
were following the guided feedback reference.

D. TRIAL 3: KNEE FULL EXTENSION
The third trial demonstrates the systems capability of allow-
ing clinician use RehabBuddy on any limb by performing a

FIGURE 11. Range of Motion (ROM) and Plane of Motion Error (POME)
over time during a sword draw exercise.

TABLE 2. Results for sword draw exercise with and without feedback.
The feedback prevented over-extension, reduced range of motion (ROM)
error, and plane of motion error (POME).

leg exercise, more specifically a knee extension. The quater-
nions were recorded from a trial calculating the ROM and
POME with and without user feedback in the same proce-
dure as the first two trials. The results are like that of the
first two trials, with RehabBuddy lowering both ROM and
POME, preventing overextension and keeping the user on the
target POM.

TABLE 3. Results for full knee extension exercise with and without
feedback. The feedback prevented over-extension, reduced range of
motion (ROM) error, and plane of motion error (POME).

E. CLINICAL TRIAL PRELIMINARY RESULTS
RehabBuddy is undergoing a clinical trial. A future clini-
cal paper will outline the outcomes in terms of statistical
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FIGURE 12. Range of Motion (ROM) and Plane of Motion Error (POME)
over time during a full knee extension exercise.

significance by clinical standards. However, early results are
promising and evidence for RehabBuddy’s effect on overex-
tension and POME should continue to grow as more trials
are done. Presented below are early results from 21 subjects
participating in this study. Fig. 13 shows the average ROM,
and Fig. 14 shows the average POME.

The trial designed was given IRB approval on Febru-
ary 19th, 2019 and assigned IRB number 46074. Subjects
recruited to the trials are patients attending physical therapy
at a University of Kentucky outpatient physical therapy clinic.
Compared to Trials 1-3 presented earlier, three conditions are
compared here; with feedback, without feedback, and under
supervision of a physical therapist as a reference condition.
Also, instead of degrees, ROM is measured as a percent of
100, where 0% is the patient at start pose and 100% is the
patient at target pose. This is because each exercise had a
unique ROM, ranging from 30 degrees to 150 degrees.

FIGURE 13. Comparison of average patient Range of Motion (ROM) for
each exercise compared across all 3 testing conditions: with RehabBuddy
feedback, without feedback, and with feedback from a physical therapist
(PT) as a reference condition. The overall average is marked by an ‘x’.

Figure 13 shows the results of Percent ROM for all three
conditions. The average ROM is taken at 80% of the 100%

target where everything above this line is counted as being at
the hold position. RehabBuddy has the lowest average ROM
with a lower standard deviation, indicating RehabBuddy’s
ability to prevent overextension and improve consistency.
Under the without feedback condition, the ROM had the
highest (worst) average and the largest spread. With physical
therapist feedback, the average ROM was closest, however,
with a larger standard deviation compared to with Rehab-
Buddy feedback.

FIGURE 14. Comparison of average Plane of Motion Error (POME) across
each exercise trial compared across all 3 testing conditions versus the
ideal value of 0 degrees POME. The overall average is marked by an ‘x’.

The aggregate POME recorded during each exercise is
displayed for each condition in Fig 14. Here RehabBuddy
still has a tight cluster and the lowest average error, though
PT feedback is close, with both at around 18 degrees.

VI. CONCLUSION
The approach demonstrated above can be extended to be
versatile enough to allow a rehabilitation professional to
prescribe any limb motion from any posture. This approach
allows healthcare providers to individualize the exercise pre-
scription in response to pain and a variety of disabilities.
In addition, it removes the need for the standard written
illustration that can lead to confusion and non-adherence.
Also, the system potentially decreases the risk of further
injury by providing real-time feedback to notify the patient
that exercises are performed incorrectly in either quantity or
quality. The real-time positive feedback when the patient per-
forms the exercises correctly simulates an at-home ‘‘physical
therapist’’, promising to enhance patient confidence. Correct
exercise performance with feedback has improved pain and
outcomes [49] while empowering patient independence [10].
Finally, the system can provide an objective record of the
number of exercises performed correctly, frequency of perfor-
mance, and duration of exercise sessions which are valuable
as well compared to self-reporting.

The above trials indicate that IMUs can be used to effec-
tively interpret and display real-time user feedback. Providing
subjects with this feedback during exercise execution may
lead to more accurate ROM adherence, less POME as the
exercise is performed, and longer hold times. The system
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helped both subjects maintain proper form by providing feed-
back about the POME. When performing the exercises with
feedback, the subjects were more capable of correcting these
specific issues and offset the effort of simultaneously tracking
repetition count, hold time, so that accurately performing the
exercise could be the focus of the session.

While this paper focuses on the engineering of Rehab-
Buddy, a future paper will present clinical trial results. A trial
is currently underway to demonstrate this system in the clinic,
comparing three conditionswhere patients execute prescribed
exercises without feedback, with physical therapist feedback,
andwith RehabBuddy feedback. Preliminary results from this
trial are presented here.
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