224 research outputs found

    Ultrasound Indoor Positioning System Based on a Low-Power Wireless Sensor Network Providing Sub-Centimeter Accuracy

    Get PDF
    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm.Junta de AndalucĂ­a P08-TIC-0388

    A sensor data fusion-based locating method for large-scale metrology

    Get PDF
    The measurement of geometric and dimensional variations in the context of large-sized products is a complex operation. One of the most efficient ways to identify deviations is by comparing the nominal object with a digitalisation of the real object through a reverse engineering process. The accurate digitalisation of large geometric models usually requires multiple acquisitions from different acquiring locations; the acquired point clouds must then be correctly aligned in the 3D digital environment. The identification of the exact scanning location is crucial to correctly realign point clouds and generate an accurate 3D CAD model. To achieve this, an acquisition method based on the use of a handling device is proposed that enhances reverse engineering scanning systems and is able to self-locate. The present paper tackles the device’s locating problem by using sensor data fusion based on a Kalman filter. The method was firstsimulated in a MatLAB environment; a prototype was then designed and developed using low-cost hardware. Tests on the sensor data fusion have shown a locating accuracy better than that of each individual sensor. Despite the low-cost hardware, the results are encouraging and open to future improvements

    The Ant and the Trap: Evolution of Ant-Inspired Obstacle Avoidance in a Multi-Agent Robotic System

    Get PDF
    Interest in swarm robotics, particularly those modeled on biological systems, has been increasing with each passing year. We created the iAnt robot as a platform to test how well an ant-inspired robotic swarm could collect resources in an unmapped environment. Although swarm robotics is still a loosely defined field, one of the included hallmarks is multiple robots cooperating to complete a given task. The use of multiple robots means increased cost for research, scaling often linearly with the number of robots. We set out to create a system with the previously described capabilities while lowering the entry cost by building simple, cheap robots able to operate outside of a dedicated lab environment. Obstacle avoidance has long been a necessary component of robot systems. Avoiding collisions is also a difficult problem and has been studied for many years. As part of moving the iAnt further towards the real-world we needed a method of obstacle avoidance. Our hypothesis is that use of biological methods including evolution, stochastic movements and stygmergic trails into the iAnt Central Place Foraging Algorithm (CPFA) could result in robot behaviors suited to navigating obstacle-filled environments. The result is a modification of the CPFA to include pheromone trails, CPFA-Trails or CPFAT. This thesis first demonstrates the low-cost, simple and robust design of the physical iAnt robot. Secondly we will demonstrate the adaptability of the the system to evolve and succeed in an obstacle-laden environment

    Millimeter-Precision Laser Rangefinder Using a Low-Cost Photon Counter

    Get PDF
    In this book we successfully demonstrate a millimeter-precision laser rangefinder using a low-cost photon counter. An application-specific integrated circuit (ASIC) comprises timing circuitry and single-photon avalanche diodes (SPADs) as the photodetectors. For the timing circuitry, a novel binning architecture for sampling the received signal is proposed which mitigates non-idealities that are inherent to a system with SPADs and timing circuitry in one chip
    • 

    corecore