1,128 research outputs found

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods

    Human Perambulation as a Self Calibrating Biometric

    No full text
    This paper introduces a novel method of single camera gait reconstruction which is independent of the walking direction and of the camera parameters. Recognizing people by gait has unique advantages with respect to other biometric techniques: the identification of the walking subject is completely unobtrusive and the identification can be achieved at distance. Recently much research has been conducted into the recognition of frontoparallel gait. The proposed method relies on the very nature of walking to achieve the independence from walking direction. Three major assumptions have been done: human gait is cyclic; the distances between the bone joints are invariant during the execution of the movement; and the articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The method has been tested on several subjects walking freely along six different directions in a small enclosed area. The results show that recognition can be achieved without calibration and without dependence on view direction. The obtained results are particularly encouraging for future system development and for its application in real surveillance scenarios

    Sign Language Translation Approach to Sinhalese Language

    Get PDF
    Sign language is used for communication between deafpersons while Sinhalese language is used by normal hearingpersons whose first language is Sinhalese in Sri Lanka. Thisresearch focuses on an approach for a real-time translation fromSri Lankan sign language to Sinhalese language which willbridge the communication gap between deaf and ordinarycommunities. This study further focuses on a novel methodologyof enabling distance communication between deaf and ordinarypersons. Once the sign based gestures captured by depth sensingcamera, series of feature extraction techniques will be used toidentify essential attributes in gesture frame. Identified featureframe will be compared with pre-trained gesture dictionarybased on classification techniques, in order to identify gesturebased word. Detected word will be displayed for ordinary user orcould be used for communication between two individuals in twodifferent geographic locations. Proposed prototype has providedan overall recognition rate of 94.2% for a dictionary of fifteensigns in Sri Lankan sign language

    Real Time Hand Movement Trajectory Tracking for Enhancing Dementia Screening in Ageing Deaf Signers of British Sign Language

    Get PDF
    Real time hand movement trajectory tracking based on machine learning approaches may assist the early identification of dementia in ageing Deaf individuals who are users of British Sign Language (BSL), since there are few clinicians with appropriate communication skills, and a shortage of sign language interpreters. Unlike other computer vision systems used in dementia stage assessment such as RGB-D video with the aid of depth camera, activities of daily living (ADL) monitored by information and communication technologies (ICT) facilities, or X-Ray, computed tomography (CT), and magnetic resonance imaging (MRI) images fed to machine learning algorithms, the system developed here focuses on analysing the sign language space envelope(sign trajectories/depth/speed) and facial expression of deaf individuals, using normal 2D videos. In this work, we are interested in providing a more accurate segmentation of objects of interest in relation to the background, so that accurate real-time hand trajectories (path of the trajectory and speed) can be achieved. The paper presents and evaluates two types of hand movement trajectory models. In the first model, the hand sign trajectory is tracked by implementing skin colour segmentation. In the second model, the hand sign trajectory is tracked using Part Afinity Fields based on the OpenPose Skeleton Model [1, 2]. Comparisons of results between the two different models demonstrate that the second model provides enhanced improvements in terms of tracking accuracy and robustness of tracking. The pattern differences in facial and trajectory motion data achieved from the presented models will be beneficial not only for screening of deaf individuals for dementia, but also for assessment of other acquired neurological impairments associated with motor changes, for example, stroke and Parkinsons disease

    ChaLearn Looking at People Challenge 2014: Dataset and Results

    Get PDF
    This paper summarizes the ChaLearn Looking at People 2014 challenge data and the results obtained by the participants. The competition was split into three independent tracks: human pose recovery from RGB data, action and interaction recognition from RGB data sequences, and multi-modal gesture recognition from RGB-Depth sequences. For all the tracks, the goal was to perform user-independent recognition in sequences of continuous images using the overlapping Jaccard index as the evaluation measure. In this edition of the ChaLearn challenge, two large novel data sets were made publicly available and the Microsoft Codalab platform were used to manage the competition. Outstanding results were achieved in the three challenge tracks, with accuracy results of 0.20, 0.50, and 0.85 for pose recovery, action/interaction recognition, and multi-modal gesture recognition, respectively

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods

    Emotion Recognition from Skeletal Movements

    Get PDF
    Automatic emotion recognition has become an important trend in many artificial intelligence (AI) based applications and has been widely explored in recent years. Most research in the area of automated emotion recognition is based on facial expressions or speech signals. Although the influence of the emotional state on body movements is undeniable, this source of expression is still underestimated in automatic analysis. In this paper, we propose a novel method to recognise seven basic emotional states-namely, happy, sad, surprise, fear, anger, disgust and neutral-utilising body movement. We analyse motion capture data under seven basic emotional states recorded by professional actor/actresses using Microsoft Kinect v2 sensor. We propose a new representation of affective movements, based on sequences of body joints. The proposed algorithm creates a sequential model of affective movement based on low level features inferred from the spacial location and the orientation of joints within the tracked skeleton. In the experimental results, different deep neural networks were employed and compared to recognise the emotional state of the acquired motion sequences. The experimental results conducted in this work show the feasibility of automatic emotion recognition from sequences of body gestures, which can serve as an additional source of information in multimodal emotion recognition

    A preliminary study of micro-gestures:dataset collection and analysis with multi-modal dynamic networks

    Get PDF
    Abstract. Micro-gestures (MG) are gestures that people performed spontaneously during communication situations. A preliminary exploration of Micro-Gesture is made in this thesis. By collecting recorded sequences of body gestures in a spontaneous state during games, a MG dataset is built through Kinect V2. A novel term ‘micro-gesture’ is proposed by analyzing the properties of MG dataset. Implementations of two sets of neural network architectures are achieved for micro-gestures segmentation and recognition task, which are the DBN-HMM model and the 3DCNN-HMM model for skeleton data and RGB-D data respectively. We also explore a method for extracting neutral states used in the HMM structure by detecting the activity level of the gesture sequences. The method is simple to derive and implement, and proved to be effective. The DBN-HMM and 3DCNN-HMM architectures are evaluated on MG dataset and optimized for the properties of micro-gestures. Experimental results show that we are able to achieve micro-gesture segmentation and recognition with satisfied accuracy with these two models. The work we have done about the micro-gestures in this thesis also explores a new research path for gesture recognition. Therefore, we believe that our work could be widely used as a baseline for future research on micro-gestures

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods
    corecore