67,000 research outputs found

    3D curves reconstruction from multiple images

    Get PDF
    In this paper, we propose a new approach for reconstructing 3D curves from a sequence of 2D images taken by uncalibrated cameras. A curve in 3D space is represented by a sequence of 3D points sampled along the curve, and the 3D points are reconstructed by minimizing the distances from their projections to the measured 2D curves on different images (i.e., 2D curve reprojection error). The minimization problem is solved by an iterative algorithm which is guaranteed to converge to a (local) minimum of the 2D reprojection error. Without requiring calibrated cameras or additional point features, our method can reconstruct multiple 3D curves simultaneously from multiple images and it readily handles images with missing and/or partially occluded curves. © 2010 IEEE.published_or_final_versionThe 2010 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, Australia, 1-3 December 2010. In Proceedings of DICTA, 2010, p. 462-46

    Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation

    Get PDF
    Bulk body motion may randomly occur during PET acquisitions introducing blurring, attenuation-emission mismatches and, in dynamic PET, discontinuities in the measured time activity curves between consecutive frames. Meanwhile, dynamic PET scans are longer, thus increasing the probability of bulk motion. In this study, we propose a streamlined 3D PET motion-compensated image reconstruction (3D-MCIR) framework, capable of robustly deconvolving intra-frame motion from a static or dynamic 3D sinogram. The presented 3D-MCIR methods need not partition the data into multiple gates, such as 4D MCIR algorithms, or access list-mode (LM) data, such as LM MCIR methods, both associated with increased computation or memory resources. The proposed algorithms can support compensation for any periodic and non-periodic motion, such as cardio-respiratory or bulk motion, the latter including rolling, twisting or drifting. Inspired from the widely adopted point-spread function (PSF) deconvolution 3D PET reconstruction techniques, here we introduce an image-based 3D generalized motion deconvolution method within the standard 3D maximum-likelihood expectation-maximization (ML-EM) reconstruction framework. In particular, we initially integrate a motion blurring kernel, accounting for every tracked motion within a frame, as an additional MLEM modeling component in the image space (integrated 3D-MCIR). Subsequently, we replaced the integrated model component with a nested iterative Richardson-Lucy (RL) image-based deconvolution method to accelerate the MLEM algorithm convergence rate (RL-3D-MCIR). The final method was evaluated with realistic simulations of whole-body dynamic PET data employing the XCAT phantom and real human bulk motion profiles, the latter estimated from volunteer dynamic MRI scans. In addition, metabolic uptake rate Ki parametric images were generated with the standard Patlak method. Our results demonstrate significant improvement in contrast-to-noise ratio (CNR) and noise-bias performance in both dynamic and parametric images. The proposed nested RL-3D-MCIR method is implemented on the Software for Tomographic Image Reconstruction (STIR) open-source platform and is scheduled for public release

    From Multiview Image Curves to 3D Drawings

    Full text link
    Reconstructing 3D scenes from multiple views has made impressive strides in recent years, chiefly by correlating isolated feature points, intensity patterns, or curvilinear structures. In the general setting - without controlled acquisition, abundant texture, curves and surfaces following specific models or limiting scene complexity - most methods produce unorganized point clouds, meshes, or voxel representations, with some exceptions producing unorganized clouds of 3D curve fragments. Ideally, many applications require structured representations of curves, surfaces and their spatial relationships. This paper presents a step in this direction by formulating an approach that combines 2D image curves into a collection of 3D curves, with topological connectivity between them represented as a 3D graph. This results in a 3D drawing, which is complementary to surface representations in the same sense as a 3D scaffold complements a tent taut over it. We evaluate our results against truth on synthetic and real datasets.Comment: Expanded ECCV 2016 version with tweaked figures and including an overview of the supplementary material available at multiview-3d-drawing.sourceforge.ne

    Multi-view passive 3D face acquisition device

    Get PDF
    Approaches to acquisition of 3D facial data include laser scanners, structured light devices and (passive) stereo vision. The laser scanner and structured light methods allow accurate reconstruction of the 3D surface but strong light is projected on the faces of subjects. Passive stereo vision based approaches do not require strong light to be projected, however, it is hard to obtain comparable accuracy and robustness of the surface reconstruction. In this paper a passive multiple view approach using 5 cameras in a ’+’ configuration is proposed that significantly increases robustness and accuracy relative to traditional stereo vision approaches. The normalised cross correlations of all 5 views are combined using direct projection of points instead of the traditionally used rectified images. Also, errors caused by different perspective deformation of the surface in the different views are reduced by using an iterative reconstruction technique where the depth estimation of the previous iteration is used to warp the windows of the normalised cross correlation for the different views

    3D Face Reconstruction from Light Field Images: A Model-free Approach

    Full text link
    Reconstructing 3D facial geometry from a single RGB image has recently instigated wide research interest. However, it is still an ill-posed problem and most methods rely on prior models hence undermining the accuracy of the recovered 3D faces. In this paper, we exploit the Epipolar Plane Images (EPI) obtained from light field cameras and learn CNN models that recover horizontal and vertical 3D facial curves from the respective horizontal and vertical EPIs. Our 3D face reconstruction network (FaceLFnet) comprises a densely connected architecture to learn accurate 3D facial curves from low resolution EPIs. To train the proposed FaceLFnets from scratch, we synthesize photo-realistic light field images from 3D facial scans. The curve by curve 3D face estimation approach allows the networks to learn from only 14K images of 80 identities, which still comprises over 11 Million EPIs/curves. The estimated facial curves are merged into a single pointcloud to which a surface is fitted to get the final 3D face. Our method is model-free, requires only a few training samples to learn FaceLFnet and can reconstruct 3D faces with high accuracy from single light field images under varying poses, expressions and lighting conditions. Comparison on the BU-3DFE and BU-4DFE datasets show that our method reduces reconstruction errors by over 20% compared to recent state of the art

    A model-based approach to recovering the structure of a plant from images

    Full text link
    We present a method for recovering the structure of a plant directly from a small set of widely-spaced images. Structure recovery is more complex than shape estimation, but the resulting structure estimate is more closely related to phenotype than is a 3D geometric model. The method we propose is applicable to a wide variety of plants, but is demonstrated on wheat. Wheat is made up of thin elements with few identifiable features, making it difficult to analyse using standard feature matching techniques. Our method instead analyses the structure of plants using only their silhouettes. We employ a generate-and-test method, using a database of manually modelled leaves and a model for their composition to synthesise plausible plant structures which are evaluated against the images. The method is capable of efficiently recovering accurate estimates of plant structure in a wide variety of imaging scenarios, with no manual intervention

    A Framework for SAR-Optical Stereogrammetry over Urban Areas

    Get PDF
    Currently, numerous remote sensing satellites provide a huge volume of diverse earth observation data. As these data show different features regarding resolution, accuracy, coverage, and spectral imaging ability, fusion techniques are required to integrate the different properties of each sensor and produce useful information. For example, synthetic aperture radar (SAR) data can be fused with optical imagery to produce 3D information using stereogrammetric methods. The main focus of this study is to investigate the possibility of applying a stereogrammetry pipeline to very-high-resolution (VHR) SAR-optical image pairs. For this purpose, the applicability of semi-global matching is investigated in this unconventional multi-sensor setting. To support the image matching by reducing the search space and accelerating the identification of correct, reliable matches, the possibility of establishing an epipolarity constraint for VHR SAR-optical image pairs is investigated as well. In addition, it is shown that the absolute geolocation accuracy of VHR optical imagery with respect to VHR SAR imagery such as provided by TerraSAR-X can be improved by a multi-sensor block adjustment formulation based on rational polynomial coefficients. Finally, the feasibility of generating point clouds with a median accuracy of about 2m is demonstrated and confirms the potential of 3D reconstruction from SAR-optical image pairs over urban areas.Comment: This is the pre-acceptance version, to read the final version, please go to ISPRS Journal of Photogrammetry and Remote Sensing on ScienceDirec
    • 

    corecore