14 research outputs found

    Veröffentlichungen und Vorträge 2009 der Mitglieder der Fakultät für Informatik

    Get PDF

    Harmonizing CMMI-DEV 1.2 and XP Method to Improve The Software Development Processes in Small Software Development Firms

    Get PDF
    Most software development organizations are small firms, and they have realized the need to manage and improve their software development and management activities. Traditional Software Process Improvement (SPI) models and standards are not realistic for these firms because of high cost, limited resources and strict project deadlines. Therefore, these firms need a lightweight software development method and an appropriate SPI model to manage and improve their software development and management processes. This study aims to construct a suitable software development process improvement framework for Small Software Development Firms (SSDFs) based on eXtreme Programming (XP) method and Capability Maturity Model Integration for Development Version 1.2 (CMMI-Dev1.2) model. Four stages are involved in developing the framework: (1) aligning XP practices to the specific goals of CMMI-Dev1.2 Key Process Areas (KPAs); (2) developing the proposed software development process improvement framework based on extending XP method by adapting the Extension-Based Approach (EBA), CMMI-Dev1.2, and generic elements of the SPI framework; (3) verifying the compatibility of the proposed framework to the KPAs of CMMI-Dev1.2 by using focus group method coupled with Delphi technique; and (4) validating the modified framework by using CMMI-Dev1.2 questionnaire as a main item to validate the suitability of the modified framework for SSDFs, and conducting two case studies to validate the applicability and effectiveness of this framework for these firms. The result of aligning XP practices to the KPAs of CMMI-Dev1.2 shows that twelve KPAs are largely supported by XP practices, eight KPAs are partially supported by XP practices, and two KPAs are not-supported by XP practices. The main contributions of this study are: software development process improvement framework for SSDFs, elicit better understanding of how to construct the framework, and quality improvement of the software development processes. There are possible avenues for extending this research to fulfil the missing specific practices of several KPAs, examining other agile practices and using CMMI-Dev1.3 to improve the framework, and conducting more case studie

    Alignment: A New Software Architecture Approach to Support Streamlining Business Processes

    Get PDF
    Traditional business structures nowadays have to change fast to keep up with customers needs, which is often not possible due to monolithic software architectures and multiple software systems that do neither respond to process requirements nor interact well. Many existing software systems, however, are too complex and too unrelated to the business to support this change accurately. New ways of software architecture are needed to respond to changing requirements and support the business processes. Information systems have to be integrated into the organization’s structures. It seems that a component-based software architecture, which supports the whole value chain, forms the basis for a business process reorganization to enable changes. In this paper we introduce a modeling approach based on Clabjects. We demonstrate how that approach can be applied to an industrial case in order to streamline and support the business processes. Further, this paper further describes the envisioned business process improvements

    Test Case Generation Using Visual Contracts

    Get PDF
    Visual contracts provide a diagrammatic notation for pre- and postconditionsas alternative to the Object-Constraint Language (OCL) or code-levelcontract languages. Using visual contracts for testing, we benefit from their executabilityand formal background in graph transformation to provide model-basedtest oracles and coverage criteria. Based on a static analysis of their dependenciesand conflicts, in this paper we use visual contracts to generate test cases accordingto these coverage criteria.Together with previous work, this adds up to a comprehensive approach aiming toautomate the three major challenges of testing through the use of models

    Using Bayesian optimization algorithm for model-based integration testing

    Get PDF

    Eliminating Failure by Learning from It – Systematic Review of IS Project Failure

    Get PDF
    Researchers analyzing project success and failure emphasize the prevailing challenge of successfully completing information system (IS) projects. We conduct an extensive systematic literature review of factors that contributed to failure of real-life IS projects. Our resulting overview entails 54 failure factors, which we grouped in 10 categories applying data-driven qualitative content analysis. We extend our holistic overview by linking the factors to specific project failure dimensions and integrating a stakeholder perspective to account for failure responsibility. Our analysis yields widely acknowledged failure factors like insufficient stakeholder involvement as well as less common factors like history of prior successes. Researchers gain insights into project failure factors along with responsible stakeholders and affected failure dimensions, and can use our overview to identify factors or areas of concern to guide future research. Our overview provides a pillar for IS practitioners to learn from others and to eliminate failure by avoiding past mistakes

    Architecture design in global and model-centric software development

    Get PDF
    This doctoral dissertation describes a series of empirical investigations into representation, dissemination and coordination of software architecture design in the context of global software development. A particular focus is placed on model-centric and model-driven software development.LEI Universiteit LeidenAlgorithms and the Foundations of Software technolog

    Pattern-based refactoring in model-driven engineering

    Full text link
    L’ingénierie dirigée par les modèles (IDM) est un paradigme du génie logiciel qui utilise les modèles comme concepts de premier ordre à partir desquels la validation, le code, les tests et la documentation sont dérivés. Ce paradigme met en jeu divers artefacts tels que les modèles, les méta-modèles ou les programmes de transformation des modèles. Dans un contexte industriel, ces artefacts sont de plus en plus complexes. En particulier, leur maintenance demande beaucoup de temps et de ressources. Afin de réduire la complexité des artefacts et le coût de leur maintenance, de nombreux chercheurs se sont intéressés au refactoring de ces artefacts pour améliorer leur qualité. Dans cette thèse, nous proposons d’étudier le refactoring dans l’IDM dans sa globalité, par son application à ces différents artefacts. Dans un premier temps, nous utilisons des patrons de conception spécifiques, comme une connaissance a priori, appliqués aux transformations de modèles comme un véhicule pour le refactoring. Nous procédons d’abord par une phase de détection des patrons de conception avec différentes formes et différents niveaux de complétude. Les occurrences détectées forment ainsi des opportunités de refactoring qui seront exploitées pour aboutir à des formes plus souhaitables et/ou plus complètes de ces patrons de conceptions. Dans le cas d’absence de connaissance a priori, comme les patrons de conception, nous proposons une approche basée sur la programmation génétique, pour apprendre des règles de transformations, capables de détecter des opportunités de refactoring et de les corriger. Comme alternative à la connaissance disponible a priori, l’approche utilise des exemples de paires d’artefacts d’avant et d’après le refactoring, pour ainsi apprendre les règles de refactoring. Nous illustrons cette approche sur le refactoring de modèles.Model-Driven Engineering (MDE) is a software engineering paradigm that uses models as first-class concepts from which validation, code, testing, and documentation are derived. This paradigm involves various artifacts such as models, meta-models, or model transformation programs. In an industrial context, these artifacts are increasingly complex. In particular, their maintenance is time and resources consuming. In order to reduce the complexity of artifacts and the cost of their maintenance, many researchers have been interested in refactoring these artifacts to improve their quality. In this thesis, we propose to study refactoring in MDE holistically, by its application to these different artifacts. First, we use specific design patterns, as an example of prior knowledge, applied to model transformations to enable refactoring. We first proceed with a detecting phase of design patterns, with different forms and levels of completeness. The detected occurrences thus form refactoring opportunities that will be exploited to implement more desirable and/or more complete forms of these design patterns. In the absence of prior knowledge, such as design patterns, we propose an approach based on genetic programming, to learn transformation rules, capable of detecting refactoring opportunities and correcting them. As an alternative to prior knowledge, our approach uses examples of pairs of artifacts before and after refactoring, in order to learn refactoring rules. We illustrate this approach on model refactoring
    corecore