14,997 research outputs found

    Gesture Based Control of Semi-Autonomous Vehicles

    Get PDF
    The objective of this investigation is to explore the use of hand gestures to control semi-autonomous vehicles, such as quadcopters, using realistic, physics based simulations. This involves identifying natural gestures to control basic functions of a vehicle, such as maneuvering and onboard equipment operation, and building simulations using the Unity game engine to investigate preferred use of those gestures. In addition to creating a realistic operating experience, human factors associated with limitations on physical hand motion and information management are also considered in the simulation development process. Testing with external participants using a recreational quadcopter simulation built in Unity was conducted to assess the suitability of the simulation and preferences between a joystick approach and the gesture-based approach. Initial feedback indicated that the simulation represented the actual vehicle performance well and that the joystick is preferred over the gesture-based approach. Improvements in the gesture-based control are documented as additional features in the simulation, such as basic maneuver training and additional vehicle positioning information, are added to assist the user to better learn the gesture-based interface and implementation of active control concepts to interpret and apply vehicle forces and torques. Tests were also conducted with an actual ground vehicle to investigate if knowledge and skill from the simulated environment transfers to a real-life scenario. To assess this, an immersive virtual reality (VR) simulation was built in Unity as a training environment to learn how to control a remote control car using gestures. This was then followed by a control of the actual ground vehicle. Observations and participant feedback indicated that range of hand movement and hand positions transferred well to the actual demonstration. This illustrated that the VR simulation environment provides a suitable learning experience, and an environment from which to assess human performance; thus, also validating the observations from earlier tests. Overall results indicate that the gesture-based approach holds promise given the emergence of new technology, but additional work needs to be pursued. This includes algorithms to process gesture data to provide more stable and precise vehicle commands and training environments to familiarize users with this new interface concept

    The Impact of Three Interfaces for 360-Degree Video on Spatial Cognition

    Get PDF
    In this paper, we describe an experiment designed to evaluate the effectiveness of three interfaces for surveillance or remote control using live 360-degree video feeds from a person or vehicle in the field. Video feeds are simulated using a game engine. While locating targets within a 3D terrain using a 2D 360-degree interface, participants indicated perceived egocentric directions to targets and later placed targets on an overhead view of the terrain. Interfaces were compared based on target finding and map placement performance. Results suggest 1) nonseamless interfaces with visual boundaries facilitate spatial understanding, 2) correct perception of self-to-object relationships is not correlated with understanding object-toobject relationships within the environment, and 3) increased video game experience corresponds with better spatial understanding of an environment observed in 360- degrees. This work can assist researchers of panoramic video systems in evaluating the optimal interface for observation and teleoperation of remote systems

    Virtual and Mixed Reality in Telerobotics: A Survey

    Get PDF

    Contributions to virtual reality

    Get PDF
    153 p.The thesis contributes in three Virtual Reality areas: ¿ Visual perception: a calibration algorithm is proposed to estimate stereo projection parameters in head-mounted displays, so that correct shapes and distances can be perceived, and calibration and control procedures are proposed to obtain desired accommodation stimuli at different virtual distances.¿ Immersive scenarios: the thesis analyzes several use cases demanding varying degrees of immersion and special, innovative visualization solutions are proposed to fulfil their requirements. Contributions focus on machinery simulators, weather radar volumetric visualization and manual arc welding simulation.¿ Ubiquitous visualization: contributions are presented to scenarios where users access interactive 3D applications remotely. The thesis follows the evolution of Web3D standards and technologies to propose original visualization solutions for volume rendering of weather radar data, e-learning on energy efficiency, virtual e-commerce and visual product configurators

    Studying Pedestrian’s Unmarked Midblock Crossing Behavior on a Multilane Road When Interacting With Autonomous Vehicles Using Virtual Reality

    Get PDF
    This dissertation focuses on the challenge of pedestrian interaction with autonomous vehicles (AVs) at unmarked midblock locations where the right-of-way is unspecified. A virtual reality (VR) simulation was developed to replicate an urban unmarked midblock environment where pedestrians cross a four-lane arterial roadway and interact with AVs. One research goal is to investigate the impact of roadway centerline features (undivided, two-way left-turn lane, and median) and AV operational schemes portrayed through on-vehicle signals (no signal, yellow negotiating indication, and yellow/blue negotiating/no-yield indications) on pedestrian crossing behavior. Results demonstrate that both roadway centerline design features and AV operations and signaling show significant impacts on pedestrians\u27 unmarked midblock crossing behavior, including the waiting time at the curb, waiting time in the middle of the road, and the total crossing time. Whereas, only the roadway centerline design features significantly impact the walking time, and only the AV operations and signaling significantly impact the accepted gap. Participants in the undivided centerline scene spent longer time waiting at the curb and walking on the road. Also, pedestrians are more likely to display risky behavior and cross in front of AVs indicating blue signals with non-yielding behavior in the presence of a median centerline scene. The inclusion of a yellow signal, which indicates the detection of pedestrians and signifies that the AVs will negotiate with them, resulted in a significant reduction in pedestrian waiting time both at the curb and in the middle of the road, when compared to AVs without a signal. Interaction effects between roadway centerline design features and AV operations and signaling are significant only for waiting time in the middle of the road. It is also found that older pedestrians tend to wait longer at the curb and are less likely to cross in front of AVs showing a blue signal with non-yielding behavior. Another research goal is to investigate how this VR experience change pedestrians’ perception of AVs. Results demonstrated that both pedestrians’ overall attitude toward AVs and trust in the effectiveness of AV systems significantly improved after the VR experience. It is also found that the more pedestrians trust the yellow signals, the more likely they are to improve their perception of AVs. Further, pedestrians who exhibit more aggressive crossing behavior are less likely to change their perception towards AVs as compared to those pedestrians who display rule-conforming crossing behaviors. Also, if the experiment made pedestrians feel motion sick, they were less likely to experience increased trust in the AV system\u27s effectiveness

    Is Augmented Reality the future of business? A qualitative study on factors affecting the potential for mass adoption of augmented reality in business processes.

    Get PDF
    Augmented Reality (AR) is one of the emerging technologies of the Fourth Industrial Revolution that might bring radical shifts to the way we live and interact with the world around us. This thesis examines the benefits and use cases of AR in business processes. Furthermore, it examines the limitations and barriers that can explain why more companies are not committing to the technology. The aim of the thesis is to determine if AR belongs in the future of business, and if so, when there will be mass adoption. To do so, we interviewed 10 individuals with experience and expertise in AR. Using thematic analysis, we divided the findings into three different time periods, yesterday, today, and future. Limitations and barriers were further divided into four categories: hardware, UX and software, culture and society, and company. Our findings reveal several benefits to AR, for example improved efficiency, accelerating training and reducing costs. More importantly, AR is set to drastically change how we see and interact with our surroundings. It has the potential to become an integral part of our daily lives. However, findings highlight several limitations and barriers that must be overcome for AR to reach mass adoption. Most prominently, cumbersome hardware, and the need for acceptance and a normalization of AR in both companies and society. Nevertheless, we conclude that mass adoption of AR is likely to happen in the next 10 years. Consequently, the thesis imply that companies should prepare themselves proactively for an AR revolution, so that once the limitations and barriers are softened, companies are able to keep pace with the technological advancements and thrive in the years to come.nhhma
    • …
    corecore