2,162 research outputs found

    Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures

    Get PDF
    A correct statistical model of soil pore structure can be critical for understanding flow and transport processes in soils, and creating synthetic soil pore spaces for hypothetical and model testing, and evaluating similarity of pore spaces of different soils. Advanced visualization techniques such as X-ray computed tomography (CT) offer new opportunities of exploring heterogeneity of soil properties at horizon or aggregate scales. Simple fractal models such as fractional Brownian motion that have been proposed to capture the complex behavior of soil spatial variation at field scale rarely simulate irregularity patterns displayed by spatial series of soil properties. The objective of this work was to use CT data to test the hypothesis that soil pore structure at the horizon scale may be represented by multifractal models. X-ray CT scans of twelve, water-saturated, 20-cm long soil columns with diameters of 7.5 cm were analyzed. A reconstruction algorithm was applied to convert the X-ray CT data into a stack of 1480 grayscale digital images with a voxel resolution of 110 microns and a cross-sectional size of 690 Ă— 690 pixels. The images were binarized and the spatial series of the percentage of void space vs. depth was analyzed to evaluate the applicability of the multifractal model. The series of depth-dependent macroporosity values exhibited a well-defined multifractal structure that was revealed by singularity and RĂ©nyi spectra. The long-range dependencies in these series were parameterized by the Hurst exponent. Values of the Hurst exponent close to one were observed indicating the strong persistence in variations of porosity with depth. The multifractal modeling of soil macropore structure can be an efficient method for parameterizing and simulating the vertical spatial heterogeneity of soil pore space

    Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    Get PDF
    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 µm, 6.2 µm, 8.3 µm and 10.2 µm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 µm) to lower resolutions (6.2 µm, 8.3 µm and 10.2 µm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data

    Two-phase flow in rocks : new insights from multi-scale pore network modeling and fast pore scale visualization

    Get PDF
    Many geological applications involve the flow of multiple fluids through porous geological materials, e.g. environmental remediation of polluted ground water resources, carbon dioxide storage in geological reservoirs and petroleum recovery. Commonly, to model these applications, the geological materials in question are treated as continuous porous media with effective material properties. Since these properties are a manifestation of what goes on in the pores of the material, we have to study the transport processes at the pore scale to understand why and how they vary over space and time in different rocks and under different conditions. As the high cost of acquiring and testing samples in many of these applications is often a limiting factor, numerical modelling at the pore scale is becoming a key technology to gain new insights in this field. This could be crucial in reducing uncertainties in field scale projects. The work presented in this thesis focuses on the investigation of two-phase flow in sedimentary rocks, and is an integrated numerical and experimental study. It deals primarily with two outstanding issues. First, image-based pore scale simulation methods have difficulties with representing the multiple pore scales in rocks with wide pore size distributions, due to a trade-off in the size and resolution of both modeling and imaging methods. Therefore, performing two-phase flow simulations in a number of important rock types, such as many carbonates and tight, clay-baring sandstones has remained an outstanding challenge. To tackle this problem, a new numerical model was developed to calculate capillary pressure, relative permeability and resistivity index curves during drainage and imbibition processes in such materials. The multi-scale model was based on information obtained from 3D micro-computed tomography images of the internal pore structure, complemented with information on the pores that are unresolved with this technique. In this method, pore network models were first extracted from resolved pores in the images, by using a maximal ball network extraction algorithm. Then, pores which touched regions with unresolved porosity were connected with a special type of network element called micro-links. In the quasi-static simulations that were performed on these network models, the micro-links carried average properties of the unresolved porosity. In contrast to most previous models, the new approach to taking into account unresolved porosity therefore allowed efficient simulations on images of complex rocks, with sizes comparable to single-scale pore network models. It was able to reproduce most of the behaviour of a fully resolved pore network model, for both drainage and imbibition processes, and for different pore scale wettability distributions (water-wet, oil-wet and different mixed-wet distributions). Furthermore, simulations on images of carbonate rocks showed good agreement to experiments. A sensitivity study on carbonate rocks and tight, clay-bearing sandstones produced results that were in qualitative agreement with experiments, and allowed to analyse how the two-phase flow behaviour of these rocks is influenced by their pore scale properties. The second issue which is treated in this thesis is related to the validation of pore scale models. Comparing predicted effective properties to experimentally measured values is useful and necessary, but is complicated by the typical difference in size between the model and the experiment. Furthermore, it does not always give a clear indication of the reasons for an observed mismatch between models and experiments. Comparing two-phase flow models to pore scale experiments in which the evolution of the fluid distributions is visualized is thus extremely useful. However, this requires to image the two-phase flow process while it is taking place in a rock, and it is necessary to do this with time resolutions on the order of tens of seconds and spatial resolutions on the order of micrometers. Previous experimental approaches used synchrotron beam lines to achieve this. In this thesis, we show that such experiments are also possible using laboratory-based micro-computed tomography scanners, which are orders of magnitude cheaper and therefore more accessible than synchrotrons. An experiment in which kerosene was pumped into a water-saturated sandstone is presented, showing that individual Haines jumps (pore filling events) could be visualized during this drainage process. Because the image quality is lower than at synchrotrons, care had to be taken to adapt the image analysis work flow to deal with high image noise levels. The work flow was designed to allow to track the fluid filling state of individual pores. The results indicate that the dynamic effects due to viscous and inertial forces during Haines jumps do not significantly impact the evolution of the fluid distributions during drainage, which may thus be adequately described by quasi-static models

    Examining the Effect of Pore Size Distribution and Shape on Flow through Unsaturated Peat using Computer Tomography

    Get PDF
    The hydraulic conductivity of unsaturated peat soil is controlled by the air-filled porosity, pore size and geometric distribution as well as other physical properties of peat materials. This study investigates how the size and shape of pores affects the flow of water through peat soils. In this study we used X-ray Computed Tomography (CT), at 45ÎĽm resolution under 5 specific soil-water pressure head levels to provide 3-D, high-resolution images that were used to detect the inner pore structure of peat samples under a changing water regime. Pore structure and configuration were found to be irregular, which affected the rate of water transmission through peat soils. The 3-D analysis suggested that pore distribution is dominated by a single large pore-space. At low pressure head, this single large air-filled pore imparted a more effective flowpath compared to smaller pores. Smaller pores were disconnected and the flowpath was more tortuous than in the single large air-filled pore, and their contribution to flow was negligible when the single large pore was active. We quantify the pore structure of peat soil that affects the hydraulic conductivity in the unsaturated condition, and demonstrate the validity of our estimation of peat unsaturated hydraulic conductivity by making a comparison with a standard permeameter-based method. Estimates of unsaturated hydraulic conductivities were made for the purpose of testing the sensitivity of pore shape and geometry parameters on the hydraulic properties of peats and how to evaluate the structure of the peat and its affects on parameterization. We also studied the ability to quantify these factors for different soil moisture contents in order to define how the factors controlling the shape coefficient vary with changes in soil water pressure head. The relation between measured and estimated unsaturated hydraulic conductivity at various heads shows that rapid initial drainage, that changes the air-filled pore properties, creates a sharp decline in hydraulic conductivity. This is because the large pores readily lose water, the peat rapidly becomes less conductive and the flow path among pores, more tortuous

    An Integrated Petrographic, Geomatic and Geophysical Approach for the Characterization of the Carbonate Rocks of the Calcari di Cagliari Formation

    Get PDF
    Non-invasive techniques, such as close-range photogrammetry (CRP) and 3D ultrasonic tomography complemented with optical and scanning electron microscopy and mercury porosimetry, were applied to characterize the carbonate rock samples of the Calcari di Cagliari formation. The integrated approach started with the computation of high-resolution 3D models of the carbonate samples using the CRP technique to produce 3D high-resolution models texturized both with natural colors and intensity. Starting from the 3D models from previous techniques, a 3D ultrasonic tomography on each rock sample was accurately planned and carried out in order to detect the elastic properties of such rocks and relate them to textural heterogeneity or internal defects. The results indicate that the relationship between longitudinal velocity and rock properties is complex even in the same carbonate formation. Understanding the relationship between the geomatic and geophysical responses in the investigated rock properties, such as textural characteristics and especially structure and geometry of pores, type of pores, tortuosity and cementing material, is important for many practical applications and especially in the diagnostic process of the conservation state of monumental structures. The integration of the above non-invasive techniques complemented by petrographical–petrophysical data proved to be a powerful method to associate each lithotype with a different susceptibility to degradation. The results presented in this paper demonstrate that the proposed integrated use of complementary methodologies would guarantee the reproducibility of the measurements both at the laboratory and field scale for the monitoring in time of the rock condition while giving a useful contribution in making decisions on an appropriate remedial strategy
    • …
    corecore