4,577 research outputs found

    The role of mesh generation, adaptation, and refinement on the computation of flows featuring strong shocks

    Get PDF
    Within a continuum framework, flows featuring shock waves can be modelled by means of either shock capturing or shock fitting. Shock-capturing codes are algorithmically simple, but are plagued by a number of numerical troubles, particularly evident when shocks are strong and the grids unstructured. On the other hand, shock-fitting algorithms on structured grids allow to accurately compute solutions on coarse meshes, but tend to be algorithmically complex. We show how recent advances in computational mesh generation allow to relieve some of the difficulties encountered by shock capturing and contribute towards making shock fitting on unstructured meshes a versatile technique

    On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation

    Get PDF
    A few years ago, the class of Essentially Non-Oscillatory Schemes for the numerical simulation of hyperbolic equations and systems was constructed. Since then, some extensions have been made to multidimensional simulations of compressible flows, mainly in the context of very regular structured meshes. In this paper, we first recall and improve the results of an earlier paper about non-oscillatory reconstruction on unstructured meshes, emphasizing the effective calculation of the reconstruction. Then we describe a class of numerical schemes on unstructured meshes and give some applications for its third order version. This demonstrates that a higher order of accuracy is indeed obtained, even on very irregular meshes

    Finite element methodology for integrated flow-thermal-structural analysis

    Get PDF
    Papers entitled, An Adaptive Finite Element Procedure for Compressible Flows and Strong Viscous-Inviscid Interactions, and An Adaptive Remeshing Method for Finite Element Thermal Analysis, were presented at the June 27 to 29, 1988, meeting of the AIAA Thermophysics, Plasma Dynamics and Lasers Conference, San Antonio, Texas. The papers describe research work supported under NASA/Langley Research Grant NsG-1321, and are submitted in fulfillment of the progress report requirement on the grant for the period ending February 29, 1988

    Adaptive computational methods for aerothermal heating analysis

    Get PDF
    The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated

    ICASE/LaRC Workshop on Adaptive Grid Methods

    Get PDF
    Solution-adaptive grid techniques are essential to the attainment of practical, user friendly, computational fluid dynamics (CFD) applications. In this three-day workshop, experts gathered together to describe state-of-the-art methods in solution-adaptive grid refinement, analysis, and implementation; to assess the current practice; and to discuss future needs and directions for research. This was accomplished through a series of invited and contributed papers. The workshop focused on a set of two-dimensional test cases designed by the organizers to aid in assessing the current state of development of adaptive grid technology. In addition, a panel of experts from universities, industry, and government research laboratories discussed their views of needs and future directions in this field

    Mesh adaptation for high-order flow simulations

    Get PDF
    Mesh adaptation has only been considered for high-order flow simulations in recent years and many techniques are still to be made more robust and efficient with curvilinear meshes required by these high-order methods. This thesis covers the developments made to improve the mesh generation and adaptation capabilities of the open-source spectral/hp element framework Nektar++ and its dedicated mesh utility NekMesh. This thesis first covers the generation of quality initial meshes typically required before an iterative adaptation procedure can be used. For optimal performance of the spectral/hp element method, quadrilateral and hexahedral meshes are preferred and two methods are presented to achieve this, either entirely or partially. The first method, inspired from cross field methods, solves a Laplace problem to obtain a guiding field from which a valid two-dimensional quadrilateral block decomposition can be automatically obtained. In turn, naturally curved meshes are generated. The second method takes advantage of the medial axis to generate structured partitions in the boundary layer region of three-dimensional domains. The method proves to be robust in generating hybrid high-order meshes with boundary layer aligned prismatic elements near boundaries and tetrahedral elements elsewhere. The thesis goes on to explore the adaptation of high-order meshes for the simulation of flows using a spectral/hp element formulation. First a new approach to moving meshes, referred to here as r-adaptation, based on a variational framework, is described. This new r-adaptation module is then enhanced by p-adaptation for the simulation of compressible inviscid flows with shocks. Where the flow is smooth, p-adaptation is used to benefit from the spectral convergence of the spectral/hp element methods. Where the flow is discontinuous, e.g. at shock waves, r-adaptation clusters nodes together to better capture these field discontinuities. The benefits of this dual, rp-adaptation approach are demonstrated through two-dimensional benchmark test cases.Open Acces

    Communication-Avoiding Algorithms for a High-Performance Hyperbolic PDE Engine

    Get PDF
    The study of waves has always been an important subject of research. Earthquakes, for example, have a direct impact on the daily lives of millions of people while gravitational waves reveal insight into the composition and history of the Universe. These physical phenomena, despite being tackled traditionally by different fields of physics, have in common that they are modelled the same way mathematically: as a system of hyperbolic partial differential equations (PDEs). The ExaHyPE project (“An Exascale Hyperbolic PDE Engine") translates this similarity into a software engine that can be quickly adapted to simulate a wide range of hyperbolic partial differential equations. ExaHyPE’s key idea is that the user only specifies the physics while the engine takes care of the parallelisation and the interplay of the underlying numerical methods. Consequently, a first simulation code for a new hyperbolic PDE can often be realised within a few hours. This is a task that traditionally can take weeks, months, even years for researchers starting from scratch. My main contribution to ExaHyPE is the development of the core infrastructure. This comprises the development and implementation of ExaHyPE’s solvers and adaptive mesh refinement procedures, it’s MPI+X parallelisation as well as high-level aspects of ExaHyPE’s application-tailored code generation, which allows to adapt ExaHyPE to model many different hyperbolic PDE systems. Like any high-performance computing code, ExaHyPE has to tackle the challenges of the coming exascale computing era, notably network communication latencies and the growing memory wall. In this thesis, I propose memory-efficient realisations of ExaHyPE’s solvers that avoid data movement together with a novel task-based MPI+X parallelisation concept that allows to hide network communication behind computation in dynamically adaptive simulations
    • …
    corecore