41,684 research outputs found

    Modelling conjugate flow and heat transfer in a ventilated room for indoor thermal comfort assessment

    Get PDF
    Conjugate natural and forced convection heat transfers in a domestic model room of finite-thickness walls and a heat source have been numerically studied. A 2-D non-ventilated square model room with a heat source is investigated at first for conditions of Prandtl number Pr=0.7 and Grashof number Gr=107. Computational results are compared with already validated numerical predictions and good agreement has been achieved in terms of stream function and temperature distributions. The study continues to consider 3-D ventilated rectangular model room with a finite-thickness wall and a heat source, in order to evaluate flow and heat transfer characteristics. Key physical features such as temperature distributions in both solid wall and indoor air domains, and heat transfer performance have been quantified, analysed and compared. These results provide the correlations among room heating device arrangement, wall thickness effect, indoor thermal comfort level and energy consumption. It was found that the arrangements of heat source and window glazing had significant impact on the temperature field, and further analysis of wall thickness and thermal conductivity variations revealed the level of the comfort temperature within the occupied zone. It was also found that for an average U-value of 0.22 W/m2K, thermal energy loss through a thinner wall of 20 cm thickness is 53% higher and indoor thermal temperature is 4.6 °C lower, compared with those of a thicker wall of 40 cm thickness. The findings would be useful for the built environment thermal engineers in design and optimisation of domestic rooms with a heat source

    A general extrudate bulk density model for both twin-screw and single-screw extruder extrusion cooking processes

    Get PDF
    Effects of extrusion parameters and raw materials on extrudate expansion are respectively investigated in a twin-screw extruder and a single-screw extruder extrusion cooking experiments for fish feed, wheat, and oat & wheat mixture processing. A new phenomenological model is proposed to correlated extrudate bulk density, extrusion parameters and raw material changes based on the experimental results. The average absolute deviation (AAD) of the correlation is 2.2% for fish feed extrusion in the twin-screw extrusion process. For the single-screw extrusion process, the correlation AAD is respectively 3.03%, 5.14% for wheat and oat & wheat mixture extrusion; and the correlation AAD is 6.6% for raw material change effects. The correlation results demonstrate that the proposed equation can be used to calculate extrudate bulk density for both the twin-screw extruder and the single-screw extruder extrusion cooking processes

    A co-operating solver approach to building simulation

    Get PDF
    This paper describes the co-operating solver approach to building simulation as encapsulated within the ESP-r system. Possible adaptations are then considered to accommodate new functional requirements

    Helicity of convective flows from localized heat source in a rotating layer

    Full text link
    Experimental and numerical study of the steady-state cyclonic vortex from isolated heat source in a rotating fluid layer is described. The structure of laboratory cyclonic vortex is similar to the typical structure of tropical cyclones from observational data and numerical modelling including secondary flows in the boundary layer. Differential characteristics of the flow were studied by numerical simulation using CFD software FlowVision. Helicity distribution in rotating fluid layer with localized heat source was analysed. Two mechanisms which play role in helicity generation are found. The first one is the strong correlation of cyclonic vortex and intensive upward motion in the central part of the vessel. The second one is due to large gradients of velocity on the periphery. The integral helicity in the considered case is substantial and its relative level is high

    Fire Spalling Prevention via Polypropylene Fibres: A Meso-and Macroscale Approach

    Get PDF
    A deep understanding of concrete at the mesoscale level is essential for a better comprehension of several concrete phenomena, such as creep, damage, and spalling. The latter one specifically corresponds to the separation of pieces of concrete from the surface of a structural element when it is exposed to high and rapidly rising temperatures; for this phenomenon a mesoscopic approach is fundamental since aggregates performance and their thermal properties play a crucial role. To reduce the risk of spalling of a concrete material under fire condition, the inclusion of a low dosage of polypropylene fibres in the mix design of concrete is largely recognized. PP fibres in fact evaporate above certain temperatures, thus increasing the porosity and reducing the internal pressure in the material by an increase of the voids connectivity in the cement paste. In this work, the contribution of polypropylene fibres on concrete behaviour, if subjected to elevated thermal ranges, has been numerically investigated thanks to a coupled hygrothermomechanical finite element formulation. Numerical analyses at the macro- and mesoscale levels have been performed

    Linkage between knowledge management practices towards library user’s satisfaction at Malaysian University Libraries

    Get PDF
    Academic library services have begun to apply various knowledge management (KM) practices in the provision of library services. KM has been developed to enhance the use of organizational knowledge through practices and organizational learning. KM practices include the creation, capture and/or acquisition of knowledge, its retention and organization, its dissemination and re-use, and general responsiveness to the new knowledge. The focus of this research is the assessment of KM practices, particularly creation, acquisition, capture, sharing, recording and preservation, and their effects on Library User’s Satisfaction (LUS) in Malaysian university libraries. The objective of this research is the development of a model to enhance KM processes (i.e. Creation, acquisition, capturing, sharing, recording, and preserving) and to improve library users’ satisfaction. A quantitative approach in research methodology is employed (e.g. Questionnaire) for the purpose of generating new knowledge and understanding of library concerns. The findings of this research show that the overall KM practice at six Malaysian university libraries is at a high level. The findings from the structural model indicated that two KM processes, namely knowledge creation and acquisition, are not supported in terms of KM practices at Malaysian university libraries. Other KM processes, namely capturing, sharing, recording, and preserving are fully supported towards KM practices in the library. Hence, the major contribution of this research is a model, namely KM Practice-Library User’s Satisfaction (KMP-LUS) highlighting six KM processes based on strong Structural Equation Modeling (SEM) fit indices

    Warpage issues in large area mould embedding technologies

    Get PDF
    The need for higher communications speed, heterogeneous integration and further miniaturisation have increased demand in developing new 3D integrated packaging technologies which include wafer-level moulding and chip-to-wafer interconnections . Wafer-level moulding refers to the embedding of multiple chips or heterogeneous systems on the wafer scale. This can be achieved through a relatively new technology consisting of thermal compression moulding of granular or liquid epoxy moulding compounds. Experimental measurements from compression moulding on 8” blank wafers have shown an unexpected tendency to warp into a cylindrical-shape following cooling from the moulding temperature to room temperature. Wafer warpage occurs primarily as a result of a mismatch between the coefficient of thermal expansion of the resin compound and the Si wafer. This paper will delve into possible causes of such asymmetric warpage related to mould, dimensional and material characteristics using finite element (FE) software (ANSYS Mechanical). The FE model of the resin on wafer deposition will be validated against the measurement results and will be used to deduce appropriate guidelines for low warpage wafer encapsulation.peer-reviewe
    • …
    corecore