2,922 research outputs found

    Sharing 3D city models: an overview

    Get PDF
    This study describes the computing methods now available to enable the sharing of three-dimensional (3D) data between various stakeholders for the purposes of city modeling and considers the need for a seamless approach for sharing, transmitting, and maintaining 3D city models. The study offers an overview of the technologies and the issues related to remote access, collaboration, and version control. It builds upon previous research on 3D city models where issues were raised on utilizing, updating and maintaining 3D city models and providing access to various stakeholders. This paper will also describe a case study which is currently analyzing the remote access requirements for a sustainable computer model of NewcastleGateshead in England. Options available will be examined and areas of future research will be discussed

    Prototyping Information Visualization in 3D City Models: a Model-based Approach

    Full text link
    When creating 3D city models, selecting relevant visualization techniques is a particularly difficult user interface design task. A first obstacle is that current geodata-oriented tools, e.g. ArcGIS, have limited 3D capabilities and limited sets of visualization techniques. Another important obstacle is the lack of unified description of information visualization techniques for 3D city models. If many techniques have been devised for different types of data or information (wind flows, air quality fields, historic or legal texts, etc.) they are generally described in articles, and not really formalized. In this paper we address the problem of visualizing information in (rich) 3D city models by presenting a model-based approach for the rapid prototyping of visualization techniques. We propose to represent visualization techniques as the composition of graph transformations. We show that these transformations can be specified with SPARQL construction operations over RDF graphs. These specifications can then be used in a prototype generator to produce 3D scenes that contain the 3D city model augmented with data represented using the desired technique.Comment: Proc. of 3DGeoInfo 2014 Conference, Dubai, November 201

    Reconstructing historical 3D city models

    Get PDF
    Historical maps are increasingly used for studying how cities have evolved over time, and their applications are multiple: understanding past outbreaks, urban morphology, economy, etc. However, these maps are usually scans of older paper maps, and they are therefore restricted to two dimensions. We investigate in this paper how historical maps can be ‘augmented’ with the third dimension so that buildings have heights, volumes, and roof shapes. The resulting 3D city models, also known as digital twins, have several benefits in practice since it is known that some spatial analyses are only possible in 3D: visibility studies, wind flow analyses, population estimation, etc. At this moment, reconstructing historical models is (mostly) a manual and very time-consuming operation, and it is plagued by inaccuracies in the 2D maps. In this paper, we present a new methodology to reconstruct 3D buildings from historical maps, we developed it with the aim of automating the process as much as possible, and we discuss the engineering decisions we made when implementing it. Our methodology uses extra datasets for height extraction, reuses the 3D models of buildings that still exist, and infers other buildings with procedural modelling. We have implemented and tested our methodology with real-world historical maps of European cities for different times between 1700 and 2000

    3D City Models and urban information: Current issues and perspectives

    Get PDF
    Considering sustainable development of cities implies investigating cities in a holistic way taking into account many interrelations between various urban or environmental issues. 3D city models are increasingly used in different cities and countries for an intended wide range of applications beyond mere visualization. Could these 3D City models be used to integrate urban and environmental knowledge? How could they be improved to fulfill such role? We believe that enriching the semantics of current 3D city models, would extend their functionality and usability; therefore, they could serve as integration platforms of the knowledge related to urban and environmental issues allowing a huge and significant improvement of city sustainable management and development. But which elements need to be added to 3D city models? What are the most efficient ways to realize such improvement / enrichment? How to evaluate the usability of these improved 3D city models? These were the questions tackled by the COST Action TU0801 “Semantic enrichment of 3D city models for sustainable urban development”. This book gathers various materials developed all along the four year of the Action and the significant breakthroughs

    Citizen participation in city planning and public decision assisted with ontologies and 3D semantics

    Get PDF
    Sustainable development of cities implies investigating cities in a holistic way taking into account many interrelations between various urban and environmental problems. Urban models are created with the objective of helping city planners and stakeholders in their decision-making processes. Models which represent in 3 dimensions the geometric elements of a city are called 3D city models. These models are increasingly used in different cities and countries for an intended wide range of applications beyond mere visualization. Such uses are made possible by adding semantics to the geometrical aspects, leading to semantically enriched 3D city models. This can be achieved by using the primary data and ontologies to achieve the semantic enrichment of 3D city models as well as their interoperability with other urban models. Objective of the paper is to present how semantically enriched 3D city models and ontologies may help in sustainable landscape city planning

    Automated texture mapping CityJSON 3D city models from oblique and nadir aerial imagery

    Get PDF
    The incorporation of detailed textures in 3D city models is crucial for enhancing their realism, as it adds depth and authenticity to the visual representation, thereby closely mimicking the surfaces and materials found in actual urban environments. Existing 3D city models can be enriched with energy-related roof and façade details, such as the material type (such as windows, green façades, bricks) and sunlight reflectance which can be derived from texture information. However, a common limitation of these models is their lack of very high resolution textures, which which reduces their realism and detail. Manually mapping textures onto each surface of a building is an exceptionally time-consuming and labor-intensive process, making it unfeasible for large-scale applications involving thousands of buildings. Therefore, an automated method is essential for texture mapping of 3D city models from aerial imagery. In this paper, we present CityJSON texture mapper – a python-based software tool for automated texture mapping of CityJSON-based 3D city models from oblique and nadir aerial imagery. Experimental results demonstrate the effectiveness of our approach in generating high-quality textured 3D city models, showcasing the potential for broader applications in geospatial analysis and decision-making. This research contributes to the ongoing efforts in enhancing the realism and usability of CityJSON-based 3D city models by enhancing them with their real textures from oblique aerial imagery. Texture mapped model can be explored at https://bit.ly/textured3dbag
    corecore