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Abstract
Higher-order recursion schemes are an expressive formalism used to define languages of possibly
infinite ranked trees. They extend regular and context-free grammars, and are equivalent to simply
typed λY -calculus and collapsible pushdown automata. In this work we prove, under a syntactical
constraint called safety, decidability of the model-checking problem for recursion schemes against
properties defined by alternating B-automata, an extension of alternating parity automata for infinite
trees with a boundedness acceptance condition. We then exploit this result to show how to compute
downward closures of languages of finite trees recognized by safe recursion schemes.
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1 Introduction

Higher-order functions are nowadays widely used not only in functional programming lan-
guages such as Haskell and the OCAML family, but also in mainstream languages such as
Java, JavaScript, Python, and C++. Recursion schemes are faithful and algorithmically
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manageable abstractions of the control flow of higher-order programs [36]. A deterministic
recursion scheme normalises into a possibly infinite Böhm tree, and in this respect recursion
schemes can equivalently be presented as simply-typed lambda-terms using a higher-order
fixpoint combinator Y [50]. There are also nontrivial inter-reductions between recursion
schemes and the equi-expressive collapsible higher-order pushdown automata [30] and ordered
tree-pushdown automata [13]. In another semantics, also used in this paper, nondeterminstic
recursion schemes are recognisers of languages of finite trees, and in this view they are also
known as higher-order OI grammars [23, 38], generalising indexed grammars [2] (which are
recursion schemes of order two) and ordered multi-pushdown automata [8].

The most celebrated algorithmic result in the analysis of recursion schemes is the decid-
ability of the model-checking problem against properties expressed in monadic second-order
logic (MSO): given a recursion scheme G and an MSO sentence ϕ, one can decide whether
the Böhm tree generated by G satisfies ϕ [43]. This fundamental result has been reproved
several times, that is, using collapsible higher-order pushdown automata [30], intersection
types [37], Krivine machines [48], and it has been extended in diverse directions such as global
model checking [11], logical reflection [9], effective selection [12], and a transfer theorem via
models of lambda-calculus [49]. When the input property is given as an MSO formula, the
model-checking problem is non-elementary already for trees of order 0 (regular trees) [51];
when the input property is presented as a parity tree automaton (which is equi-expressive with
MSO on trees, but less succinct), the MSO model-checking problem for recursion schemes
of order n is complete for n-fold exponential time [43]. Despite these hardness results, the
model-checking problem can be solved efficiently on multiple nontrivial examples, thanks to
the development of several recursion-scheme model checkers [36, 35, 10, 47, 42].

Unboundedness problems. Recently, an increasing interest has arose for model checking
quantitative properties going beyond the expressive power of MSO. The diagonal problem
is an example of a quantitative property not expressible in MSO. Over words, the problem
asks, for a given set of letters Σ and a language of finite words L, whether for every n ∈ N
there is a word in L where every letter from Σ occurs at least n times. Over full trios (classes
of languages closed under regular transductions), decidability of the diagonal problem over
finite words has interesting algorithmic consequences, such as computability of downward
closures [54] and decidability of separability by piecewise testable languages [21]. The diagonal
problem for languages of words recognised by recursion schemes is decidable [29, 14, 45].

Over full trios of finite words, the diagonal problem is equivalent to the computability
of downward closures [22], which is an important problem in its own right. The downward
closure of a language L of finite trees is the set L↓ of all trees that can be homeomorphically
embedded into some tree in L. By Higman’s lemma [31], the embedding relation on finite
ranked trees is a well quasi-order. Consequently, the downward closure L↓ of an arbitrary
set of trees L is always a regular language. The downward closure of a language offers a
nontrivial regular abstraction thereof: even though the actual count of letters is lost, their
limit properties are preserved, as well as their order of appearance.

We say that the downward closure is computable when a finite automaton for L↓ can be
effectively constructed (which is not true in general). Downward closures are computable for a
wide class of languages of finite words such as those recognised by context-free grammars [20,
41, 3], Petri nets [27], stacked counter automata [55], context-free FIFO rewriting systems and
0L-systems [1], second-order pushdown automata [54], higher-order pushdown automata [29],
and (possibly unsafe) recursion schemes over words [14]. Over finite trees, it is known that
downward closures are computable for the class of regular tree languages [25]. We are not
aware of other such computability results for other classes of languages of finite trees.
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In another line of research, B-automata, and among them alternating B-automata, have
been put forward as a quantitative extension to MSO [15, 18, 52, 39]. They extend alternating
automata over infinite trees [26, Chapter 9] by nonnegative integer counters that can be
incremented or reset to zero. The extra counters do not constrain the availability of transitions
during a run (unlike in other superficially similar models, such as counter machines), but are
used in order to define the acceptance condition: an infinite tree is n-accepted if n is a bound
on the values taken by the counters during an accepting run of the automaton over it.

The universality problem consists in deciding whether for every tree there is a bound n
for which it is n-accepted. The boundedness problem asks whether there exists a bound n for
which all trees are n-accepted. These two problems are closely related. Their decidability is
an important open problem in the field, and proving the decidability of the boundedness
problem would solve the long standing nondeterministic Mostowski index problem [17].
However, though open in general, the boundedness problem is known to be decidable over
finite words [15] and trees [18] and infinite words [39], as well as over infinite trees for its
weak [53] and the more general quasi-weak [40] version.

Another expressive formalism expressing unboundedness properties beyond MSO is
MSO+U, which extends MSO by a new quantifier “UX.ϕ” [7] stating that there exist
arbitrarily large finite sets X satisfying ϕ. This logic is incomparable with B-automata. The
model-checking problem of recursion schemes against its weak fragment WMSO+U, where
monadic second-order quantifiers are restricted to finite sets, is decidable [46].

Contributions. Our first contribution is the decidability of the model-checking problem of
properties expressed by alternating B-automata for an expressive class of recursion schemes
called safe recursion schemes. As generators of infinite trees, safe recursion schemes are
equivalent to higher-order pushdown automata without the collapse operation [34] and are
strictly less expressive than general (unsafe) recursion schemes [44, Corollary I.2]. Here, the
model-checking problem asks whether a concrete infinite tree (the Böhm tree generated by the
safe recursion scheme) is accepted by the B-automaton for some bound. This problem happens
to be significantly simpler than the universality/boundedness problem above described. The
proof goes by reducing the order of the safe recursion scheme similarly as done in Knapik,
Niwiński, and Urzyczyn [34] to show decidability of the MSO model-checking problem, at the
expense of making the property automaton two-way. We then rely on the fact that two-way
alternating B-automata can be converted to equivalent one-way alternating B-automata [6].
Our result is incomparable with the result of Ong [43], since
(1) alternating B-automata are strictly more expressive than MSO, however
(2) we obtain it under the more restrictive safety assumption.
Whether the safety assumption can be dropped while preserving decidability of the model-
checking problem against B-automata properties remains open.

Our second contribution is to define the following generalization of the diagonal problem
from words to trees: given a language of finite trees L and a set of letters Σ, decide whether
for every n ∈ N there is a tree T ∈ L such that every letter from Σ occurs at least n times
on every branch of T . This generalization is designed in order to reduce the computation of
downward closures to the diagonal problem, in the same fashion as for finite words. Our proof
strategy is to represent downward-closed sets of trees L↓ by simple tree regular expressions,
which are a subclass of regular expressions for finite trees [24, 25]. By further analysing
and simplifying the structure of these expressions, the computation of the downward closure
can be reduced to finitely many instances of the diagonal problem. Unlike in the case of
finite words, we do not know whether for full trios there exists a converse reduction from the
diagonal problem to the problem of computing downward closures.

ICALP 2020
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Our third contribution is decidability of the diagonal problem for languages of finite
trees recognised by safe recursion schemes (and thus computability of downward closures
of those languages). The diagonal problem can directly be expressed in a logic called weak
cost monadic second order logic (WCMSO) [53], which extends weak MSO with atomic
formulae of the form |X| ≤ N stating that the cardinality of the monadic variable X is at
most N . Since WCMSO can be translated to alternating B-automata [53], the diagonal
problem reduces to the model-checking problem of safe recursion schemes against alternating
B-automata, which we have shown decidable in the first part. Note that it seems difficult
to express the diagonal problem using alternating B-automata directly, and indeed the fact
that alternating B-automata can express all WCMSO properties is nontrivial.

Outline. In Section 2, we define recursion schemes and B-automata. In Section 3, we
present our first result, namely decidability of model checking of safe recursion schemes
against B-automata. In Section 4, we introduce the diagonal problem, and we show how it
can be used to compute downward closures. In Section 5, we solve the diagonal problem
for schemes. We conclude in Section 6 with some open problems. A full technical report
containing full proofs it also available [4].

2 Preliminaries

Recursion schemes. A ranked alphabet is a (usually finite) set A of letters, together with
a function rank : A→ N, assigning a rank to every letter. When we define trees below, we
require that a node labeled by a letter a has exactly rank(a) children. In the sequel, we
usually assume some fixed finite ranked alphabet A. The set of (simple) types is constructed
from a unique ground type o using a binary operation →; namely o is a type, and if α and
β are types, so is α→ β. By convention, → associates to the right, that is, α→ β→ γ is
understood as α→ (β → γ). A type o→ . . .→ o with k occurrences of → is also written
as ok→ o. The order of a type α, denoted ord(α) is defined by induction: ord(o) = 0 and
ord(α1→ . . .→ αk→ o) = maxi(ord(αi)) + 1 for k > 1.

We coinductively define both lambda-terms and the two-argument relation “M is a
lambda-term of type α” as follows (cf. [32, 5]):

a letter a ∈ A is a lambda-term of type orank(a)→ o;
for every type α there is a countable set {x, y, . . . } of variables of type α which can be
used as lambda-terms of type α;
if M is a lambda-term of type β and x a variable of type α, then λx.M is a lambda-term
of type α→ β; this construction is called a lambda-binder ;
if M is a lambda-term of type α→ β, and N is a lambda-term of type α, then MoN is a
lambda-term of type β, called an application.

As usual, we identify lambda-terms up to alpha-conversion (i.e., renaming of bound variables).
We use here the standard notions of free variable, subterm, (capture-avoiding) substitution,
and beta-reduction (see for instance [32, 5]). A closed lambda-term does not have free
variables. For a lambda-term M of type α, the order of M , denoted ord(M), is defined
as ord(α). It is first-order if its order is one. An applicative term is a lambda-term not
containing lambda-binders (it contains only letters, applications, and variables).

A lambda-termM is superficially safe if all its free variables x have order ord(x) > ord(M).
A lambda-term M is safe if it is superficially safe, and if for every subterm of the form
KoL1o. . .oLk, where K is not an application and k > 1, all subterms K,L1, . . . , Lk are
superficially safe.
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A (higher-order, deterministic) recursion scheme over the alphabet A is a tuple G =
〈A,N , X0,R〉, whereN is a finite set of typed nonterminals,X0 ∈ N is the initial nonterminal,
and R is a function assigning to every nonterminal X ∈ N of type α1→· · ·→αk→ o a finite
lambda-term of the form λx1. · · · .λxk.K, of the same type α1→· · ·→αk→ o, in which K is
an applicative term with free variables in N ] {x1, . . . , xk}. We refer to R(X) as the rule
for X. The order of a recursion scheme ord(G) is the maximum order of its nonterminals.

The lambda-term represented by a recursion scheme G as above, denoted Λ(G), is the
limit of applying recursively the following operation to X0: take an occurrence of some
nonterminal X, and replace it with R(X) (the nonterminals should be chosen in a fair way,
so that every nonterminal is eventually replaced). Thus, Λ(G) is a (usually infinite) regular
lambda-term obtained by unfolding the nonterminals of G according to their definition. We
remark that when substituting R(X) for a nonterminal X there is no need for any renaming
of variables (capture-avoiding substitution), since R(X) does not contain free variables other
than nonterminals. We only consider recursion schemes for which Λ(G) is well-defined (e.g. by
requiring that R(X) is not a single nonterminal). A recursion scheme G is safe if Λ(G) is
safe.

A tree is a closed applicative term of type o. Such lambda-terms are coinductively of the
form aoM1o· · ·oMr, where a ∈ A is of rank r, and where M1, . . . ,Mr are again trees. Thus,
such a lambda-term can be identified with a tree understood in the traditional sense: a is
the label of its root, and M1, . . . ,Mr describe subtrees attached in the r children of the root,
from left to right. For trees we also use the notation a(M1, . . . ,Mr) instead of aM1 . . . Mr.
A tree is regular if it has finitely many subtrees (subterms) up to isomorphism.

The Böhm tree of a lambda-term M of type o, denoted BT (M), is defined coinductively
as follows: if there is a sequence of beta-reductions from M to a lambda-term of the form
aM1 . . . Mr (where a ∈ A is a letter), then BT (M) = a(BT (M1), . . . ,BT (Mr)); otherwise
BT(M) = ⊥(), where ⊥ ∈ A is a distinguished letter of rank 0. It is a classical result that
BT(M) exists, and is uniquely defined [32, 5]. Clearly, BT(M) is indeed a tree. The tree
generated by a recursion scheme G, denoted BT (G), is BT (Λ(G)).

A lambda-term N is normalizing if BT(N) does not contain the special letter ⊥; a
recursion scheme G is normalizing if Λ(G) is normalizing. In other words, in a normalizing
recursion scheme/lambda-term beta-reduction always produces a letter. It is possible to
transform every recursion scheme G into a normalizing recursion scheme G′ generating the
same tree as G, up to renaming ⊥ into some non-special letter ⊥′ (cf. [28, Section 5]).
Moreover, the construction preserves safety and the order.

Recursion schemes as recognizers of languages of finite trees. The standard semantics
of a recursion scheme G = 〈A,N , X0,R〉 is the single infinite tree BT(G) generated by the
scheme. An alternative view is to consider a recursion scheme as a recognizer of a language
of finite trees L(G). This alternative view is relevant when discussing downward closures of
languages of finite trees. We employ a special letter nd ∈ A of rank 2 in order to represent
L(G) by resolving the nondeterministic choice of nd in the infinite tree BT (G) in all possible
ways. Formally, for two trees T,U , we write T →nd U if U is obtained from T by choosing
an nd-labeled node u of T and a child v thereof, and replacing the subtree rooted at u with
the subtree rooted at v. The relation →∗nd is the reflexive and transitive closure of →nd. We
define the language of finite trees recognized by G as L(G) = L(BT (G)), where

L(T ) = {U | T →∗nd U , with U finite and not containing “nd” or “⊥”} .

ICALP 2020
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For an illustration of this encoding, and simultaneously for an example of a recursion
scheme, consider the ranked alphabet A containing a letter a of rank 2, two letters b1, b2 of
rank 1, and a letter c of rank 0. We use an initial nonterminal S of order-0 type o, and an
additional nonterminal A of order-2 type (o→ o)→ (o→ o)→ o→ o→ o, together with
the following two rules:

R(S) = Aob1ob2ococ,

R(A) = λf.λg.λx.λy.ndo(aoxoy)o(Aofogo(fox)o(gox)).

Then, BT(G) is the infinite non-regular tree ndo(aococ)o(ndo(ao(b1oc)o(b2oc))o(· · · )), and L(G) is
the non-regular language of all finite trees of the form ao(bn1oc)o(bn2oc) with n ∈ N.

Alternating B-automata. We introduce the model of automata used in this paper, namely
alternating one-way/two-way B-automata over trees (over a ranked alphabet). We consider
counters which can be incremented i, reset r, or left unchanged ε. Let Γ be a finite set of
counters and let C = {i, r, ε} be the alphabet of counter actions. Each counter starts with
value zero, and the value of a sequence of actions is the supremum of the values achieved
during this sequence. For instance iirεiε has value 2, (ir)ω has value 1, and iri2ri3r · · ·
has value ∞. For an infinite sequence of counter actions w ∈ Cω, let val(w) ∈ N ∪ {∞} be
its value. In case of several counters, w = c1c2 · · · ∈ (CΓ)ω, we take the counter with the
maximal value: val(w) = supc∈Γ val(w(c)), where w(c) = c1(c)c2(c) · · · .

An (alternating, two-way) B-automaton over a finite ranked alphabet A is a tuple 〈A, Q,
q0, pr ,Γ, δ〉 consisting of a finite set of states Q, an initial state q0 ∈ Q, a function pr : Q→ N
assigning priorities to states, a finite set Γ of counters, and a transition function

δ : Q× A→ B+({↑,	, ↓ 1, ↓ 2, . . .} × CΓ ×Q)

mapping a state and a letter a to a (finite) positive Boolean combination of triples of the form
(d, c, q); it is assumed that if d =↓ i then i 6 rank(a). Such a triple encodes the instruction
to send the automaton to state q in direction d while performing action c. The direction ↓ i
moves to the i-th child, ↑ moves to the parent, and 	 stays in place. We assume that δ(q, a)
is written in disjunctive normal form for all q and a.

The acceptance of an infinite input tree T by an alternating B-automaton A is defined
in terms of a game (A, T ) between two players, called Eve and Adam. Eve is in charge
of disjunctive choices and tries to minimize the counter values while satisfying the parity
condition. Adam, on the other hand, is in charge of conjunctive choices and tries to either
maximize counter values, or to sabotage the parity condition. Since the transition function is
given in disjunctive normal form, each turn of the game consists of Eve choosing a disjunct
and Adam selecting a single tuple (d, c, q) thereof. In order to guarantee that from every
position there is some move, we assume that each disjunction is nonempty and that each
disjunct contains a tuple with some direction other than ↑. A play of A on the tree T is
a sequence q0, (d1, c1, q1), (d2, c2, q2), . . . compatible with T and δ: q0 is the initial state,
and for all i ∈ N, (di+1, ci+1, qi+1) appears in δ(qi, T (xi)) where xi is the node of T after
following the directions d1d2 . . . di starting from the root. The value val(π) of a play π is the
value val(c1c2 · · · ) as defined above if the largest number appearing infinitely often among
the priorities pr(q0), pr(q1), . . . is even; otherwise, val(π) = ∞. We say that the play π is
n-winning (for Eve) if val(π) 6 n.

A strategy for one of the players in the game (A, T ) is a function that returns the next
choice given the history of the play. Note that choosing a strategy for Eve and a strategy
for Adam fixes a play in (A, T ). We say that a play π is compatible with a strategy σ if
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there is some strategy σ′ for the other player such that σ and σ′ together yield the play π.
A strategy for Eve is n-winning if every play compatible with it is n-winning. We say that
Eve n-wins the game if there is some n-winning strategy for Eve. A B-automaton n-accepts
a tree T if Eve n-wins the game (A, T ); it accepts T if it n-accepts T for some n ∈ N. The
language recognized by A is the set of all trees accepted by A.

If no δ(q, a) uses the direction ↑, then we call A one-way. The following theorem essentially
follows from a result of Blumensath, Colcombet, Kuperberg, Parys, and Vanden Boom [6,
Theorem 6] modulo some cosmetic changes (c.f. [4, Appendix A] for more details).

I Theorem 2.1 (c.f. [6, Theorem 6]). Given an alternating two-way B-automaton, one can
compute an alternating one-way B-automaton that recognizes the same language.

As a special case of a result by Colcombet and Göller [16] we obtain the following fact.

I Fact 2.2. One can decide whether a given B-automaton accepts a given regular tree.

3 Model-checking safe recursion schemes against alternating
B-automata

In this section we prove the first main theorem of our paper, the decidability of the model-
checking problem of safe recursion schemes against properties described by B-automata:

I Theorem 3.1. Given an alternating B-automaton A and a safe recursion scheme G, one
can decide whether A accepts the tree generated by G.

It is worth noticing that this theorem generalises the result of Knapik et al. [34] on safe
recursion schemes from regular (MSO) properties to the more general quantitative realm of
properties described by B-automata. On the other hand, our result is incomparable with the
celebrated theorem of Ong [43] showing decidability of model checking regular properties
of possibly unsafe recursion schemes. Whether model checking of possibly unsafe recursion
schemes against properties described by B-automata is decidable remains an open problem.

By Theorem 2.1, every B-automaton can be effectively transformed into an equivalent
one-way B-automaton, so it is enough to prove Theorem 3.1 for a one-way B-automaton A.
The proof of Theorem 3.1 is based on the following lemma, where we use in an essential way
the assumption that the recursion scheme is safe.

I Lemma 3.2. For every safe recursion scheme G of order m and for every alternating
one-way B-automaton A, one can effectively construct a safe recursion scheme G′ of order
m− 1 and an alternating two-way B-automaton A′ such that

A accepts BT (G) if and only if A′ accepts BT (G′).

Theorem 3.1 follows easily: Using Lemma 3.2 we can reduce the order of the considered
safe recursion scheme by one. We obtain a two-way B-automaton, which we convert back to
a one-way B-automaton using Theorem 2.1. It is then sufficient to repeat this process, until
we end up with a recursion scheme of order 0. A recursion scheme of order 0 generates a
regular tree and, by Fact 2.2, we can decide whether the resulting B-automaton accepts this
tree, answering our original question.

Lambda-trees. We now come to the proof of Lemma 3.2. The construction of G′ from of
G follows an analogous result for MSO [33, 34], which we generalise to B-automata. We
represent some lambda-terms as trees. For a finite set X of variables of type o, we define a
new ranked alphabet AX that contains

ICALP 2020
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1) a letter a of rank 0 for every letter a ∈ A;
2) a letter x of rank 0 for every variable x ∈ X ;
3) a letter λx of rank 1 for every variable x ∈ X ;
4) a letter @ of rank 2.
We remark that AX is a usual finite ranked alphabet. A lambda-tree is a tree over the alphabet
AX , where X is clear from the context. Intuitively, a lambda-tree is a tree representation of
a first-order lambda-term.

The semantics JT KX ,s of a lambda-tree T is defined in such a way that if T “corresponds”
to the lambda-term M , then JT KX ,s = BT (M). Since T uses only variables of type o we can
read the resulting Böhm tree directly, without performing any reduction. Essentially, we walk
down through T , skipping all lambda-binders and choosing the left branch in all applications.
Whenever we reach some variable x, we go up to the corresponding lambda-binder, then
up to the corresponding application, and then we again start going down in the argument
of this application. Formally, let X be a finite set of variables of type o, and let s ∈ N.
The intended meaning is that X contains variables that may potentially appear in the
considered lambda-tree T , and that s is a bound for the arity of types in the lambda-term
represented by T (types of all its subterms should be of the form ok→ o for k ≤ s). We take
DirsX ,s = {↓} ∪ {↑x| x ∈ X} ∪ {↑i| 1 ≤ i ≤ s}. Intuitively, ↓ means to go down to the left
child, ↑ x means that we are looking for the value of (̨lambda)variable x, and ↑ i means that
we are looking for the i-th argument of an application. For a node v of T denote its parent
by par(v), and its i-th child by chi(v). For d ∈ DirsX ,s, and for a node v of T labeled by
a ∈ A, we define the (X , s)-successor of (d, v) as
1. (↓, ch1(v)) if d =↓ and a = λx (for some x) or @,
2. (↑ x, v) if d =↓ and a = x (for some x),
3. (↑ x, par(v)) if d =↑ x and a 6= λx (including the case when a = λy for y 6= x),
4. (↑ 1, par(v)) if d =↑ x and a = λx,
5. (↑ i+1, par(v)) if d =↑ i for i < s and a = λy (for some y),
6. (↑ i−1, par(v)) if d =↑ i for i > 1 and a = @,
7. (↓, ch2(v)) if d =↑ 1 and a = @.
Rule 1 allows us go to down to the first child in the case of lambda-binders and applications.
Rule 2 records that we have seen x, and thus we need to find its value by going up. Rule
3 climbs the tree upwards as long as we do not see the corresponding binder λx. Rule 4 records
that we have seen λx and initialises its level to 1. We now need to find the corresponding
application. Rule 5 increments the level and goes up when we encounter a binder λy, and
Rule 6 decrements it for applications @. Finally, when we see an application at level 1
we apply Rule 7 which searches for the value of x in the right child. An (X , s)-maximal
path from (d1, v1) is a sequence of pairs (d1, v1), (d2, v2), . . . in which every (di+1, vi+1) is
the (X , s)-successor of (di, vi), and which is either infinite or ends in a pair that has no
(X , s)-successor. For d ∈ DirsX ,s, and for a node v of T , we define the (X , s)-derived tree
from (T, d, v), denoted by JT, d, vKX ,s, by coinduction:

if the (X , s)-maximal path from (d, v) is finite and ends in (↓, w) for a node w labeled by
a, then JT, d, vKX ,s = a(JT, ↑ 1, wKX ,s, . . . , JT, ↑ rank(a), wKX ,s);
otherwise, JT, d, vKX ,s = ⊥.

The (X , s)-derived tree from T is JT KX ,s = JT, ↓, v0KX ,s, where v0 is the root of T . We say
that T is normalizing if JT KX ,s does not contain ⊥.

The following lemma performs the order reduction. It crucially relies on the safety
assumption. It is a variant of results proved in Knapik et al. [33, 34] (c.f. [4, Appendix C]
for more details). Intuitively, it says that a lambda-tree representation T of a safe recursion
scheme G of order m can be computed by a safe recursion scheme of order m − 1 in a
semantic-preserving way.
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I Lemma 3.3 ([33, 34]). For every safe recursion scheme G of order m ≥ 1 one can construct
a safe recursion scheme G′ of order m− 1, a finite set of variables X , and a number s ∈ N
such that

JBT (G′)KX ,s = BT (G).

I Remark 3.4. In Knapik et al. [33, 34] the lambda-tree T is denoted G(X0)ג (where X0 is
the starting nonterminal of G), and the recursion scheme G′ is denoted Gα. The set X is just
the set of variables appearing in the letters used in Gα; the number s can be also read out of
Gα. They prove that the (X , s)-derived tree of G(X0)ג equals the tree generated by G [33,
Proposition 4], that Gα is safe [34, Lemma 3.5], and that Gα generates .G(X0)ג

In order to prove Lemma 3.3, one needs to replace in G every variable x of type o by
x, every lambda-binder concerning such a variable by λx, and every application with an
argument of type o by a construct creating a @-labeled node. Types of subterms change and
the order of the recursion scheme decreases by one. Notice, however, that while computing
BT (Λ(G)) we may need to rename variables during capture-avoiding substitutions, while in
the tree generated by the modified recursion scheme we leave original variable names. In
general (i.e., when the transformation is applied to an arbitrary recursion scheme) this causes
a problem of overlapping variable names. The assumption that G is safe is crucial here and
there is no need to rename variables when applying the transformation to a safe recursion
scheme.

Having Lemma 3.3, it remains to transform a one-way B-automaton A operating on the
tree generated by G into a two-way B-automaton A′ operating on the lambda-tree generated
by G′, as described by the following lemma (as mentioned on page 5, we can assume that
G is normalizing, which implies that BT (G′) is normalizing: the tree JBT (G′)KX ,s = BT (G)
does not contain ⊥).

I Lemma 3.5. Let A be an alternating one-way B-automaton over a finite alphabet A, let
X be a finite set of variables, and let s ∈ N. One can construct an alternating two-way
B-automaton A′ such that for every normalizing lambda-tree T over AX ,

A accepts JT KX ,s if and only if A′ accepts T.

Proof. The B-automaton A′ simulates A on the lambda-tree. Whenever A wants to go
down to the i-th child, A′ has to follow the (X , s)-maximal path from (↑ i, v) (where v is
the current node). To this end, it has to remember the current pair (d, v), and repeatedly
find its (X , s)-successor. Here v is always just the current node visited by the B-automaton;
the d component comes from the (finite) set DirsX ,s, and thus it can be remembered in the
state. It is straightforward to encode the definition of an (X , s)-successor in transitions of
an automaton. We do not have to worry about infinite (X , s)-maximal paths, because by
assumption the (X , s)-derived tree does not contain ⊥-labeled nodes. J

4 Downward closures of tree languages

In this section we lay down a method for the computation of the downward closure for classes
of languages of finite trees closed under linear FTT transductions. This method is analogous
to the one of Zetzsche [54] for the case of finite words. In Section 4.1 we define the downward
closure of languages of finite ranked trees with respect to the embedding well-quasi order
and in Section 4.2 we define the simultaneous unboundedness problem for trees and show
how computing the downward closure reduces to it. In Section 4.3 we define the diagonal
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problem for finite trees and show how the previous problem reduces to it. We will then solve
the diagonal problem for languages of finite trees recognized by safe recursion schemes in
Section 5.

Let us emphasize that this section can be applied to any class of languages of finite trees
closed under linear FTT transductions, not just those recognized by safe recursion schemes.

4.1 Preliminaries
Given two finite trees S = a(S1, . . . , Sk) and T = b(T1, . . . , Tr), we say that S homeomorph-
ically embeds into T , written S v T , if, either
1) there exists i ∈ {1, . . . , r} such that S v Ti, or
2) a = b, k = r, and Si v Ti for all i ∈ {1, . . . , r}.
For a language of finite trees L, its downward closure, denoted by L↓, is the set of trees S
such that S v T for some tree T ∈ L.

Pure products. Goubault-Larrecq and Schmitz [25] describe downward-closed sets of trees
using so-called simple tree regular expressions. Among those expressions they distinguish
products, which describe ideals of trees. Because every downward-closed set of trees is a finite
union of ideals, such a set can be described by a finite list of products. Since their definition
of a product is rather indirect, we consider the stronger notion of pure products.

A context is a tree possibly containing one or more occurrences of a special leaf �, called a
hole. Given a context C and a set of trees L, we write C[L] for the set of trees obtained from
C by replacing every occurrence of the hole � by some tree from L. Different occurrences of
� are replaced by possibly different trees from L. The definition readily extends to a set of
contexts C, by writing C[L] for

⋃
C∈C C[L]. If C does not have any �, then C[L] is just {C}.

A pure product is defined according to the following abstract syntax:

P ::= a?(P, . . . , P ) | I∗.P, C ::= a(P�, . . . , P�),
I ::= C + · · ·+ C, P� ::= � | P,

where the sum of contexts is nonempty, and where in a context C = a(P�,1, . . . , P�,r) it is
required that at least one P�,i is a hole �. A pure product P denotes a set of trees JP K
downward-closed for v, which is defined recursively as follows:

Ja?(P1, . . . , Pr)K = {a(T1, . . . , Tr) | ∀i . Ti ∈ JPiK} ∪ JP1K ∪ · · · ∪ JPrK,

JI∗.P K =
⋃
n∈N

JIK[. . . [JIK[︸ ︷︷ ︸
n

JP K]] . . . ],

JC1 + · · ·+ CkK = JC1K ∪ · · · ∪ JCkK,

Ja(P�,1, . . . , P�,r)K = {a(T1, . . . , Tr) | ∀i . Ti ∈ JP�,iK} ∪ JP�,1K ∪ · · · ∪ JP�,rK,

J�K = {�} .

For example, J(a(b(), �))∗.c?()K is the set of trees of the form either b(), or c(), or
a(b(), a(b(), . . . a(b(), x) . . . )) with x either b() or c(). Based on the results of Goubault-
Larrecq and Schmitz [25] it is not difficult to deduce the following lemma (see [4, Appendix
D] for a proof).

I Lemma 4.1. Every set of trees L downward-closed for v can be represented as L =
JP1K ∪ · · · ∪ JPkK, in which P1, . . . , Pk are pure products.
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This decomposition result strengthens the results of Goubault-Larrecq and Schmitz [25]
by showing that pure products (instead of just products) suffice in order to represent
downward-closed sets of trees.

Transductions. A (nondeterministic) finite tree transducer (FTT) is a tuple A = (Ain,

Aout , S, p
I , δ), where Ain,Aout are the input and output alphabets (finite, ranked), S is a

finite set of control states, pI ∈ S is an initial state, and δ is a finite set of transition rules of
the form either (p, a(x1, . . . , xr))→ T or (p, x)→ T , where p ∈ S is a control state, a ∈ Ain
is a letter of rank r, and T is a finite tree over the alphabet Aout ∪ (S × {x1, . . . , xr}) or
Aout ∪ (S × {x}), respectively. The rank of all the pairs from S × {x1, . . . , xr} or S × {x}
is 0. An FTT is linear if for each rule of the form (p, a(x1, . . . , xr)) → T and for each
i ∈ {1, . . . , r}, in T there is at most one letter from S × {xi}, and moreover for each rule of
the form (p, x)→ T , in T there is at most one letter from S × {x}. An FTT A defines in a
natural way a relation between finite trees, also denoted A (c.f. Comon et al. [19]). For a
language L we write A(L) for the set of trees U such that (T,U) ∈ A for some T ∈ L. A
function that maps L to A(L) for some linear FTT A is called a linear FTT transduction.

I Fact 4.2. The downward closure operation L 7→ L↓ and the regular restriction operation
L 7→ L ∩R (for every regular language R) are effectively linear FTT transductions.

I Lemma 4.3 (c.f. [4, Appendix E]). The class of languages of finite trees recognized by safe
recursion schemes is effectively closed under linear FTT transductions.

4.2 The simultaneous unboundedness problem for trees

We say that a pure product P is diversified, if no letter appears in P more than once. The
simultaneous unboundedness problem (SUP) for a class C of finite trees asks, given a diversified
pure product P and a language L ∈ C such that L ⊆ JP K, whether JP K ⊆ L↓.

I Remark 4.4. This is a generalization of SUP over finite words. In the latter problem,
one is given a language of finite words L such that L ⊆ a∗1 . . . a∗k, and must check whether
a∗1 . . . a

∗
k ⊆ L↓. A word in a∗1 . . . a

∗
k can be represented as a linear tree by interpreting

a1, . . . , ak as unary letters and by appending a new leaf e at the end. Thus a∗1 . . . a∗k can be
represented as the language of the diversified pure product (a1(�))∗.(a2(�))∗. · · · .(ak(�))∗.e?().

Following Zetzsche [54], we can reduce the computation of the downward closure to SUP.

I Theorem 4.5 (c.f. [4, Appendix F]). Let C be a class of languages of finite trees closed
under linear FTT transductions. One can compute a finite tree automaton recognizing the
downward closure of a given language from C if and only if SUP is decidable for C.

I Remark 4.6. Pure products for trees correspond to expressions of the form a?
0A
∗
1a

?
1 . . . A

∗
ka

?
k

for words (where Ai are sets of letters). In SUP for words simpler expressions of the form
b∗1 . . . b

∗
k suffice. This is not possible for trees:

1) expressions of the form a?(·, ·) cannot be removed since they are responsible for branching,
and

2) reducing the two contexts in (a(P1, �)+b(P2, �))∗.P3 to a single one would require changing
trees of the form a(T1, b(T2, T3)) into trees of the form c(T1, T2, T3), which is not a linear
FTT transduction.
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4.3 The diagonal problem for trees
In SUP for words, instead of checking whether a∗1 . . . a∗k ⊆ L↓, one can equivalently check
whether, for each n ∈ N, there is a word ax1

1 . . . axk

k ∈ L such that x1, . . . , xk ≥ n. The latter
problem is known as the diagonal problem for words. In this section, we define an analogous
diagonal problem for trees, and we show how to reduce SUP to it.

Given a set of letters Σ, we say that a language of finite trees L is Σ-diagonal if, for every
n ∈ N, there is a tree T ∈ L such that for every letter a ∈ Σ and every branch B of T there
are at least n occurrences a in B. The diagonal problem for a class C of finite trees asks,
given a language L ∈ C and a set of letters Σ, whether L is Σ-diagonal.

Versatile trees. Contrary to the case of words, the presence of sums in our expressions
creates some complications in reducing from SUP to the diagonal problem. We deal with
these sums by introducing the notion of versatile trees. Intuitively, in order to obtain a
versatile tree of a pure product P , for every sum I = C1 + · · ·+Ck in P we fix some order of
the contexts C1, . . . , Ck, and we allow the contexts to be appended in this order. Formally,
the set LP M of versatile trees of a pure product P is defined by structural induction on P :

LI∗.P M =
⋃
n∈N

LIM[(LIM ∪ {�})[. . . [(LIM ∪ {�})[︸ ︷︷ ︸
n

LP M]] . . . ]],

La?(P1, . . . , Pr)M = La(P1, . . . , Pr)M,
LC1 + · · ·+ CkM = LC1M[. . . [LCkM] . . . ],

La(P�,1, . . . , P�,r)M = {a(T1, . . . , Tr) | ∀i . Ti ∈ LP�,iM} ,
L�M = {�} .

For example, if I = a(S1, �, �) + b(�, S2), then LIM = {a(S1, b(�, S2), b(�, S2))}. Notice that
all trees in LP M have the same root’s label; denote this label by root(P ).

From SUP to the diagonal problem. Assuming that P is diversified, for a number n ∈ N
we say that a tree T is n-large with respect to P if, for every subexpression of P of the
form I∗.P ′, above every occurrence of root(P ′) in T there are at least n ancestors labeled
by root(I∗.P ′). In other words, for T ∈ LP M this means that in T every context appearing
in P was appended at least n times, on all branches where it was possible to append it.
Clearly LP M ⊆ JP K. On the other hand, every tree from JP K can be embedded into every
large enough versatile tree. We thus obtain the following lemma.

I Lemma 4.7. For every diversified pure product P , and for every sequence of trees
T1, T2, · · · ∈ LP M such that every Tn is n-large, {Tn | n ∈ N}↓ = JP K.

Using versatile trees we can reduce from SUP to the diagonal problem.

I Lemma 4.8 (c.f. [4, Appendix G]). Let C be a class of languages of finite trees closed under
linear FTT transductions. SUP for C reduces to the diagonal problem for C.

I Remark 4.9. Another formulation of the diagonal problem for languages of finite trees
[29, 14, 45] requires that, for every n ∈ N, there is a tree T ∈ L containing at least n
occurrences of every letter a ∈ Σ (not necessarily on the same branch, unlike in our case).
Such a formulation of the diagonal problem seems too weak to compute downward closures
for languages of finite trees.
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5 Languages of safe recursion schemes

In the previous section, we have developed a general machinery allowing one to compute
downward closures for classes of languages of finite trees closed under linear FTT transductions.
In this section, we apply this machinery to the particular case of languages recognized by
safe recursion schemes. The following is the main theorem of this section.

I Theorem 5.1. Finite tree automata recognizing downward closures of languages of finite
trees recognised by safe recursion schemes are computable.

In order to prove the theorem we need to recall a formalism necessary to express the
diagonal problem in logic.

Cost logics. Cost monadic logic (CMSO) was introduced in Colcombet [15] as a quantitative
extension of monadic second-order logic. As usual, the logic can be defined over any relational
structure, but we restrict our attention to CMSO over trees. In addition to first-order variables
ranging over nodes of the tree and monadic second-order variables (also called set variables)
ranging over sets of nodes, CMSO uses a single additional variable N , called the numeric
variable, which ranges over N. The atomic formulas in CMSO are those from MSO (the
membership relation x ∈ X and relations a(x, x1, . . . , xr) asserting that a ∈ A of rank r is the
label at node x with children x1, . . . , xr from left to right), as well as a new predicate |X| 6 N ,
where X is any set variable and N is the numeric variable. Arbitrary CMSO formulas are built
inductively by applying Boolean connectives and by quantifying (existentially or universally)
over first-order or set variables. We require that any predicates of the form |X| 6 N appear
positively in the formula (i.e., within the scope of an even number of negations). We regard
N as a parameter. As usual, a sentence is a formula without first-order or monadic free
variables; however, the parameter N is allowed to occur in a sentence. If we fix a value n ∈ N
for N , the semantics of |X| 6 N is what one would expect: the predicate holds when X has
cardinality at most n. We say that a sentence ϕ n-accepts a tree T if it holds in T when n is
used as value of N ; it accepts T if it n-accepts T for some n ∈ N. The language defined by ϕ
is the set of all trees (over a fixed alphabet A) accepted by ϕ.

Weak cost monadic logic (WCMSO for short) is the variant of CMSO where the second-
order quantification is restricted to finite sets. Vanden Boom [53, Theorem 2] proves that
WCMSO is effectively equivalent to a subclass of alternating B-automata, called weak
B-automata. Thanks to Theorem 3.1, we obtain the following corollary.

I Corollary 5.2. The model-checking problem of safe recursion schemes against WCMSO
properties is decidable.

I Remark 5.3. The same holds for a more expressive logic called quasi-weak cost monadic
logic (QWCMSO) [6], whose expressive power lies between WCMSO and the CMSO. Indeed,
Blumensath et al. [6, Theorem 2] prove that QWCMSO is effectively equivalent to a subclass
of alternating B-automata called quasi-weak B-automata, and thus by Theorem 3.1 even
model checking of safe recursion schemes against QWCMSO properties is decidable.

Solving the diagonal problem. By Theorem 4.5 and Lemma 4.8, all we need to do is to
show that the diagonal problem is decidable for languages recognized by safe recursion
schemes, that is, that given a safe recursion scheme G and a set of letters Σ, one can check
whether for every n ∈ N there is a tree T ∈ L(G) such that there are at least n occurrences
of every letter a ∈ Σ on every branch of T (we say that such a tree T is n-large with respect
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to Σ). In order to do this, given a set of letters Σ, we write a WCMSO sentence ϕΣ that
n-accepts an (infinite) tree T if and only if no tree in L(T ) is n-large with respect to Σ.
Consequently, ϕΣ accepts T if for some n no tree in L(T ) is n-large with respect to Σ, that is,
if L(T ) is not Σ-diagonal. Thus, in order to solve the diagonal problem, it is enough to check
whether ϕΣ accepts BT (G) (recall that L(G) is defined as L(BT (G))), which is decidable by
Corollary 5.2. It remains to construct the aforementioned sentence ϕΣ.

First, observe that the process of producing a finite tree recognized by G from the infinite
tree BT (G) generated by G is expressible by a formula of WCMSO (actually, by a first-order
formula). More precisely we can write a WCMSO formula tree(X) that holds in a tree T
if and only if X is instantiated to a set of nodes of a tree T ′ ∈ L(T ), together with their
nd-labeled ancestors. See [4, Appendix H] for more details. Using tree(X) we now construct
the desired formula ϕΣ, and thus we finish the proof of Theorem 5.1.

I Lemma 5.4. Given a set of letters Σ, one can compute a WCMSO sentence ϕΣ that, for
every n ∈ N, n-accepts a tree T if and only if no tree in L(T ) is n-large with respect to Σ.

Proof. We can reformulate the property as follows: for every tree T ′ ∈ L(T ) there is a
letter a ∈ Σ, and a leaf x that has less than n a-labeled ancestors. This is expressed by the
following formula of WCMSO (where leaf(x) states that the node x is a leaf, a(x) that x has
label a, and z ≤ x that z is an ancestor of x, all being easily expressible):

∀X.
(
tree(X)→

∨
a∈Σ
∃x∃Z.

(
x ∈ X ∧ leaf(x) ∧ ∀z.(z ≤ x ∧ a(z)→ z ∈ Z) ∧ |Z| < N

))
. J

6 Conclusions

A tantalising direction for further work is to drop the safety assumption from Theorem 3.1,
that is, to establish whether the model-checking problem against B-automata is decidable
for trees generated by (not necessarily safe) recursion schemes. We also leave open whether
downward closures are computable for this more expressive class. Another direction for
further work is to analyse the complexity of the considered model-checking problem. The
related problem described in Remark 4.9 is k-EXP-complete for languages of finite trees
recognised by recursion schemes of order k [45], and thus not harder than the nonemptiness
problem [43]. Does the same upper bound hold for the more general diagonal problem that
we consider in this paper? Zetzsche [56] has shown that the downward closure inclusion
problem is co-k-NEXP-hard for languages of finite trees recognised by safe recursion schemes
of order k. Is it possible to obtain a matching upper bound?
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