86 research outputs found

    Parameterized Compilation Lower Bounds for Restricted CNF-formulas

    Full text link
    We show unconditional parameterized lower bounds in the area of knowledge compilation, more specifically on the size of circuits in decomposable negation normal form (DNNF) that encode CNF-formulas restricted by several graph width measures. In particular, we show that - there are CNF formulas of size nn and modular incidence treewidth kk whose smallest DNNF-encoding has size nΩ(k)n^{\Omega(k)}, and - there are CNF formulas of size nn and incidence neighborhood diversity kk whose smallest DNNF-encoding has size nΩ(k)n^{\Omega(\sqrt{k})}. These results complement recent upper bounds for compiling CNF into DNNF and strengthen---quantitatively and qualitatively---known conditional low\-er bounds for cliquewidth. Moreover, they show that, unlike for many graph problems, the parameters considered here behave significantly differently from treewidth

    Existential Definability over the Subword Ordering

    Get PDF
    We study first-order logic (FO) over the structure consisting of finite words over some alphabet A, together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the ?? (i.e., existential) fragment is undecidable, already for binary alphabets A. However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable. We show that if |A| ? 3, then a relation is definable in the existential fragment over A with constants if and only if it is recursively enumerable. This implies characterizations for all fragments ?_i: If |A| ? 3, then a relation is definable in ?_i if and only if it belongs to the i-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the ?_i-fragments for i ? 2 of the pure logic, where the words of A^* are not available as constants

    A New Approach to Multi-Party Peer-to-Peer Communication Complexity

    Get PDF
    We introduce new models and new information theoretic measures for the study of communication complexity in the natural peer-to-peer, multi-party, number-in-hand setting. We prove a number of properties of our new models and measures, and then, in order to exemplify their effectiveness, we use them to prove two lower bounds. The more elaborate one is a tight lower bound of Omega(kn) on the multi-party peer-to-peer randomized communication complexity of the k-player, n-bit function Disjointness, Disj_k^n. The other one is a tight lower bound of Omega(kn) on the multi-party peer-to-peer randomized communication complexity of the k-player, n-bit bitwise parity function, Par_k^n. Both lower bounds hold when n=Omega(k). The lower bound for Disj_k^n improves over the lower bound that can be inferred from the result of Braverman et al. (FOCS 2013), which was proved in the coordinator model and can yield a lower bound of Omega(kn/log k) in the peer-to-peer model. To the best of our knowledge, our lower bounds are the first tight (non-trivial) lower bounds on communication complexity in the natural peer-to-peer multi-party setting. In addition to the above results for communication complexity, we also prove, using the same tools, an Omega(n) lower bound on the number of random bits necessary for the (information theoretic) private computation of the function Disj_k^n

    Space-Efficient Algorithms for Longest Increasing Subsequence

    Get PDF
    Given a sequence of integers, we want to find a longest increasing subsequence of the sequence. It is known that this problem can be solved in O(n log n) time and space. Our goal in this paper is to reduce the space consumption while keeping the time complexity small. For sqrt(n) <= s <= n, we present algorithms that use O(s log n) bits and O(1/s n^2 log n) time for computing the length of a longest increasing subsequence, and O(1/s n^2 log^2 n) time for finding an actual subsequence. We also show that the time complexity of our algorithms is optimal up to polylogarithmic factors in the framework of sequential access algorithms with the prescribed amount of space

    Existential Definability over the Subword Ordering

    Full text link
    We study first-order logic (FO) over the structure consisting of finite words over some alphabet AA, together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the Σ1\Sigma_1 (i.e., existential) fragment is undecidable, already for binary alphabets AA. However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable. We show that if ∣A∣≥3|A|\ge 3, then a relation is definable in the existential fragment over AA with constants if and only if it is recursively enumerable. This implies characterizations for all fragments Σi\Sigma_i: If ∣A∣≥3|A|\ge 3, then a relation is definable in Σi\Sigma_i if and only if it belongs to the ii-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the Σi\Sigma_i-fragments for i≥2i\ge 2 of the pure logic, where the words of A∗A^* are not available as constants

    A Rice-like theorem for primitive recursive functions

    Get PDF
    We provide an explicit characterization of the properties of primitive recursive functions that are decidable or semi-decidable, given a primitive recursive index for the function. The result is much more general as it applies to any c.e. class of total computable functions. This is an analog of Rice and Rice-Shapiro theorem, for restricted classes of total computable functions

    Cost Automata, Safe Schemes, and Downward Closures

    Get PDF
    Higher-order recursion schemes are an expressive formalism used to define languages of possibly infinite ranked trees. They extend regular and context-free grammars, and are equivalent to simply typed ?Y-calculus and collapsible pushdown automata. In this work we prove, under a syntactical constraint called safety, decidability of the model-checking problem for recursion schemes against properties defined by alternating B-automata, an extension of alternating parity automata for infinite trees with a boundedness acceptance condition. We then exploit this result to show how to compute downward closures of languages of finite trees recognized by safe recursion schemes

    Almost Linear Time Computation of Maximal Repetitions in Run Length Encoded Strings

    Get PDF
    We consider the problem of computing all maximal repetitions contained in a string that is given in run-length encoding. Given a run-length encoding of a string, we show that the maximum number of maximal repetitions contained in the string is at most m+k-1, where m is the size of the run-length encoding, and k is the number of run-length factors whose exponent is at least 2. We also show an algorithm for computing all maximal repetitions in O(m alpha(m)) time and O(m) space, where alpha denotes the inverse Ackermann function
    • …
    corecore