51 research outputs found

    COTS 3D NAND Flash: SEE Test Results and Challenges

    Get PDF
    Heavy-ion test data for 3D NAND flash memories is presented, along with a discussion of modern testing challenges and near-term plans for a broad survey of currently-available product lines

    Machine Learning Strategy for Predicting Process Variability Effect in Ultra-scaled GAA FET and 3D NAND Flash Devices

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์‹ ํ˜•์ฒ .๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ๊ณต์ • ๋ณ€๋™ ์š”์ธ์— ์˜ํ•œ ์˜ํ–ฅ์„ ์ดˆ์†Œํ˜• GAA FET ์†Œ์ž ๋ฐ 3์ฐจ์› NAND Flash Memory ์†Œ์ž์—์„œ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๊ณ„ ํ•™์Šต ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ณต์ • ๋ณ€๋™์„ฑ ์š”์ธ์— ์˜ํ•œ ์˜ํ–ฅ์€ ๋กœ์ง ์†Œ์ž์™€ ๋ฉ”๋ชจ๋ฆฌ ์†Œ์ž์—์„œ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์‹ ๋ขฐ์„ฑ ๋ฌธ์ œ์˜ ์›์ธ์œผ๋กœ ์ž‘์šฉํ•˜๋ฉฐ ํŠนํžˆ, ๋กœ์ง ๋ฐ ๋ฉ”๋ชจ๋ฆฌ ์†Œ์ž์˜ ์ˆ˜์œจ์„ ๊ฒฐ์ •ํ•˜๋Š” ๋งˆ์ง„์„ ๊ฐ์†Œ์‹œ์ผœ ์ •ํ™•ํ•œ ์˜ˆ์ธก ๋ฐ ์ œ์–ด๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ๊ธฐ๊ณ„ํ•™์Šต ์‹œ์Šคํ…œ์€ ํฌ๊ฒŒ ๋น„์ง€๋„์  ํ•™์Šต(=Unsupervised Learning), ์ง€๋„์  ํ•™์Šต(=Supervised Learning), ๊ฐ•ํ™” ํ•™์Šต(=Reinforcement Learning)์˜ 3๊ฐ€์ง€ ๊ณ„์—ด๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ์ด ์ค‘, ์†Œ์ž ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ๋ณ€๋™์„ฑ ์˜ํ–ฅ ์˜ˆ์ธก์„ ๋ชฉ์ ์œผ๋กœ ํ•˜๋Š” ๊ฒฝ์šฐ ์ •ํ•ด์ง„ ์ž…์ถœ๋ ฅ(Training data) ๊ฐ’์— ๊ทผ๊ฑฐํ•˜์—ฌ ํšŒ๊ท€๋ก ์  ๋ฐฉ๋ฒ•์œผ๋กœ ์˜ˆ์ธก ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š” ์ง€๋„์  ํ•™์Šต ๊ณ„์—ด์˜ ๊ธฐ๊ณ„ํ•™์Šต ์‹œ์Šคํ…œ์ด ๊ฐ€์žฅ ์ ํ•ฉํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. ์ง€๋„์  ํ•™์Šต ๊ณ„์—ด์˜ ๊ธฐ๊ณ„ํ•™์Šต ์‹œ์Šคํ…œ์€ ๋‹ค์–‘ํ•œ ๋ณ€๋™์„ฑ ์š”์†Œ์— ๋Œ€ํ•œ ๋‹ค๊ฐ๋„์˜ ์†Œ์ž ํŠน์„ฑ์„ ์˜ˆ์ธกํ•˜์—ฌ์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์ค‘ ๋…ธ๋“œ(=Multi-Node, MN)๋ฅผ ๊ฐ–๋Š” ๋ณต์žกํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜(e.g., Artificial neural networks)๊ธฐ๋ฐ˜์˜ ๋‹ค์ค‘ ์ž…๋ ฅ-๋‹ค์ค‘ ์ถœ๋ ฅ(=Multi-Input/Multi-Output, MIMO)์„ ํ†ตํ•ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ๊ธฐ๊ณ„ํ•™์Šต ์‹œ์Šคํ…œ์˜ ์ดˆ๊ธฐ ๋‹จ๊ณ„๋กœ ๋‹จ์ผ ํŠธ๋ Œ์ง€์Šคํ„ฐ์˜ ๋ณ€๋™์„ฑ ์š”์ธ์„ ์„ ํ–‰ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ดˆ์†Œํ˜• GAA (Gall-All-Around) VFET (Vertical FET) ๋””๋ฐ”์ด์Šค์˜ ํ”„๋กœ์„ธ์Šค ๋ณ€๋™ (PV)์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฃผ์š” ์ „๊ธฐ ๋งค๊ฐœ ๋ณ€์ˆ˜์˜ ๋ณ€๋™์„ ์˜ˆ์ธกํ•˜๋Š” ์ •ํ™•ํ•˜๊ณ  ํšจ์œจ์ ์ธ ๊ธฐ๊ณ„ ํ•™์Šต (ML) ๋ฐฉ์‹์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์ œ์•ˆ ๋œ ๊ธฐ๊ณ„ ํ•™์Šต ์ ‘๊ทผ๋ฒ•์€ 3D ํ™•๋ฅ ๋ก ์  TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ๋น„๊ตํ–ˆ์„ ๋•Œ ๋™์ผํ•œ ์ •ํ™•๋„์™€ ์šฐ์ˆ˜ํ•œ ํšจ์œจ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ธ๊ณต ์‹ ๊ฒฝ ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜ (ANN) ๊ธฐ๊ณ„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ MIMO (Multi-input-Multi-Output) ์˜ˆ์ธก์„ ๋งค์šฐ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ธฐ๊ณ„ ํ•™์Šต ์‹œ์Šคํ…œ์˜ ๋ฐœ์ „๋œ ๋‹จ๊ณ„๋กœ์จ, 3D NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ฃผ์š” ์ „๊ธฐ ๋งค๊ฐœ ๋ณ€์ˆ˜์˜ ๋ณ€ํ™”๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฐ€๋ณ€์„ฑ ์ธ์‹ ๊ธฐ๊ณ„ ํ•™์Šต ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ตœ์ดˆ๋กœ ์ธ๊ณต ์‹ ๊ฒฝ ๋„คํŠธ์›Œํฌ (ANN) ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜ ML ์‹œ์Šคํ…œ์˜ ์˜ˆ์ธก ์˜ํ–ฅ ์š”์ธ ํšจ๊ณผ์˜ ์ •ํ™•์„ฑ, ํšจ์œจ์„ฑ ๋ฐ ์ผ๋ฐ˜์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋‹ค์–‘ํ•œ ๋ณ€๋™ ์›์ธ์œผ๋กœ ์ธํ•œ ์žฅ์น˜์˜ ์ฃผ์š” ์ „๊ธฐ์  ํŠน์„ฑ ๋ณ€ํ™”๊ฐ€ ๋™์‹œ์— ํ†ตํ•ฉ์ ์œผ๋กœ ์˜ˆ์ธก๋œ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ 3D ํ™•๋ฅ ๋ก ์  TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ๋ฒค์น˜๋งˆํ‚นํ•˜์—ฌ 1 % ๋ฏธ๋งŒ์˜ ์˜ˆ์ธก ์˜ค๋ฅ˜์œจ๊ณผ 80 % ์ด์ƒ์˜ ๊ณ„์‚ฐ ๋น„์šฉ ์ ˆ๊ฐ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋˜ํ•œ, ์ธต์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋‹ค์–‘ํ•œ ๊ตฌ์กฐ ์กฐ๊ฑด์„ ๊ฐ–๋Š” 3 ์ฐจ์› ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ๋™์ž‘ ํŠน์„ฑ์„ ์˜ˆ์ธกํ•จ์œผ๋กœ์จ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ผ๋ฐ˜์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.This paper presents a Machine Learning (ML) approach for accurately predicting the effects of various process variation sources on ultra-scaled GAA FET devices and 3D NAND Flash Memories. The effects of process variability sources cause various reliability problems in logic and memory devices. In particular, accurate prediction and control is essential by reducing the margin that determine the yield of logic and memory devices. The machine learning system is largely divided into three classes: Unsupervised Learning, Supervised Learning, and Reinforcement Learning. Among them, a supervised learning series machine learning system, which uses a regression method to train predictive models based on input and output (Training data) values, is the most suitable method for analyzing device characteristics and predicting variability effects. Since the machine learning system of the supervised learning series needs to predict the characteristics of various devices of various variability sources, it is possible to use multiple input-multiple outputs (MIMO) based on complex algorithms (artificial neural networks) with multiple nodes (MN). In the early stages of the ML system, the variability sources of a single transistor is analyzed. We propose an accurate and efficient machine learning approach which predicts variations in key electrical parameters using process variations (PV) from ultra-scaled gate-all-around (GAA) vertical FET (VFET) devices. The proposed machine learning approach shows the same accuracy and good efficiency when compared to 3D stochastic Technology-CAD (TCAD) simulation. Artificial Neural Network Based (ANN) machine learning algorithm can perform Multi-input-Multi-Output prediction very effectively. As an advanced stage of the ML system, we propose a variability-aware ML approach that predicts variations in the key electrical parameters of 3D NAND Flash memories. For the first time, we have verified the accuracy, efficiency, and generality of the predictive impact factor effects of ANN algorithm-based ML systems. ANN-based ML algorithms can be very effective in MIMO prediction. Therefore, changes in the key electrical characteristics of the device caused by various sources of variability are simultaneously and integrally predicted. This algorithm benchmarks 3D stochastic TCAD simulation, showing a prediction error rate of less than 1% as well as a calculation cost reduction of over 80%. In addition, the generality of the algorithm is confirmed by predicting the operating characteristics of the 3D NAND Flash memory with various structural conditions as the number of layers increases.Chapter 1. Introduction 1 1.1. Emergence of Ultra-scaled 3D Device 1 1.2. Increasing Difficulty of Interpreting Variability Issues 5 1.3. Need for Accurate Variability Prediction 10 Chapter 2. Machine Learning System 15 2.1. Introduction 15 2.2. Analysis of Variability through TCAD Simulation 17 2.3. Structure of Machine Learning Algorithm 25 2.4. Summary 35 Chapter 3. Prediction of Process Variation Effect for Ultra-scaled GAA Vertical FET Devices 40 3.1. Introduction 40 3.2 Simulation Structure and Methodology 42 3.3. Results and Discussion 45 3.4. Summary 58 Chapter 4. Prediction of Process Variation Effect for 3D NAND Flash Memories 63 4.1. Introduction 63 4.2 Simulation Structure and Methodology 64 4.3. Results and Discussion 74 4.4. Summary 99 Chapter 5. Conclusion 104 Bibliography 106 Abstract in Korean 111Docto

    First Evidence of Temporary Read Errors in TLC 3D-NAND Flash Memories Exiting From an Idle State

    Get PDF
    This paper presents a new reliability threat that affects 3D-NAND Flash memories when a read operation is performed exiting from an idle state. In particular, a temporary large increase of the fail bits count is reported for the layers read as first after a sequence of program/verify and a idle retention phase. The phenomenon, hereafter called Temporary Read Errors (TRE), is not due to a permanent change of cell threshold voltage between the program verify and the following read operations, but to its transient instability occurring during the idle phase and the first read operations performed on a block. The experimental analysis has been performed on off-the-shelf gigabit-array products to characterize the dependence on the memory operating conditions. The TRE is found to be strongly dependent on the page read, on the read temperature and on the time delay between the first and the second read after the idle state. To emphasize its negative impact at system-level, we have evaluated the induced performance drop on Solid State Drives architectures

    Modelizaciรณn numรฉrica de la pรฉrdida de carga inducida por radiaciรณn en celdas CMOS de puerta flotante

    Get PDF
    Mediante un modelo numรฉrico desarrollado recientemente y basado en principios fรญsicos, se estudia la respuesta a la radiaciรณn de celdas de compuerta flotante programadas/borradas. El rol que juega la captura de carga en los รณxidos en el desplazamiento total de la tensiรณn umbral con la dosis es debidamente evaluado a travรฉs de la variaciรณn de la tasa de captura de los huecos generados por radiaciรณn. Se considera un modelo analรญtico simplificado y se discuten sus limitaciones.The radiation response of programmed/erased floating gate cells is studied by numerical simulations through a recently developed physics-based numerical model. The role played by oxide trapped charge in the overall threshold voltage shift with dose is properly evaluated by varying the capture rate of radiation-generated holes. A simplified analytical model is considered, and its limitations are discussed.Fil: Sambuco Salomone, Lucas Ignacio. Universidad de Buenos Aires; ArgentinaFil: Garcรญa Inza, Mariano Andrรฉs. Consejo Nacional de Investigaciones Cientรญficas y Tรฉcnicas. Oficina de Coordinaciรณn Administrativa Houssay. Instituto de Tecnologรญas y Ciencias de la Ingenierรญa "Hilario Fernรกndez Long". Universidad de Buenos Aires. Facultad de Ingenierรญa. Instituto de Tecnologรญas y Ciencias de la Ingenierรญa "Hilario Fernรกndez Long"; ArgentinaFil: Carbonetto, Sebastiรกn Horacio. Consejo Nacional de Investigaciones Cientรญficas y Tรฉcnicas. Oficina de Coordinaciรณn Administrativa Houssay. Instituto de Tecnologรญas y Ciencias de la Ingenierรญa "Hilario Fernรกndez Long". Universidad de Buenos Aires. Facultad de Ingenierรญa. Instituto de Tecnologรญas y Ciencias de la Ingenierรญa "Hilario Fernรกndez Long"; ArgentinaFil: Faigon, Adriรกn Nรฉstor. Consejo Nacional de Investigaciones Cientรญficas y Tรฉcnicas. Oficina de Coordinaciรณn Administrativa Houssay. Instituto de Tecnologรญas y Ciencias de la Ingenierรญa "Hilario Fernรกndez Long". Universidad de Buenos Aires. Facultad de Ingenierรญa. Instituto de Tecnologรญas y Ciencias de la Ingenierรญa "Hilario Fernรกndez Long"; Argentin

    3D ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์—์„œ์˜ ์ „์ž ๋ถ„ํฌ๋ฅผ ๊ณ ๋ คํ•œ ํ”„๋กœ๊ทธ๋žจ ๋™์ž‘ ๋ชจ๋ธ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ์‹ ํ˜•์ฒ .In this paper, a new compact model for program operation of 3D NAND flash memory was presented. Based on the understanding of the charge trapping mechanism, an analysis of the electron distribution was presented. A modified 1-D Poisson equation was proposed that shows better accuracy than the existing model by reflecting the spatial distribution of electrons trapped by the program operation. Under various conditions of program voltage and program time, the threshold voltage shift was extracted by TCAD (Technology Computer-Aided Design) simulation, and we used this data to validate our new model. It also provides validity of the model for program operation in 3D NAND flash memory along with various TCAD analysis data.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” 3D NAND Flash memory์—์„œ ๋น„ํŠธ ๋ผ์ธ (BL) ์ŠคํŠธ๋ง ๋ ˆ๋ฒจ์—์„œ 3D ์ „ํ•˜ ํŠธ๋žฉ NAND ํ”Œ๋ž˜์‹œ์˜ ํ”„๋กœ๊ทธ๋žจ ๊ณผ๋„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„์œ„ํ•œ ์ปดํŒฉํŠธ ๋ชจ๋ธ์„ ์†Œ๊ฐœํ–ˆ๋‹ค. ์ฒซ์งธ, ํŠธ๋žฉ ๋œ ์ „ํ•˜ ๋งค๊ฐœ ๋ณ€์ˆ˜์™€ ์ˆ˜์ • ๋œ 1D ํฌ์•„์†ก ๋ฐฉ์ •์‹์—์„œ ์–ป์€ ์†”๋ฃจ์…˜์„ ๋‹จ์œ„ ์…€ ๋ชจ๋ธ์— ์ ์šฉํ•จ์œผ๋กœ์„œ ๋ชจ๋ธ์ด ๊ธฐ์กด ๋ชจ๋ธ์— ๋น„ํ•ด ๋” ๋‚˜์€ ์ •ํ™•๋„๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ๊ฒƒ์„ ์ œ์‹œํ•˜์˜€๋‹ค. Technology Computer-Aided Design (TCAD) ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ, ์‹ค์ œ ํ”„๋กœ๊ทธ๋žจ ๋™์ž‘์— ์˜ํ•˜์—ฌ ํŠธ๋žฉ๋œ ์ „์ž๋Š” nitride ์ธต์—์„œ๋„ tunneling oxide์— ๊ฐ€๊นŒ์ด ๋ถ„ํฌํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ์ „์ž์˜ ๋ถ„ํฌ๋ฅผ ๋ชจ๋ธ์— ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์กด ์—ฐ๊ตฌ์™€ ๋‹ฌ๋ฆฌ nitride ๋‚ด ๋ฅผ 2๊ฐœ์˜ ๊ตฌ๊ฐ„์œผ๋กœ ๋‚˜๋ˆ„์—ˆ๋‹ค. ํ•œ์ชฝ ๊ตฌ๊ฐ„์—๋งŒ trap์ด ์กด์žฌํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€๊ณ  ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํฌ์•„์†ก ๋ฐฉ์ •์‹์„ ์ˆ˜์ •ํ•˜์˜€๋‹ค. ๋‘˜์งธ, nitride์˜ ๊ฒฝ๊ณ„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ƒˆ๋กœ ์„ค์ •ํ•˜์˜€๊ณ , ์ด๋ฅผ ํ†ตํ•ด TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ์— ํšจ๊ณผ์ ์œผ๋กœ ํ”ผํŒ… ํ•˜ ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๋ชจ๋“  ์ „์••์— ๋Œ€ํ•˜์—ฌ ํ”„๋กœ๊ทธ๋žจ ๋™์ž‘์— ๋Œ€ํ•œ threshold voltage ๋ณ€ํ™”๊ฐ€ ์ •ํ™•ํ•˜๊ฒŒ ์˜ˆ์ธก๋˜์—ˆ๋‹ค. ์…‹์งธ, ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€ํ™”๋˜๋Š” ์ „์ž์˜ ๋ถ„ํฌ๊ฐ€ ๊ณ ๋ ค๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ๋†’์€ ์ „๊ณ„์—์„œ๋Š” ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์ „์ž ๋ถ„ํฌ์˜ ๋ณ€ํ™”๊ฐ€ ํฌ๊ธฐ ๋•Œ๋ฌธ์— ๋†’์€ ์ „์••์ผ์ˆ˜๋ก ์ „์ž ๋ถ„ํฌ์˜ ๋ณ€ํ™”๋ฅผ ๋” ์ •ํ™•ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์–ด์•ผํ•œ๋‹ค. ์ผ์ • ์‹œ๊ฐ„ ๊ตฌ๊ฐ„๋งˆ๋‹ค threshold voltage ๋ณ€ํ™”๋Ÿ‰์— ๋Œ€ํ•˜์—ฌ ํ”ผํŒ…ํ•œ ๊ฒฐ๊ณผ, ์ „์ž์˜ ๋ถ„ํฌ๊ฐ€ ๋„“์–ด์ง€๋Š” ๊ฒƒ์„ ๋ชจ๋ธ์ด ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ด ์ œ์‹œ๋˜์—ˆ๋‹ค.1. Introduction . 1 2. Simulation Setup 3 3. Program operation in 3D NAND. 6 3.1. Charge Trapping Mechanism 6 3.2. Parameters that affects the distribution of electrons. 7 3.3. Characteristics of ISPP 8 4. Electrostatic Solution. 11 5. Transient Dynamics of Program Operation . 19 6. Results and Discussion. 22 6.1. Validation of models with fixed electron charge 22 6.2. Model verification using transient program dynamics . 23 6.3. Modeling results . 27 7. Conclusion 33 8. Reference 35 9. ์ดˆ๋ก 38Maste

    Time Dynamics of the Down-Coupling Phenomenon in 3-D NAND Strings

    Get PDF
    We present a detailed analysis of the time dynamics of the down-coupling phenomenon (DCP) in 3-D NAND Flash memory strings. The transient time dynamics of the channel potential following the wordline (WL) bias transition fromthe pass voltage to zero is studied via numerical simulation, highlighting the existence of three temporal regimes controlledby different physical processes: electron emission from traps, hole injection from the string edges followed by capture, and propagation along the string. The impact of these processes is separately studied, followed by an analysis of the dependence of the DCP recovery time on architectural parameters. Results highlight the relevant physics and can be used as a design guideline for NAND strings with reduced sensitivity to the DCP
    • โ€ฆ
    corecore