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A correct statistical model of soil pore structure can be critical for understanding flow and transport 
processes in soils, and creating synthetic soil pore spaces for hypothetical and model testing, and evaluating 
similarity of pore spaces of different soils. Advanced visualization techniques such as X-ray computed 
tomography (CT) offer new opportunities of exploring heterogeneity of soil properties at horizon or 
aggregate scales. Simple fractal models such as fractional Brownian motion that have been proposed to 
capture the complex behavior of soil spatial variation at field scale rarely simulate irregularity patterns 
displayed by spatial series of soil properties. The objective of this work was to use CT data to test the 
hypothesis that soil pore structure at the horizon scale may be represented by multifractal models. X-ray CT 
scans of twelve, water-saturated, 20-cm long soil columns with diameters of 7.5 cm were analyzed. A 
reconstruction algorithm was applied to convert the X-ray CT data into a stack of 1480 grayscale digital 
images with a voxel resolution of 110 microns and a cross-sectional size of 690 x 690 pixels. The images were 
binarized and the spatial series of the percentage of void space vs. depth was analyzed to evaluate the 
applicability of the multifractal model. The series of depth-dependent macroporosity values exhibited a well-
defined multifractal structure that was revealed by singularity and Rényi spectra. The long-range 
dependencies in these series were parameterized by the Hurst exponent. Values of the Hurst exponent 
close to one were observed indicating the strong persistence in variations of porosity with depth. The 
multifractal modeling of soil macropore structure can be an efficient method for parameterizing and 
simulating the vertical spatial heterogeneity of soil pore space. 

1. Introduction 

The soil pore space arrangement can control important physical 
and biological processes in soil-plant-microbial systems, where 
microbial population dynamics, nutrient cycling, diffusion, mass 
flow and nutrient uptake by roots take place across many orders of 
magnitude in length scale (Young and Crawford, 2004). A correct 
statistical model of soil pore structure can be critical for understand
ing flow and transport processes in soils, creating synthetic soil pore 
spaces for hypothesis and model testing, and evaluating similarity of 
pore spaces of different soils. 

Heuvelink and Webster, 2001 described complexity as the key 
word when referring to soil pore space structure. Over the last few 
decades, the use of fractal geometry for dealing with this complexity 
has been proposed and fractal techniques have been applied 
successfully to characterize various aspects of soil pore structure 

(eg., Rieu and Sposito, 1991; Bartoli et al., 1991; Perfect and Kay, 1991; 
Peyton et al., 1994; Anderson and McBratney, 1995; Bird et al., 1996; 
Crawford and Matsui, 1996; Pachepsky et al., 1996; Giménez et al., 
1997; Baveye et al., 1998). 

The fractional Brownian motion was the first type of fractal model 
that was used to describe the complex behavior of soil spatial variation 
(Burrough, 1983a,b; Eghball et al., 1999), by using the assumption that 
the variation of a particular soil property was the realization of a 
stochastic process. As a particular soil attribute exhibits long-range 
dependencies associated with the power law decay of the autocorre
lation as a function of spacing, soil variability exhibits memory and 
should be measured via the exponent of the power law or the related 
Hurst exponent (Burrough, 1983a; Mandelbrot and Van Ness, 1968). A 
similar research for rocks was demonstrated when both porosity values 
in well logs of oil reservoirs (Hewett, 1986) and permeability of 
sedimentary rocks (Makse et al., 1996) displayed long-range spatial 
autocorrelations. These spatial patterns were of substantial interest for 
making predictions. The long-range dependency of permeability values 
implied that the transport of contaminants might be less widely 
dispersed than predicted by uncorrelated models (Makse et al., 1996). 



Fractal models capture the simple fractal behavior that can be 
described by just one parameter - the fractal dimension - which 
accounts for scaling properties of the irregular behavior. A closer look at 
spatial series often showed "bursts" and "jumps" and, in general, types 
of erratic variation which cannot be explained by simple fractal models. 
Such complexity may also be found in many distributions in nature 
which can be described by multifractal structures. These types of 
complex structures usually emerge as the result of the underlying non
linear dynamics (Falconer, 1990; Peitgen et al., 1992), as realization of 
stochastic multifractal processes (Riedi et al., 1999), or as superposition 
of other processes acting simultaneously over a wide range of length 
scales (Burrough, 1983a). It has been suggested that the variations of 
soil properties manifest an underlying chaotic, non-linear, dynamic 
system (Culling, 1988; Phillips, 1993), and therefore highly irregular 
patterns should be common (Beck and Schlogl, 1995). Multifractal 
analysis can be used as a tool for investigating the rich structure of such 
complex patterns. This analysis may add relevant information which can 
be used to better understand the features of soil variability (Kravchenko 
et al., 1999; Kravchenko and Pachepsky, 2004; Caniego et al., 2005; 
ZelekeandSi, 2006). 

Valuable information about pore space geometry can be provided by 
2-D image analysis of thin soil sections. Multifractal analysis can be used 
to characterize the heterogeneous 2-D spatial arrangement of solid and 
void phases (Muller and McCauley, 1992; Posadas et al., 2003; Tarquis 
et al., 2003; Bird et al., 2006) and the complexity of pore size distribution 
(Caniego et al., 2001,2003). These two, apriori, independent aspects can 
be modeled as mass distributions supported at a domain at a plane or at a 
size interval, respectively. These distributions can be fully characterized 
by the spectrum of fractal dimensions. 

Recent advance in visualization techniques such as X-ray computed 
tomography (CT) (e.g., Peyton et al., 1994; Perret et al., 1999; Pierret 
et al., 2002; Mees et al., 2003) has led to multiple cross-sectional images 
of the soil sample under study. Cylindrical soil columns were scanned 
and a large number of images of the sections perpendicular to the axis of 
the cylinder were obtained, which led to a 3-D structure of soil pore 
space. 

The objective of this work was to test the hypotheses that 
(a) multifractal modeling was applicable to series of 2-D sectional 
porosity vs. depth and, (b) a memory exists in those series that can be 
parameterized. 

2. Theory: multifractal analysis and long-range dependency 

To characterize the variation of a soil property, it is customary to 
select a transect and to measure this property at sampling points x¡. 
Usually, these points are equidistant. In order to observe the scaling 
behavior of the series fjj, a set of different meshes with cells or 
subintervals within the sampling domain is considered. A common 
choice for mesh generation is dyadic downscaling (Evertsz and 
Mandelbrot, 1992; Kravchenko et al., 1999). This dyadic downscaling 
is implemented through the successive partitioning of characteristic 
sizes s = 2~kL, where k = 0,1,2,... and! is the length of the column. At 
each scale g, a number JV(g) = 2k of subintervals /¡(g) is obtained. Each 
subinterval /¡(g) determines a stack of contiguous sections x¡ with 
height equal to g = 2~kL when x,e/¡(g). Then, their measures or 
masses 

Mi(e) = £x,e/i(s)H/ / ^*ÍHJ 

are computed from experimental data. This defines the measure or 
mass distribution \i with /^(g) as the measure or the mass of the 
dyadic subinterval /¡(g). The mass /^(g) is the fraction of the total pore 
volume of the column that corresponds to the sections x¡ of/¡(g). This 
ratio can be viewed as the contribution of this portion of the column to 
its total porosity. 

The value 

logs 

is the coarse singularity or coarse Holder exponent of the ¡-th cell of size g. 
Eq. (1) is equivalent to u¡(s)«sai(E) where "«" stands for the 

scaling or asymptotic behavior when g approaches zero. For most 
cases the exponent equals one and the measure has a density function. 
The ratio jU¡(g)/g is the empirical density of the subinterval /¡(g) and it 
defines the density function as g approaches zero and the ratio 
converges to a non-zero value. In many cases jU¡(g)/g diverges or tends 
towards zero and it is not possible to find a density function. In these 
cases, the asymptotic behavior of u¡(s)/sai(E) is well defined when a 
suitable exponent is chosen but, in general, this exponent varies from 
one subinterval to another and, eventually, from one point to another 
as g approaches zero (Evertsz and Mandelbrot, 1992). These are the 
singular measures that exhibit a variety of scale dependences. The 
multifractal analysis aims at studying these singular measures by 
characterizing the singularity exponents a which correspond to the 
asymptotic behavior of the coarse singular exponents «¡(g). These 
exponents represent the "crowding" or the degree of concentration of 
fj.: the greater this value is, the smaller is the concentration of the 
measure and vice versa. Typically, singularity exponents a of multi-
fractal distributions show a great variability such that their values fill 
an interval [amin,amax] when g approaches zero. When this interval 
reduces to a point it becomes a (mono-)fractal. 

Multifractal analysis relies on the idea of grouping together 
subintervals /¡(g) of similar degree of mass concentration «and analyzing 
the growth rate of the number of subintervals /¡(g) as the size g 
approaches to zero. Specifically, if Ne(ct) is the number of subintervals of 
size g with singularity exponent between a and ct+Aa, and/(a) is 
defined by the scaling equation 

¡VE(a)«s"/(a) forego, 

then /(a) converges to a continuous function called the singularity 
spectrum as Act—>0 (Evertsz and Mandelbrot, 1992). If we consider the 
set Aa of points with a singularity exponent equal to a, f(ct) 
characterizes the tendency of Aa to fill the support of the distribution. 
As a consequence/(a) may be interpreted as the fractal dimension of 
Aa. It is worth noting here that the points of each set Aa are spread 
over the whole interval that is the support of the measure. In this way 
the mass distribution \i can be characterized through an ensemble of 
interwoven fractal sets Aa with different fractal dimensions f(ct). 
Within each set Aa the measure displays a particular scaling described 
by the singularity exponent a. 

Following Chhabra and Jensen (1989), the singularity spectrum 
may be computed using a set of real numbers q by 

„ ^Ej'(l)iHi(g,e)logHi(s) .,. 
«~ logs { ' 

and 

/W,EI!^« (3) 

where the quantities rt(q,g) are defined as 

rt(9,) E?(i\rt(6)«-

The symbol "«" stands for the scaling or asymptotic behavior 
when g approaches zero and the summation is taken over the n(g) 
cells with no zero mass. Then, the singularity or Holder exponents as 



Fig. 1. View of a 20-cm long soil column with 7.5 cm diameter. 

given by Eq. (2) becomes a decreasing function of q. In fact, large 
values of the parameter q ( q » 1) correspond to small exponents and 
to high concentrations of the measure. And, small values of the 
parameter q (q<scl) correspond to large exponents and to low 
concentrations of the measure. This is a natural result: in Eq. (2), aq is 
obtained as an average with respect to the probability measure 
defined by quantities rt(q,e). These weights magnify the denser (more 
rarefied) regions for large (small) values of q. Therefore, negative 
values of q yield high exponents and small concentrations, as 

compared to positive values of q which yield low exponents and 
large concentrations. In particular, amax corresponds to a(q—>— °°) 
and ctmin corresponds to a(q—>°°). As q varies points (ctq, f{aq)) 
define a plane curve parameterized by q. It is the singularity spectrum 
of the measure fi. In general this spectrum has a parabolic shaped 
concave down graph that attains its maximum value /(ofe) at the point 
ao. The singularity exponent oft corresponds to the mean value of the 
singularity exponents a as it is the average of the exponents a 
weighted by the uniform distribution (Eq. (2)), and /(<%) gives the 
box-counting fractal dimension of the support of the measure 
(Eq. (3)). 

Alternatively, the multifractal behavior of a measure/J, with/j^g) as 
measures or masses of the dyadic subintervals l,(g), may be represented 
using the Rényi or generalized dimensions that are computed via 
expressions proposed by Grassberger (1983): 

D„ 1 logE?is>(e) 
q-1 logs 

for q^ 1 and 

D, logs 

(4) 

(5) 

for q = 1. Then, the set of points defined by (q, Dq) as q varies, defines 
a curve that depicts the Rényi spectrum of the measure fi. In general, 
this spectrum is a decreasing function of q with a sigmoidal shape. 

The value Dx =f{ct\) = ct\ is the entropy dimension. It gauges the 
scaling behavior of the entropy as the size of the partition s decreases. 
We may re-write Eq. (4) as 

££W<0<«¿ (9-l)D, (6) 

It follows from Eq. (3) that D0 =/((%) when q = 0. This is the capa
city or box-counting fractal dimension of the support of the measure. In 
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Fig. 2. Illustration of image enhancement and binarization. (a) Original grayscale image; (b) Filtered (enhanced) image; (c) Binanzed image; and (d) Grayscale histogram 
corresponding to the enhanced image depicted in (b). 



this case, Eq. (6) determines that cells of size e with a non-zero mass 
follow a power law scaling with the exponent D0. Value of D0 = 1 if all 
cells of any of considered sizes contain some data and have no zero mass, 
as long as the size of the partition is not smaller than the separation of 
two adjacent sections. The value D2 is the correlation dimension 
(Hentschel and Procaccia, 1983) and captures the scaling behavior of 
the second sampling moments. 

For one-dimensional distributions, the singularity and the Rényi 
dimensions range from 0 to 1. In the special case of fractional 
Brownian motions and more general mono-fractals, the singularity 
spectrum reduces to a point (a, 1) while the Rényi spectrum is a 
horizontal line: D(q)=ct The scaling behavior of (mono-)fractal 
processes reduces to a single scaling (Riedi et al., 1999). 

Now consider fj¡ as a stochastic process. For simplicity, we will 
assume that this is a second order stationary process with a zero mean — 
i.e. that the first and second moments are stationary. The autocorrela
tion function is defined as p(k) = E[\\¡ + k\\¡\ where E stands for the 
expectation. The process has memory or long-range dependency when 
the autocorrelation function decays with a power law, p(fc)«fc2H~2, 
and 1/2 <H< 1 (Leland et al., 1994). The parameter H is called the Hurst 
exponent oí the process. Then, parameter H characterizes the memory of 
the stochastic process. For the Brownian motion, the autocorrelation 
function is constant as these stochastic processes are defined by 
independent increments. For fractional Brownian motions, the auto
correlation function has the same power law decay and the Hurst 
exponent coincides with the only multifractal parameter of theirs 
singularity spectrum. 

Since, the correlation dimension D2 accounts for the scaling 
behavior of the second sampling moments ^jU,(e)2 both the Hurst 
exponent and the correlation dimension measure the power law 
behavior of the second order statistics. For a large class of multifractal 
processes the relationship of these parameters can be written as 
(Riedi etal., 1999): 

This expression provides a way of obtaining the Hurst exponent to 
analyze the memory of general multifractal processes. The classical 
methods of estimating the Hurst exponent work only for mono-fractal 
processes as fractional Brownian motions, whose scaling behavior 
may be described by a single exponent (Burrough, 1983a; Hewett, 
1986). As a result, multifractal analysis, which goes beyond second 
order statistics, provides an effective way to determine and quantify 
the memory of general multifractal stochastic processes. 

3. Materials and methods 

3.1. Sampling 

Twelve undisturbed cylindrical soil columns of 7.5 cm diameter 
and 20 cm height (Fig. 1) were collected vertically from a well-
structured A horizon of a Tyler soil, fine-silty, mixed, mesic, Aerie 
Fragiaquults (Soil Survey Staff, 1999) from a 1-m2 plot. The 
experimental area was a floodplain grazing site in Franklin County, 
Pennsylvania, USA. The Uhland type core sampler cutting head 
(Uhland, 1949) with an acrylic cylinder was used to obtain the soil 
columns within the upper 25 cm of the A horizon. The top 2-3 cm soil 
layer was removed before soil sampling. A soil cylinder approximately 
100 mm in diameter and a height of 2-3 cm was cut around the 
sampler cutting head and the sampler was pressed into the soil. Then 
the soil was cleaned around the sampler and the sampling procedure 
repeated until the cutting head approached the depth of 25 cm. This 
sampling procedure provided gradual penetration of the sampler into 
the soil with minimum disturbance of the soil core. The soil core was 
removed from the sampler and soil protruding from the top and 

bottom of the acrylic cylinder was cut. The soil core was wrapped with 
cling wrap and aluminum foil, and kept at 10 °C 

The soil contained on average 26% of clay, 46% of silt and 28% of sand. 
The organic matter content was 3.3%. The dry aggregate size distribution 
was determined by sieving into the following aggregate diameter 
groups: <0.063, 0.063-0.125, 0.125-0.25, 0.25-0.5, 0.5-2, 2-4 and 
>4 mm. Mass fractions of the aggregate groups were 2.19 ± 0.75,1.22 ± 
0.44, 1.82 ±0.52, 2.86 ±0.70, 18.0 ±3.4, 27.5 ±4.2 and 46.4 ±8.1% 
respectively. The soil was well-structured as aggregates larger than 2-
mm constituted on average 74% of total solid mass. 

3.2. X-ray tomography of soil columns 

The industrial scanner used for this study was a HYTEC Hat Panel 
Amorphous Silicon High-Resolution Computed Tomography (FLASHCT™) 
system located at Washington State University. The FLASHCT™ was an 
advanced high-speed industrial X-ray based 3-D scanning system, 
developed as an area detector scanner employing flat panel amorphous 
silicon arrays. FLASHCT™ is suitable for applications requiring a wide 
spectrum of X-ray energies and geometric magnifications. The scanner 
incorporated both a 225 keV micro-focus X-ray source for material 
characterization at high magnification and a 420 keV X-ray source for 
larger component analysis. 
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Fig. 3. Series of sectional porosity values {%) as function of depth (mm) of soil columns. 



Because the samples slightly detached from the polycarbonate 
cylinders during transport and storage they were slowly saturated 
from the bottom with tap water. After mounting the columns onto the 
rotation stage, they were scanned at an energy level of 380 keV and 
1.7 mA current with copper filters positioned between the X-ray 
source and the columns. A cone beam reconstruction algorithm was 
applied to convert the X-Ray CY radiographs into 8-bit, grayscale 3-D 
volumes comprised of 820x820x1480 voxels (resolution = 110 urn). 
Note that cone beam reconstruction was not able to capture the end 
portions of the scanned columns because information from preceding 
and succeeding portions was needed. Hence, only the center (1480 
voxels = 16.28 cm length) was reconstructed. For subsequent analy
sis, grayscale data were saved in uncompressed Tag Image File Format 
(TIFF). 

3.3. ¡mage processing 

Before processing, the TIFF images were cropped with a circular 
mask to eliminate all portions that were not part of the sample (i.e. 
polycarbonate cylinder in Fig. 1). This yielded cross-sections of about 
690x690 voxels. Because the extruded polycarbonate cylinders were 
not perfectly round, it was impossible to accurately center samples of 
this size on the scanner's rotation stage. There was a slight deviation 
between the nominal inner diameter (7.50 cm) and the image-derived 

diameter (7.56 cm). After cropping, median and Fourier band-pass 
filters coded in MATLAB® (version R2007) were applied for image 
enhancement to minimize ring-noise artifacts introduced during the 
scanning process. The median filter replaced the grayscale value of a 
pixel with the median grayscale of neighboring pixels, thereby 
minimizing noise while preserving contrast. Fourier filtering was 
based on the frequency components of the image signal. The signal 
was transformed into the frequency domain where user-specified bands 
of the frequency spectrum were removed before inverse transforming 
the modified spectrum back to the spatial domain. Band-pass filters 
remove a portion of the frequency spectrum (band) based on user-
specified upper and lower cutoff frequencies. We used a low-pass filter 
with the normalized cutoff frequency set to 0.25 (original and enhanced 
images shown in Fig. 2a and b). 

The transformation of the cropped grayscale to binary images was 
accomplished with a simple histogram shape-based thresholding 
technique. Due to the relatively smooth and distinctively bimodal 
image histograms we chose a method originally developed by Zack 
et al. (1977), which first identifies the histogram peak representing 
the light background - solid phase - pixel cluster, and then connects 
this peak with the first pin of the grayscale histogram that contains 
dark - void - pixels through a straight line. An algorithm was then 
applied to find the maximum normal distance between the connect
ing line and the histogram. The gray level that corresponded to the 

¡s 

¿ 

5 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

1.2-

1 

0.8 

0.6' 

0.4-

0.2 

0 

1.2-

1 

0.8-

0 .6-

0.4 

0 .2 -

0 

) 0.2 

} 0.2 

) 0.2 

0.4 

0.4 

0.4 

Column 1 

0.6 

a 

0.8 

Column 2 

0.6 

a 

0,8 

Column 3 

0.6 0.8 

A 
• 

1 

A 
: : • 
• 

1 

.* . • * • * 

i 

1.2 

1.2 

• 

t 

• 

1.2 

1.4 

1.4 

1.4 

1? 

¿ 

1: 

1.2-

1 -

0.8-

0 .6-

0.4-

0 .2 -

o -
< 

1.2-

1 -

0.8-

0.6-

0.4-

0 .2 -

o-

1.2 

1 -

0.8-

0 .6-

0.4-

0 .2 -

u 

) 0.2 

] 0.2 

) 0.2 

0.4 

0.4 

0.4 

Column 4 

0.6 

a 

• • • • • • 
: ; 

0.8 1 

Column 5 

0.6 

a 

* • 
.* • 
• * 
: 

* 
* 

0.8 1 

Column 6 

0.6 

a 

r-
/ * 

0.8 1 

1.2 

1.2 

* 
* 

1.2 

1.4 

1.4 

1.4 

Fig. 4. Singularity spectra of columns #1 to #6. 



maximum distance was then selected as the binarization threshold 
(Tsai and Lee, 2002). As discussed in Rosin (2001), the applied 
triangulation method worked exceptionally well for histograms with 
a prominent high, and less developed low intensity peak. CT data were 
binarized in 2-D "slice-by-slice". The maximum deviation between 
the thresholds of the 1480 slices was 4 gray levels. Fig. 2d and c 
represented the grayscale histogram and binarized images. The 
binarization algorithm was coded in MATLAB® (version R2007). 

Matrox® Inspector v.4.1 (Matrox Electronic Systems Ltd.) was 
used to describe the porosity for each of the 2-D sectional binarized 
images (San José Martínez et al., 2007). It was assumed that single 
pixel objects were artifacts of the imaging process (Hatano et al., 
1992; VandenBygaart and Protz, 1999) and only voids with more than 
four connected pixels were considered, which corresponds to 
macropores with an equivalent diameter of 0.78 mm. 

3.4. Estimation of multifractal parameters 

For each column we determined the series offj¡ values corresponding 
to the percentage of void space of the j'-th sectional binarized image. 
These series were used to estimate the multifractal parameters through 
the quantities /$(e) as described in Section 2. When analyzing the 
measure /J, successive dyadic partitions of the length of the column L, 
were used. At the first level we had two subintervals each one 

containing one half of the quantities ¡j¡, at the second level we had 
four subintervals each one containing one fourth of these quantities, etc. 
The smallest partition was chosen so that all its subintervals contained 
at least one of the quantities fjj. The ¡j¡ sectional porosity value was 1480 
for each column, s varied between 2~1 and 2~10 the size of the vertical 
length of the column. The parameter q of expressions (2), (3), (4) and 
(5) was chosen between —8 and 8 in increments of 1; hence, we 
considered 17 possible scalings following standards when implement
ing multifractals analysis in soil sciences (Muller and McCauley, 1992; 
Kravchenko et al., 1999; Zeleke and Si, 2006). The multifractal structure 
of soil pore variation was determined by means of three sets of 
multifractal parameters, namely, the singularity exponents Oq (Eq. (2)), 
their associated fractal dimensions /(a,) (Eq. (3)) and the Rényi 
generalized dimensions Dq (Eqs. (4) and (5)) (Caniego et al. 2001, 
2003). They were estimated via linear regression analysis with the least 
mean-square fit applying the power laws given in expressions (2), (3), 
(4) and (5). Coefficients of determination R2 and standard errors SE of 
the slope of the regression line were recorded. Probability distribution 
functions of R2 and SE were characterized by quartiles. 

4. Results and discussion 

The series of depth-dependent porosity values determined for the 
twelve columns (Fig. 3) exhibited a fully developed multifractal 
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structure that could be represented by three sets of multifractal 
parameters: aq, f{aq), and Dq. Figs. 4 and 5 depict the singularity 
spectra while Figs. 6 and 7 correspond to the Rényi spectra. Quartiles 
of distributions of the coefficients of determination R2 and the 
standard errors of the slope of the regression line SE of the estimate of 
the multifractal parameters aq,f(aq), and Dq revealed in Tables 1-3, 
respectively. Values of R2 less than 0.9 in columns #3 and #6 
correspond to extreme values on the right of the singularity spectrum 
f{oiq). The results suggest that the variation of the sectional porosities 
of these columns cannot be explained by using fractional Brownian 
motions because in all cases, the porosity series display a rich variety 
of different scalings as expressed by the variation of multifractal 
parameters with different values of q. 

The shape of the singularity spectrum revealed several features of 
the complex behavior detected by multifractal parameters. The 
singularity spectrum usually displayed a parabolic shaped concave 
graph that attained its maximum at «o, with/(ao) =D0. The width of 
the spectrum am3X — amin may be related to the heterogeneity of the 
series; that is, the wider the spectrum, the greater the variety of 
scalings of the studied series and vice versa. We observed that these 
values were quite similar among columns (Fig. 8) indicating a similar 
degree of heterogeneity. Column #3 was an exception to this behavior 
that could be related to the fact that the extreme values on the left of 
the spectrum were less accurate in this case. This could also explain 
the rather high value of this parameter for column #6. 

Another feature of the spectra shapes was the symmetry with 
respect to the vertical line that goes through the maximum spectrum 
value («o, D0). This can be assessed by using two parameters. Firstly, we 
considered R — L= {am3X — Oo)—(«o — amin) which measures the sym
metry in the horizontal axis of the range [amin, amax] with respect to «o. 
When this value was zero, the range [amin, am3X] was symmetrical with 
respect to oft and the scaling exponents a were spread equally on both 
sides of [amin, amax]. The value V=f{amin)-f{amax) expressed the 
vertical difference between the two branches of the spectrum. Fig. 9 
summarized the estimates of these two parameters. It suggested that 
columns #4 and #7 had a symmetrical singularity spectrum, while only 
column #2 had an asymmetric spectrum with a longer but narrower left 
branch and the other nine columns showed the same type of asymmetry 
but with a longer but narrower right branch. 

The shape of the most common spectra pattern corresponding to 
columns #1, #3, #5, #6, #8, #9, #10, #11 and #12 indicated that larger 
concentrations are less diverse and more common than smaller 
concentrations. Specifically, in these cases, the right branch of the 
spectrum was wider as R — L>0 (see Fig. 9). This manifested a greater 
variety of the highest singularity exponents a which corresponded to 
low concentrations (Eq. (1)) and to negative values of q (Eq. (2)). This 
right branch was also longer as V>0 (see Fig. 9). This meant that the 
geometrical size of points with the largest exponents a was smaller. The 
left branch of the spectrum was narrower, which indicated a lesser 
variety of the smallest singularity exponents a which correspond to 
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Fig. 6. Rényi spectra of columns #1 to #6. 
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Fig. 7. Rényi spectra of columns #7 to #12. 

high concentrations (Eq. (1)) and to positive values of q (Eq. (2)). The 
left branch was also shorter, which meant that the geometrical size of 
points with the smallest exponents «was larger. In terms of the series of 
porosity values as a function of depth, it suggested that the highest 
porosity values dominated along the column height and that these high 
concentrations were quite similar to each other as compared to the 
lowest porosity values that were not as common and exhibited more 
differences between one another along the column height. Our results 
also indicated that this is the general pattern observed in the sampled 

columns. Columns #4 and #7 had quite balanced distributions of the 
lowest and the highest concentrations. 

Only column #2 displayed the behavior opposite to that described 
above. For this column, we observed that low porosities dominated 
along the column height but that these low concentrations were quite 
similar to each other while high porosities were not so common but 
were more different from one another along the column height. The 
column #2 spectrum was not as far from symmetry as spectra of the 
other columns (Fig. 9). 

Table 1 
Summary of the goodness of fit statistics of standard errors SE and coefficients of determination R2 for the estimation of singularity exponents a,. 

Column 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Cmartile 0 

SE 

0.0024 
0.0022 
0.0023 
0.0023 
0.0023 
0.0022 
0.0022 
0.0023 
0.0021 
0.0022 
0.0024 
0.0022 

R2 

0.9986 
0.9990 
0.9944 
0.9985 
0.9987 
0.9949 
0.9984 
0.9963 
0.9980 
0.9985 
0.9987 
0.9988 

Cmartile 1 

SE 

0.0090 
0.0081 
0.0093 
0.0086 
0.0087 
0.0087 
0.0085 
0.0089 
0.0084 
0.0084 
0.0092 
0.0090 

R2 

0.9988 
0.9992 
0.9958 
0.9988 
0.9989 
0.9976 
0.9991 
0.9981 
0.9989 
0.9990 
0.9990 
0.9990 

Cmartile 2 

SE 

0.0115 
0.0100 
0.0138 
0.0107 
0.0109 
0.0113 
0.0097 
0.0110 
0.0103 
0.0108 
0.0115 
0.0115 

R2 

0.9989 
0.9993 
0.9983 
0.9990 
0.9990 
0.9988 
0.9994 
0.9989 
0.9993 
0.9992 
0.9991 
0.9991 

Cmartile 3 

SE 

0.0127 
0.0101 
0.0281 
0.0126 
0.0120 
0.0199 
0.0101 
0.0171 
0.0124 
0.0118 
0.0117 
0.0118 

R2 

0.9993 
0.9994 
0.9992 
0.9994 
0.9993 
0.9994 
0.9995 
0.9993 
0.9995 
0.9995 
0.9993 
0.9994 

Quartile 4 

SE 

0.0143 
0.0106 
0.0339 
0.0155 
0.0145 
0.0305 
0.0130 
0.0248 
0.0144 
0.0127 
0.0119 
0.0121 

R2 

> 0.9999 
> 0.9999 
> 0.9999 
> 0.9999 
> 0.9999 
> 0.9999 
> 0.9999 
> 0.9999 
> 0.9999 
> 0.9999 
> 0.9999 
> 0.9999 



Table 2 
Summary of the goodness of fit statistics of s tandard errors SE and coefficients of determinat ion R2 for the est imation of fractal dimensions ¡[aq). 

Column 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Quartile 0 

SE 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

R? 

0.9771 

0.9849 

0.3064 

0.9717 

0.9614 

0.6332 

0.9741 

0.8582 

0.8278 

0.9684 

0.9555 

0.9776 

Quartile 1 

SE 

0.0082 

0.0075 

0.0128 

0.0079 

0.0079 

0.0083 

0.0076 

0.0081 

0.0077 

0.0080 

0.0084 

0.0081 

R? 

0.9927 

0.9931 

0.9044 

0.9913 

0.9912 

0.9813 

0.9906 

0.9913 

0.9796 

0.9907 

0.9914 

0.9921 

Quartile 2 

SE 

0.0198 

0.0141 

0.0334 

0.0187 

0.0185 

0.0232 

0.0141 

0.0219 

0.0226 

0.0179 

0.0185 

0.0195 

R2 

0.9962 

0.9979 

0.9860 

0.9964 

0.9963 

0.9944 

0.9978 

0.9948 

0.9948 

0.9958 

0.9962 

0.9960 

Quartile 3 

SE 

0.0256 

0.0224 

0.0652 

0.0253 

0.0243 

0.0363 

0.0261 

0.0275 

0.0374 

0.0293 

0.0268 

0.0259 

R2 

0.9994 

0.9995 

0.9984 

0.9995 

0.9995 

0.9994 

0.9995 

0.9994 

0.9995 

0.9994 

0.9994 

0.9994 

Quartile 4 

SE 

0.0405 

0.0327 

0.0998 

0.0406 

0.0401 

0.0941 

0.0418 

0.0743 

0.0662 

0.0388 

0.0495 

0.0292 

R2 

> 0.9999 

> 0.9999 

> 0.9999 

> 0.9999 

> 0.9999 

> 0.9999 

> 0.9999 

> 0.9999 

> 0.9999 

> 0.9999 

> 0.9999 

> 0.9999 

Table 3 
Summary of the 

Column 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

goodness of fit statistics of standard 

Quartile 0 

SE 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

R2 

0.9992 

0.9984 

0.9957 

0.9991 

0.9992 

0.9988 

0.9981 

0.9993 

0.9974 

0.9985 

0.9989 

0.9989 

errors SE and coefficients of determinat ion R2 

Quartile 1 

SE 

0.0118 

0.0132 

0.0196 

0.0128 

0.0115 

0.0129 

0.0193 

0.0126 

0.0195 

0.0194 

0.0145 

0.0128 

R2 

0.9995 

0.9985 

0.9978 

0.9992 

0.9995 

0.9989 

0.9988 

0.9996 

0.9984 

0.9987 

0.9994 

0.9994 

Quartile 2 

SE 

0.0439 

0.0459 

0.0894 

0.0455 

0.0389 

0.0477 

0.0502 

0.0334 

0.0747 

0.0435 

0.0503 

0.0479 

for the est imation of Rényi dimensions Dq. 

R2 

0.9995 

0.9992 

0.9979 

0.9993 

0.9996 

0.9991 

0.9995 

0.9997 

0.9985 

0.9994 

0.9994 

0.9994 

Quartile 3 

SE 

0.0670 

0.1090 

0.1443 

0.0803 

0.0637 

0.0944 

0.0825 

0.0610 

0.1163 

0.1058 

0.0777 

0.0763 

R2 

0.9997 

0.9996 

0.9991 

0.9996 

0.9998 

0.9996 

0.9997 

0.9998 

0.9992 

0.9995 

0.9995 

0.9996 

Quartile 4 

SE 

0.1306 

0.2215 

0.2694 

0.1634 

0.1320 

0.1850 

0.1263 

0.1023 

0.2224 

0.2233 

0.1437 

0.1431 

R2 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

0.9999 

The Rényi spectra (Figs. 6 and 7) were more similar to each other 
than singularity spectra. They displayed a noticeable variation across 
negative values of q. This branch of the spectrum corresponded to the 
smallest concentrations of the measure (Caniego et al., 2003). This 
was in agreement with the observation that in general the singularity 
spectra had a more developed right branch. 

The values of the Hurst exponents were 0.9896, 0.9867, 0.9797, 
0.9858, 0.9860, 0.9828, 0.9823, 0.9867, 0.9828, 0.9850, 0.9865 and 
0.9866 for columns one to twelve, respectively. These were very close 
to one and quite similar to one another. These values reflected the 
presence of strong persistence or positive autocorrelations (Norouz-
zadeh et al., 2007) occurring in case of long-range dependencies. 
These correlation dependencies were also common in mono-fractal 
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models such as the fractional Brownian motion model with Hurst 
exponents between one half and one (Riedi et al., 1999). 

The similarities detected between the multifractal parameters for 
the twelve columns — especially with regard to spectra-shape and 
Hurst exponents — reflected the low spatial variability of soil 
properties in horizontal directions as a consequence of the relatively 
small size (1 m2) of the plot were the columns were extracted. 

Our results suggested that the variation of soil porosity as depth 
increases displays a complex scaling behavior with a similar structure 
in vertical direction at the horizon scale. Within a square-meter plot, 
we were likely to find that high porosities dominating in studied soil 
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horizon, and that these high concentrations were quite similar to each 
other. These findings are consistent with previous studies on the 
multifractal patterns of the spatial variability of various soil attributes 
at field scale (Kravchenko et al., 1999; Kravchenko and Pachepsky, 
2004; Caniego et al., 2005; Zeleke and Si, 2006). Moreover, the 
analysis of the memory of the variation with depth indicated that a 
rather strong persistence rules the variation at the plot scale as was 
suggested by the high values of the Hurst exponent. This fact was 
consistent with the previous work of Hewett (1986), and Hewett and 
Behrens (1988) that studied the heterogeneity of oil reservoirs 
showed similar results at a different scale for the vertical variation of 
porosity. 

In the context of the investigations of flow processes in soil 
(Sahimi, 1993; Perfect and Sukop, 2001), one of the most challenging 
problems was related to the prediction of flow phenomena features 
from pore geometrical characteristics. One question of interest for the 
future study could be the degree of correlation between hydraulic 
conductivity parameters and the Hurst exponent measuring the 
memory of the series of soil porosity sections. 

5. Conclusions 

We performed the multifractal analysis of a series of depth-
dependent macroporosity values of twelve undisturbed soil columns. 
The series corresponded to the percentage ofvoid space of the sectional 
binarized images of 1480, 8-bit, grayscale images from X-ray CT 
radiographs with a voxel resolution of 110 urn. These series exhibited 
a fully developed multifractal structure that was represented by three 
sets of multifractal parameters, namely, the singularity exponents Oq, 
their associated fractal dimensions /(a,) and the Rényi generalized 
dimensions Dq, estimated by linear regression analysis. The singularity 
f(a) and the Rényi Dq spectra obtained were consistent with multifractal 
measures where larger concentrations were less diverse but more 
common than the smaller ones. Moreover, the values of Hurst 
exponents H were quite close to one and similar among the studied 
soil columns. These values reflected the presence of rather strong 
persistence or positive autocorrelations also termed long-range 
dependencies. 

Our results are of interest for modeling and simulating soil pore 
spatial geometry and associated fluid flow phenomena. Multifractal 
patterns exhibited by soil porosity series of the collected columns 
suggested the need for multifractal geometrical models of the structure 
of soil porosity. These models should account for a multifractal random 
structure compatible with the multinomial structure and the long-range 
dependences that displayed these porosity series as shown by our 
analysis. 
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