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Abstract

Mesh adaptation has only been considered for high-order flow simulations in recent

years and many techniques are still to be made more robust and efficient with

curvilinear meshes required by these high-order methods. This thesis covers the

developments made to improve the mesh generation and adaptation capabilities of

the open-source spectral/hp element framework Nektar++ and its dedicated mesh

utility NekMesh.

This thesis first covers the generation of quality initial meshes typically required

before an iterative adaptation procedure can be used. For optimal performance of

the spectral/hp element method, quadrilateral and hexahedral meshes are preferred

and two methods are presented to achieve this, either entirely or partially. The first

method, inspired from cross field methods, solves a Laplace problem to obtain a

guiding field from which a valid two-dimensional quadrilateral block decomposition

can be automatically obtained. In turn, naturally curved meshes are generated. The

second method takes advantage of the medial axis to generate structured partitions

in the boundary layer region of three-dimensional domains. The method proves

to be robust in generating hybrid high-order meshes with boundary layer aligned

prismatic elements near boundaries and tetrahedral elements elsewhere.

The thesis goes on to explore the adaptation of high-order meshes for the sim-

ulation of flows using a spectral/hp element formulation. First a new approach to

moving meshes, referred to here as r -adaptation, based on a variational framework,

is described. This new r -adaptation module is then enhanced by p-adaptation for

the simulation of compressible inviscid flows with shocks. Where the flow is smooth,

p-adaptation is used to benefit from the spectral convergence of the spectral/hp ele-

ment methods. Where the flow is discontinuous, e.g. at shock waves, r -adaptation

clusters nodes together to better capture these field discontinuities. The benefits

of this dual, rp-adaptation approach are demonstrated through two-dimensional

benchmark test cases.
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Chapter 1

Introduction

The accurate and high-fidelity simulation of high-speed compressible flows is, at

present, a problem of significant interest to the aeronautics community, particularly

in relation to aviation in which such conditions are routinely encountered. The

complex and interdependent fluid phenomena found in this regime pose a difficult

challenge for numerical modelling, with a stark contrast between regions of smooth

flow, boundary layers near solid walls where large velocity gradients are present,

and shock waves or shear layers where the fluid properties change sharply in a

discontinuous manner.

The use of high-order spectral/hp element methods in the simulation of com-

pressible fluid dynamics is now becoming increasingly common for high-fidelity large-

eddy simulations and direct numerical simulations of realistic aeronautical configur-

ations [9, 29, 86, 71, 87]. As in traditional low-order methods, the domain of interest

is partitioned into finite elements; however these elements are also equipped with

high-order polynomial expansions, as opposed to traditional linear shape functions.

1.1 Objectives

This high-order discretisation yields several advantages in terms of computational

performance, as well as enhanced numerical resolution as p is increased. However, in

the presence of shocks and discontinuities, the latter advantage will not be realised

and can lead to significant issues in terms of stability and accuracy in the resolution

of shocks. A common approach used in the resolution of discontinuous features is

to refine these regions in an adaptive manner, so that the mesh resolution around

the features is increased. In broad terms, the error of a computed solution which

is sufficiently smooth can be roughly expressed as ε ≈ Chp, where C is a constant

related to the measure of the solution regularity, h is the mesh size, and p is the

23



1.1. OBJECTIVES 24

polynomial order.

Mesh adaptation is concerned with achieving increased resolution by either loc-

ally reducing the mesh size h or locally increasing the polynomial order p. Due to its

higher convergence rates, p-adaptation is typically preferred over h-adaptation for

smooth flow regions [15, 40, 24], whereas the opposite is true where flow discontinu-

ities exist [1, 59]. The reason for the latter — h-adaptation being preferred for flow

discontinuities — is that the representation of shocks by high-order discretisations

leads to numerical oscillations that must be smoothed out by the addition of high-

order dissipation terms. This effectively means that the high-order DOF1 are wasted

in the vicinity of shocks. This thesis aims to achieve a combination of and balance

between h- and p-type adaptation, enabled by spectral/hp element methods.

To obtain h-type adaptation, this work describes a moving mesh approach, re-

ferred to here as r -adaptation, based on a variational framework, where DOF are

relocated within the domain. By using r - instead of h-adaptation, mesh connectiv-

ities are preserved, opening the way to transient simulations where the system of

equations would not need to be re-built at each adaptation step. The DOF count

additionally remains constant for better control of the computational cost of the

simulation.

Adaptation methods, however, rely on a quality initial mesh as a starting point

but the generation of valid high-order meshes remains one of the bottlenecks of the

high-order simulation of high-fidelity flows [85, 86, 71, 78, 87]. The main challenge

is to systematically and robustly generate valid high-order curvilinear boundary-

conforming meshes that incorporate stretched elements in the near-wall boundary

layer regions. If the complexity of the computational domain lends itself to struc-

tured multi-block decomposition [3], then the mapping between the blocks and the

unit cube provided by this approach facilitates high-order and boundary layer mesh-

ing, but domain decomposition for general domains remains a very difficult and open

problem. Where a block structure is not possible or hard to obtain, unstructured

meshes are usually preferred because they are easy to generate. Their extension to

high-order is typically based on a posteriori approaches that deform a coarse linear

mesh to accommodate the curvature at the boundary; see, for instance, a brief re-

view of these methods in reference [80]. Robust mesh generators are available for

generating the linear mesh, but a posteriori high-order mesh generators of curvilin-

ear meshes tend to have difficulties in ensuring the validity of the mesh when highly

stretched elements, typical of boundary layer meshes, are present.

In two dimensions, although still difficult, important advances have been made

1DOF: degrees of freedom.



CHAPTER 1. INTRODUCTION 25

towards fully automatic quadrilateral block decomposition of arbitrary domains [72,

8]. One promising approach involves cross fields, which provide a guiding field for

the decomposition of arbitrary domains into quadrilateral meshes. Most previous

work has focussed on generating large numbers of small straight sided elements. The

extension to high-order is usually done by curving the elements a posteriori [30].

This thesis presents an approach that uses this guiding field to generate coarse

quadrilateral meshes that are naturally curved and valid. These can be further

divided using an isoparametric approach that guarantees the validity of the final

high-order mesh.

The extension of this method to three dimensions is, however, impractical due

to the lack of automatic methods to generate frame — three-dimensional cross —

fields that yield valid hexahedral block decompositions in a robust manner. For

this reason, a semi-structure approach is presented in this thesis that combines

two complementary mesh generation procedures. Because valid high-order mesh

generation is difficult near curved boundaries, the domain is split into a near-field

and a far-field partitions. The near-field partition is robustly created using a medial

object approach, yielding a coarse linear boundary layer mesh. This coarse mesh

can be a posteriori curved with the thickness of the layer guaranteeing enough space

for the valid curving of boundary faces. The resulting high-order boundary layer

mesh can be further refined to obtain valid, highly stretched elements capable of

resolving boundary layer flows. The rest of the domain is subsequently discretised

using traditional unstructured mesh generation approaches.

To achieve these objectives, the Nektar++ platform [17, 50] was used. Nektar++

is an open source, spectral/hp element environment used for the high-fidelity simu-

lation of compressible and incompressible flows. It is accompanied by NekMesh [79,

50], a suite of tools dedicated to the generation and manipulation of high-order

meshes. The work presented in this thesis relates to developments of the author in

this combined codebase, unless otherwise stated.

1.2 Two-dimensional quadrilateral meshes

A quadrilateral subdivision of a two dimensional domain into a minimal number of

subdomains can serve as the starting point from which to generate meshes for finite

element [83], finite volume, (block structured) finite difference [38] and spectral/hp

element methods [35, 36]. To generate finite element and finite volume meshes, one

would subdivide each subdomain into quadrilateral cells sufficiently small to resolve

the geometry and expected solution features. The resulting mesh would have the
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desired property of only a small number of irregular nodes where the valence, i.e.

the number of elements sharing a node, is not equal to four. The subdivision of

the subdomains could also be used as basis for high-order block-structured finite

difference methods if the subdivision within each block is structured. Finally the

subdomains could be used as is with high-order geometry information intact, or

subdivided in a structured or unstructured manner, to be used as elements for a

quadrilateral-based spectral/hp element method.

Unstructured quadrilateral mesh generators, on the other hand, tend to generate

meshes with large numbers of irregular nodes [75]. Extraneous irregular nodes are

generated even for simple geometries, where mesh topologies can be generated by

hand with a minimum number of them. As an example, Fig. 1.1 shows two meshes

generated with a subdivision algorithm [41, 67], which generates more subdivisions

than necessary. Instead, a simpler block decomposition is sought with fewer irreg-

ular nodes and fewer blocks, offering more flexibility for further subdivision while

retaining better mesh quality.

Figure 1.1: Quadrilateral meshes on simple geometries using a subdivision algorithm.

One robust approach for automatically generating quadrilateral block decom-

positions of arbitrary domains has come out of the computer graphics community.

It uses cross fields [8, 83] in a field-guided procedure. Cross fields resemble cross

hatchings used in drawings. Crosses, which are composed of two direction vectors

and their negatives at a point, are invariant to rotations of π/2. Cross field methods

generate meshes with fewer irregular nodes. Fig. 1.2 shows the same two geomet-

ries as Fig. 1.1 decomposed with a cross field method. The method produces the

same topology as an experienced user might generate by hand, and has a minimum

number of irregular nodes.

Details of cross field procedures vary, but the basic idea is that the crosses are
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Figure 1.2: Quadrilateral decompositions on simple geometries using a cross field
approach: courtesy of Ms. Bing Yuan.

oriented, usually at the nodes of an existing triangular mesh, according to an en-

ergy minimisation or smoothing procedure. Triangles in which the crosses cannot

smoothly vary contain singularities, which serve as the irregular nodes of the quad-

rilateral decomposition to be computed. The internal edges of the quadrilaterals are

found by integrating separatrices (represented as streamlines of the cross field) [37],

starting from the irregular nodes until they reach another irregular node or a physical

boundary. The quadrilateral subdivision is usually further subdivided into smaller

quadrilateral elements.

Traditional techniques using crosses do not precisely locate irregular nodes within

the domain. Irregular nodes can be located only to within the size of the element

in which they occur. Spurious singularities can be generated, which may have to be

coalesced in an ad hoc fashion. For instance, if the underlying mesh is too coarse, it

is possible that two or more singularities fall within one element. The valence of the

irregular nodes computed from a coalesced singularity could lead to the incorrect

number of separatrices and hence the incorrect valence of the associated interior

quadrilateral mesh node.

The traditional tracing of the separatrices also often leads to multiple curves that

need to be coalesced. Associated with this is the well-known limit cycle problem

where separatrices, instead of meeting as they should, spiral indefinitely [84].

Finally, BC2 are difficult to apply at corners where a discontinuity in the cross

field will occur when a standard continuous Galerkin (finite element) approximation

is used for smoothing. Rather than putting a singularity there, the corner may be

effectively smoothed by averaging the cross field at such points [83], at the expense

of adding more interior singular points.

2BC: boundary conditions.
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Issues found in the use of traditional techniques are addressed by using a high-

resolution approach to compute a guiding field, accurately locating the interior irreg-

ular nodes, and accurately integrating the streamlines used to subdivide the domain.

A high-order continuous or discontinuous Galerkin spectral/hp element method is

used on a triangular mesh, the approximation depending on the regularity of the

BC needed to solve Laplace problems. Unlike previous work, all operations are per-

formed on the original highly-resolved guiding field rather than a cross field, so that

accuracy is not lost. An accurate locator is used for the irregular points, that exploits

the high-resolution solution. An accurate method is also used for computing their

valence. The streamline integration then uses the high-order information available

to obtain precise streamlines, which reduces the need to coalesce extraneous lines.

A naturally curved, valid quadrilateral mesh is finally obtained that can be further

subdivided using an isoparametric approach.

1.3 Three-dimensional hybrid meshes

Because the automatic block decomposition of three-dimensional domains is difficult,

other techniques have been developed to analyse the shape of these geometrical

domains. The difficulty especially resides in the generation of high aspect ratio

elements in the boundary layer regions, where curvature yields invalid high-order

elements. A generic approach consists of optimising the entire high-order mesh with

respect to a measure of its deformation [78]. This method, while robust, can be

slow and expensive. Likewise, an elastic analogy is often used [52] to propagate

the boundary curvature to the interior of the domain. Both procedures, however,

struggle at keeping highly anisotropic boundary layer elements valid. Because of

this difficulty, some tools have become available specifically for high-order boundary

layer mesh generation [43, 66, 62]. All of these have, however, looked at curving

boundary layer elements a posteriori. Ch. 4 aims at generating a highly anisotropic

boundary layer mesh only after obtaining a coarse valid mesh, i.e. a priori curving.

One promising technique, introduced by Blum [7], is the medial axis, which is

defined as the set of all points in the domain that have more than one closest point

on the boundary of the domain. The medial axis, along with other proximity inform-

ation, provides a complete description of the geometry that can be used to generate

partitions. This thesis proposes to use these partitions to separately discretise the

near-field, boundary layer region and the rest of the domain. In the former, a struc-

tured prismatic or hexahedral mesh can be generated by using geometric information

obtained from the medial axis. In the latter, traditional unstructured mesh gener-
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ation techniques can be used. A restriction of such partitioning to the near-wall

regions and an appropriate design of the medial object partitioning reduces signi-

ficantly the complexity of the generation process and makes it possible to obtain

high-quality boundary layer type hybrid meshes near the wall surfaces.

The generation of a high-order mesh using this semi-structured approach in-

volves two steps. First a straight-sided mesh is generated with a coarse boundary

layer mesh composed of a single layer within the medial object based partitions

adjacent to the wall boundaries. Additional points are then added, following essen-

tially the method described in reference [70], to obtain a high-order curvilinear mesh

compliant with the CAD3 definition. Next a boundary layer mesh is generated using

the isoparametric approach proposed in reference [54] where elements in the coarse

mesh adjacent to the wall are subdivided along the normal direction, according to a

user-defined resolution. In this work, an extension to this method is described that

leverages medial axis decomposition to generate high-quality meshes in corners and

junctions by performing a split in two separate directions normal to each surface of

the corner section, similarly to what is done in multi-normal advancing layer tech-

niques [6]. This approach is flexible and modular, and allows a variety of resolutions

to be defined from a base coarse high-order mesh that remains unchanged.

1.4 Mesh adaptation

Following the generation of a valid high-order mesh and the simulation of the desired

flow configuration, a mesh adaptation strategy can finally be employed. Historically,

research on adaptation has focused on remeshing as a means to obtain a mesh better

suited for the simulation at hand [27, 88]. While a mesh can be obtained that

exactly fits a certain metric field based on error indicators, the solution must be

interpolated onto the new mesh and the simulation restarted. Instead, one can look

at h-adaptation [40] where only local mesh operations are performed, such as element

splitting, edge swapping or node insertion. These fast operations leave the rest of the

mesh unchanged and accelerate the iterative process. The set of allowable operations

can also be limited to simple vertex movement, in which case moving meshes or

r -adaptation is obtained [12, 31]. The mesh connectivities, in this case, remain

unchanged. The number of DOF also remains constant, which can be considered

problematic when more resolution is required than the mesh as a whole can offer.

Finally, in more recent years, high-order methods have brought the possibility to

achieve p-adaptation [40, 24]. In this case, the mesh remains entirely unchanged

3CAD: computer-aid design.
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and only the local polynomial order used by the solver is adapted to provide more

or less resolution to certain regions. In this thesis, a proof-of-concept strategy is

proposed, based on rp-adaptation. Both methods conserve mesh connectivities. r -

adaptation is used in regions where p-adaptation is inefficient, as explained below,

whereas p-adaptation is able to increase or decrease the total number of DOF.

For the r -adaptation procedure, a variational optimiser is used to deform the

mesh. This variational framework was originally designed to optimise high-order

meshes, in which a functional of the deformation energy is minimised [80]. This

framework can be modified to target an element shape and size within the mesh. By

targeting a small element size in regions of shocks, the optimiser deforms the mesh

and clusters nodes in said regions. This concept of moving mesh has been used on

linear meshes [12, 31] and this thesis offers insight on its application to high-order

meshes. By effectively redistributing DOF, h-type refinement is obtained at flow

discontinuities [1, 59]. A p-adaptation procedure proposed in [24] is then applied to

this r -adapted mesh to better resolve regions of smooth flow.

For both adaptation aspects, a discontinuity sensor [60] is used that is easily

computed and essentially looks at the energy of the higher modes to determine the

level of resolution of the solution. The purposes of this sensor are three-fold: first

it adds artificial viscosity to the governing equations, based on values of the sensor,

to stabilise the solution in the presence of shocks; second it identifies regions of flow

discontinuities based on values of the sensor, as used for the artificial viscosity, to

focus r -adaptation; and third it locally increases or decreases the local order of the

polynomial approximation based on the values of the sensor.

1.5 Outline

This section concludes Ch. 1, which gives an overview of the current challenges in the

field of high-order mesh generation and adaptation as well as describes the objectives

of this thesis and the associated methodologies to achieve them. An outline of the

thesis is presented below.

Ch. 2 recalls the spectral/hp element formulation [35, 17, 50] used throughout

this work for the discretisation of domains and PDE4. Sec. 2.2, in particular, reviews

the inviscid compressible flow equations and discretises them. Finally, Sec. 2.2.3

gives a description of the discontinuity sensor used later in this thesis for compress-

ible flow simulations and mesh adaptation. This version of the sensor was improved

by G. Castiglioni in [44].

4PDE: partial differential equation.
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Ch. 3 covers the proposed generation of naturally curved quadrilateral meshes

using a guiding field approach, a collaboration with D.A. Kopriva, co-author of [45,

46]. The underlying mathematical formulation is first introduced in Sec. 3.1 before

the practical procedure is explained in Sec. 3.2. Sec. 3.3 goes on to demonstrate the

benefits of the methods through various examples.

Ch. 4 continues on the topic of high-order mesh generation, in the context of

three-dimensional domains, using the proposed hybrid approach. This work is a

collaboration with the International TechneGroup, co-authors of [49, 47]. Sec. 4.1

first describes the CAD interface that handles the geometrical queries during the

generation of both linear and high-order meshes. Sec. 4.2 then provides an overview

of the medial object approach and discusses its application to the decomposition of

the domain into near-field and far-field regions. Sec. 4.1 and Sec. 4.2 cover the work

of the International TechneGroup and are included for completeness. The generation

of a high-order mesh from this linear mesh is described in Sec. 4.3. Sec. 4.4 presents

meshes generated by this methodology for two geometries. A more recent extension

of this method is finally presented in Sec. 4.5 to more specifically handle topologies

typically associated with streamlined bodies.

Ch. 5 switches the focus onto mesh adaptation and covers the variational frame-

work used for r -adaptation. Sec. 5.1 first recalls the formulation of the variational

approach to high-order mesh optimisation [80], which is then modified to achieve r -

adaptation in Sec. 5.2. The latter section includes analytical examples while Sec. 5.3

provides evidence that it can be driven by a posteriori error estimates, resulting from

a collaboration with F. Naddei.

Ch. 6 then aims at using this new r -adaptation technique in combination with

p-adaptation. While Sec. 6.3 presents the general workflow of this dual approach,

Sec. 6.1 and Sec. 6.2 describe the specific uses of r - and p-adaptation [24], respect-

ively. Finally two numerical examples are presented in Sec. 6.4 in vastly different

flow conditions.

This thesis concludes with Ch. 7, which summarises the work covered and gives

insight into future work.

1.6 Publications

The work associated with this thesis has resulted in multiple publications. These

are listed below in link with their associated chapter in this document. This list

includes some papers currently under review.

Ch. 3 on two-dimensional quadrilateral mesh generation:
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• [45] J. Marcon, D.A. Kopriva, S.J. Sherwin, and J. Peiró. A high resolution

PDE approach to quadrilateral mesh generation. Journal of Computational

Physics, 399C:108918, 2019

• [46] J. Marcon, D.A. Kopriva, S.J. Sherwin, and J. Peiró. Naturally curved

quadrilateral mesh generation using an adaptive spectral element solver. In

Proceedings of the 28th International Meshing Roundtable, Buffalo, NY, USA,

2019. in press

Ch. 4 on three-dimensional hybrid mesh generation:

• [49] J. Marcon, M. Turner, J. Peiró, D. Moxey, C. Pollard, H. Bucklow, and

M.R. Gammon. High-order curvilinear hybrid mesh generation for CFD sim-

ulations. In 2018 AIAA Aerospace Sciences Meeting, Reston, Virginia, 2018.

American Institute of Aeronautics and Astronautics.

• [47] J. Marcon, J. Peiró, D. Moxey, N. Bergemann, H. Bucklow, and M.R.

Gammon. A semi-structured approach to curvilinear mesh generation around

streamlined bodies. In AIAA Scitech 2019 Forum, Reston, Virginia, 2019.

American Institute of Aeronautics and Astronautics.

Ch. 5 on r -adaptation, excluding Sec. 5.3:

• [48] J. Marcon, M. Turner, D. Moxey, S.J. Sherwin, and J. Peiró. A vari-

ational approach to high-order r-adaptation. In 26th International Meshing

Roundtable, 2017.

Ch. 6 on rp-adaptation and Sec. 2.2.3 on the shock sensor:

• [44] J. Marcon, G. Castiglioni, D. Moxey, S.J. Sherwin, and J. Peiró. rp-

adaptation for compressible flows, 2019, arXiv:physics.comp-ph/1909.10973.

under review.

Other authored papers whose content is not directly covered in this thesis:

• [20] J. Cohen, J. Marcon, M. Turner, C.D. Cantwell, S.J. Sherwin, J. Peiró,

and D. Moxey. Simplifying high-order mesh generation for computational sci-

entists. In M. Atkinson and S. Gesing, editors, Proceedings of the 10th Inter-

national Workshop on Science Gateways, Edinburgh, Scotland, 2019. CEUR-

WS.org.
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E. Juda, E. Kazemi, K. Lackhove, J. Marcon, G. Mengaldo, D. Serson, M. Tur-

ner, H. Xu, J. Peiró, R.M. Kirby, and S.J. Sherwin. Nektar++: Enhancing

the capability and application of high-fidelity spectral/hp element methods.

Computer Physics Communications, 107110, 2019. in press.
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Chapter 2

Spectral/hp element methods

In this work, the spectral/hp element methods formulation, described in detail in

reference [35] and implemented in Nektar++ [17, 50], is used. The fundamentals of

the methods are briefly described in what follows. These methods have not been

implemented as part of this thesis and are only included for completeness. The

interested reader may refer to the references above for a more detailed description

and analysis.

Sec. 2.1 first summarises the general formulation of the spectral/hp element

methods. Sec. 2.2 then recalls the inviscid compressible flow equations and discret-

ises them. Importantly, Sec. 2.2.3 describes a discontinuity sensor used to stabilise

the compressible flow simulations and, later, for mesh adaptation.

2.1 General formulation

The numerical solution of PDE of the form Lu = 0 over a domain Ω is considered.

The domain Ω is taken as a set of finite elements, Ωe — the mesh — such that

Ω = ∪Ωe and Ωe1 ∩Ωe2 = ∂Ωe1e2 is either an empty set or the interface between two

elements and is of one dimension less than the mesh. The PDE problem is solved

in the weak sense and requires that u|Ωe is in the Sobolev space Hk(Ωe), k = 0, 1.

In the CG1 formulation, the solution is required to be in H1; in DG2, H0.

The solution to Lu = 0 is formulated in weak form: find ~v ∈ Hk(Ω) such that

a(~v, ~w) = l(~w) ∀~w ∈ Hk(Ω), (2.1)

where a(·, ·) is a symmetric bilinear form, l(·) is a linear form, and Hk(Ω) is formally

1CG: continuous Galerkin.
2DG: discontinuous Galerkin

35
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defined as

Hk(Ω) = {~w ∈ L2(Ω) | Dα ~w ∈ L2(Ω) ∀ |α| ≤ k}. (2.2)

This problem is solved numerically and therefore solutions are considered in a

finite dimensional subspace VN ⊂ Hk(Ω). The problem is: find ~vδ ∈ VN such that

a(~vδ, ~wδ) = l(~wδ) ∀~wδ ∈ VN , (2.3)

augmented with appropriate BC. In the CG formulation, the condition VN ⊂ C0 is

also enforced.

A weighted sum of N trial functions Φn(~x) defined on Ω is used so ~vδ(~x) =∑
n v̂nΦn(~x). This transforms the problem to that of finding the coefficients ûn

that define ~vδ(~x) within an element. To obtain a unique choice of coefficients ûn, a

restriction on R = L~vδ is placed that its L2 inner product, with respect to the test

functions Ψn(~x), is zero. In the Galerkin projection one chooses the test functions

to be the same as the trial functions, i.e. Ψn = Φn.

The contributions of each element in the domain must be taken into account to

construct the global basis Φn. A parametric mapping Xe : E → Ωe exists from a

standard reference element E ⊂ [−1, 1]d to each element Ωe. This mapping is given

by ~x = ~Xe
(
~ξ
)

. It is important to distinguish ~x, the physical coordinates, from the

~ξ, the coordinates in the reference space.

A local polynomial basis is constructed on the reference element to represent the

solution. A one-dimensional order-P basis is a set of polynomials Φp(ξ), 0 ≤ p ≤ P ,

defined on the reference segment −1 ≤ ξ1 ≤ 1. In two- and three-dimensional

reference regions, a tensor basis is used, where the polynomial space is constructed

as the tensor product of one-dimensional bases on segments, quadrilaterals and

hexahedral reference regions. In Nektar++, triangular, tetrahedral, prismatic and

pyramidal elements are created by collapsing one or more of the coordinate directions

to create singular vertices. This allows it to support, for this work, easy-to-generate

triangular meshes.

Finally the discrete solution in a physical element Ωe can be expressed as

~vδ(~x) =
∑
n

v̂nφn(X−1
e (~x)), (2.4)

with v̂n the coefficients computed by the Galerkin procedure. The solution space is

restricted to

V := {~v ∈ Hk(Ω) | ~v|Ωe ∈ PP (Ωe)}, (2.5)

where PP (Ωe) is the space of order-P polynomials on Ωe.
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An assembly operator can then be designed to assemble the element contribu-

tions to the global solution. In the CG formulation, elemental contributions of

neighbours are summed to enforce C0-continuity. In the DG formulation, such map-

pings transfer flux values from the element interfaces into the global solution vector.

2.1.1 High-order meshes

High-order meshes often require different measures of quality than linear meshes.

The distortion of curvilinear elements is typically a source of issues for high-order

solvers [78]. As seen above, elements in a high-order curvilinear mesh are represented

by a parametric mapping Xe : E → Ωe. The quality of such mapping can often be

assessed by a metric called the scaled Jacobian Js [28]:

Js =
minξ∈Ωst J(ξ)

maxξ∈Ωst J(ξ)
. (2.6)

For a more thorough analysis of this metric and a comparison with other measures

of quality, see reference [78].

The scaled Jacobian, in essence, looks at the level of deformation of the high-

order element. It is the ratio between the minimum and the maximum value of the

Jacobian of the mapping over the element. For a straight-sided simplex, Js = 1. A

negative scaled Jacobian, on the other hand, indicates that the element is invalid

because of self-intersection. While distortion is often unavoidable at boundaries,

the objective is often to reduce distortion as much as possible and bring the scaled

Jacobian to a value close to 1.

2.2 Compressible flows

In this work, no viscous effects are considered. Boundary layers add another level of

difficulty which is beyond the scope of this thesis. The Euler equations of compress-

ible flow are therefore used. They are, notably, stabilised by the use of a dissipative

flux, added in the presence of shocks, with respect to a discontinuity sensor.

2.2.1 Governing equations

The Euler equations of inviscid compressible flow are written, in a two-dimensional

Cartesian frame of reference with coordinates x = (x1, x2) within a domain Ω with
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boundary Γ, as

∂u

∂t
+∇ · F =

∂u

∂t
+∇ · [ Fc(u) + Fd(u,∇u) ] = 0. (2.7)

Here u = [ρ, ρv1, ρv2, ρE]t is the vector of conserved variables, where ρ is the density,

the Cartesian components of the velocity are v = (v1, v2), and E is the total energy.

The terms Fc and Fd denote the convective and dissipative fluxes, respectively. A

dissipative flux is required to stabilise the solution in the presence of shocks which

is chosen to be of the form

Fd = −µa(u)∇u, (2.8)

where µa is an artificial viscosity coefficient, discussed in detail below. The com-

ponents of the convective flux Fc = (f1, f2) are given by

f1 =


ρv1

P + ρv2
1

ρv1v2

ρv1H

 , f2 =


ρv2

ρv1v2

P + ρv2
2

ρv2H

 , (2.9)

where H is the total enthalpy and P is the pressure. The total enthalpy is defined

as

H = E +
P

ρ
(2.10)

and, to close the system, the pressure for a perfect gas is given by

P = (γ − 1)ρ

(
E − v2

1 + v2
2

2

)
, (2.11)

where γ is the ratio of specific heats and its value for air is γ = 1.4.

The setting of the problem is completed through a suitable choice of initial

and boundary conditions. Only steady-state problems are of interest in this thesis

and therefore all simulations are started with a uniform flow at the given free-

stream Mach number and flow incidence. Solid walls are modelled through the

no-flow condition, v · n = 0, where n denotes the wall outer normal. Far-field

boundaries are weakly imposed through the normal boundary fluxes by specifying

free-stream conditions, u = u∞, outside the boundary and evaluating the normal

fluxes through a Riemann solver that accounts for the propagation of information

across the boundary.
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2.2.2 Discretisation

In this thesis, a discrete solution of Eq. (2.7) is found via a high-order spectral/hp

DG discretisation described in Sec. 2.1. The computational domain Ω is subdivided

into Nel non-overlapping elements. A mixed formulation [5] is used and Eq. (2.7)

writes as

g −∇u = 0 , (2.12)

∂u

∂t
+∇ · [ Fc(u) + Fd(u,g) ] = 0. (2.13)

A discrete approximation within an element Ωe is sought of the form (2.4). In the

DG form, both the solution and the test functions are discontinuous at the interface

between elements.

Following the standard Galerkin procedure, a weak form of the mixed formulation

of Eqs. (2.12)–(2.13) is obtained as follows. The discrete version of Eq. (2.12) reads

Nel∑
e=1

∫
Ωe

vei (geh −∇ueh) dΩe = 0 ; i = 1, . . . , N, (2.14)

where geh and ueh are the discrete approximations of the solution within element Ωe.

Using an approximation of the form (2.4) for both ueh and geh, and applying Gauss’

theorem, Eq. (2.14) becomes

Nel∑
e=1

∫
Ωe

(
vei

N∑
j=1

gejv
e
j +∇vei

N∑
j=1

uejv
e
j

)
dΩe −

Nel∑
e=1

∫
Γe
vei

(
N∑
j=1

uejv
e
j

)
n dΓe = 0 ;

i = 1, . . . , N, (2.15)

where Γe denotes the boundary faces of element Ωe. The solution of Eq. (2.15) gives

the discrete values of the first-order derivatives geh.

The weak form of Eq. (2.13) is obtained in a similar fashion to give

Nel∑
e=1

∫
Ωe
vei

N∑
j=1

duej
dt

vej dΩ−
Nel∑
e=1

∫
Ωe
∇vei

N∑
j=1

Fe
jv
e
j dΩ+

Nel∑
e=1

∫
Γe

vei

N∑
j=1

(Fe
j ·n)vej dΓ = 0 ;

i = 1, . . . , N. (2.16)

The solution is discontinuous at the interface between elements and the integrand in

the boundary integral of Eq. (2.16) is substituted by a numerical flux function. The

convective normal flux at an interface is approximated by a numerical flux calculated



2.2. COMPRESSIBLE FLOWS 40

via a Riemann solver

[(Fc)
e
i · n]Γe ≈ H

c(ue,ue+ ;n), (2.17)

where ue+ and ue are the values of the conservative variables on the external and

internal sides of the interface with respect to the eth element. This mechanism

allows information to pass from one element to the other. The evaluation of the

diffusive normal flux at the interface follows the LDG3 formulation [19], where it is

approximated by

[(Fd)
e
i ]Γe = {{Fd}}+ C12[[Fd]] + C11[[u]] (2.18)

and, similarly,

[(u)ei ]Γe = {{u}} −C12[[u]], (2.19)

where C12 = 1
2
n, and C11 is an order 1 constant. The average and jump operators

are defined as

{{u}} =
1

2

(
u+ + u−

)
, [[u]] =

(
u+n+ + u−n−

)
, (2.20)

{{u}} =
1

2

(
u+ + u−

)
, [[u]] =

(
u+ · n+ + u− · n−

)
. (2.21)

2.2.3 Shock capturing

This DG discretisation of the Euler equations requires the addition of the diffusion

flux Fd to stabilise the solutions in the presence of shock waves. The term µa in

Eq. (2.8) is an artificial viscosity coefficient that allows dissipation to be selectively

applied to shocks. For consistency µa ∼ h/p, the following formulation [4] is used

µa ∼
h

p
λmax, (2.22)

where λmax = |u| + c is the local maximum wave speed of the system. The charac-

teristic cell length h is chosen as the minimum edge length of an element. Finally,

for the artificial viscosity to vanish outside shocks, it needs to be proportional to a

shock sensor S such that

µa = µ0
h

p
λmaxS, (2.23)

where µ0 = O(1) is a constant. To build the shock sensor, a modal resolution based

indicator [60] is used, which is element-wise constant and defined via an intermediary

term

se = log10

(〈q − q̃, q − q̃〉
〈q, q〉

)
, (2.24)

3LDG: local discontinuous Galerkin.
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where 〈·, ·〉 represents an L2 inner product, q and q̃ are the full and truncated

expansions of a state variable

q(x) =

N(p)∑
i=1

q̂iφi, q̃(x) =

N(p−1)∑
i=1

q̂iφi, (2.25)

where φi are the basis functions, q̂i the associated coefficients, and N(p) the size of

the expansion of order p. In this case, the test variable q is chosen to be the density

ρ because it is readily available to the solver and it is better suited to capture a

wide range of flow features. To spatially smooth out the variation of the values of

the sensor, the constant element-wise sensor is computed as follows

S =


0,
1
2

(
1 + sin π(se−s0)

2κ

)
,

1,

se ≤ s0 − κ,
|se − s0| ≤ κ,

se ≥ s0 + κ,

(2.26)

with s0 ∼ log10(p4) from an analogy to Fourier coefficients decaying as 1/p2, and κ

needs to be sufficiently large to obtain a smooth shock profile. s0 is chosen as

s0 = −sκ − 4.25 log10 (p) , (2.27)

where sκ and κ can be adjusted for a specific problem.
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Chapter 3

Two-dimensional quadrilateral

mesh generation

An approach is presented in this chapter to generate quadrilateral block decom-

positions, and subsequently quadrilateral meshes, of arbitrary two-dimensional do-

mains. Quadrilateral block decompositions and meshes offer significant advantages

for numerical methods over triangular meshes. In the spectral/hp element meth-

ods [35], two- and three-dimensional elements are constructed by tensor product of

one-dimensional polynomial bases, producing quadrilaterals and hexahedra respect-

ively. Other types of high-dimensional elements, e.g. triangles and tetrahedra, are

created by collapsing one or more of the coordinate directions to create singular

edges and vertices. In addition, simplexes, i.e. triangles and tetrahedra, are nat-

urally stiffer than tensor product elements, i.e. quadrilaterals and hexahedra. For

these reasons, some solvers are developed without support for simplex elements.

Several approaches to unstructured quadrilateral mesh generation have become

popular over the years [8, 3]. A first trivial approach consists of tesselating the

domain then recombining triangles to form quadrilaterals. In two dimensions, an all-

quadrilateral mesh can be obtained if there is an even number of triangles but such a

guarantee does not exist in three dimensions. This approach also yields elements that

are often distorted. The level of distortion can be reduced by using, for example, a

Centroidal Voronoi tesselation that can optimise for a measure of the quality using

an Lp-norm, resulting in mostly square Voronoi cells [22, 23]. Another popular

approach is based on octrees [68], where a fully cartesian grid is first generated that

fully covers the domain without conforming to boundaries. This mesh is then localy

refined and trimmed at the boundaries. It is finally snapped onto the boundaries

to conform to them. Although the interior mesh is entirely regular, the last step

tends to produce deformed elements at the boundaries. While the octree based

43
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approach goes inside out, another set of techniques, often called paving, advancing

fronts or yet advancing layers, takes an outside in approach [6]. These typically take

a boundary discretisation and march inward by offsetting boundary elements, thus

creating quadrilaterals in two dimensions, hexahedra in three dimensions. Extra care

must be taken when these advancing fronts collide, often yielding distorted elements.

More recently, research on the medial axis [3] has looked at analysing shapes to

extract geometrical information and finding irregular nodes in the domain. This

technology is able to generate more regular meshes that are often block structured.

This chapter looks at another set of approaches, based on guiding fields [8], that

are able to decompose domains into quadrilateral blocks. The method presented

here is based on the concept of crosses, two-dimensional objects that are invariant

to rotations of π/2. Importantly they are aligned with boundaries and give a guiding

direction for the generation of block decompositions. From this notion of crosses,

a guiding field is formulated, which can be solved with a Laplace solver. In this

work, a high-order spectral/hp element solver is used but it is important to note

that a low-order solver would also be appropriate. Finally, this guiding field, whose

formulation is described in Sec. 3.1, creates valid quadrilateral block decompositions.

An important contribution of this chapter concerns the mesh generation aspect,

described in Sec. 3.2. These curved blocks, obtained from the guiding field, in turn

yield a priori curved, high-order meshes. These are naturally valid and various

examples demonstrate that aspect in Sec. 3.3.

3.1 Formulation

The problem is to subdivide any two dimensional domain, Ω, that has piecewise

smooth boundaries into quadrilateral subdomains. The domain might be simply

or multiply connected. The decomposition will be regular if all the corners of the

quadrilaterals have valence four, that is, each corner node connects four edges. In

general, it will not be possible to generate a purely regular mesh, especially in

multiply connected domains. Instead, some of the nodes will be irregular, where the

valence will be larger or smaller than four, like those observed in Fig. 3.1.

3.1.1 Cross field

To motivate the high-resolution approach to the quadrilateral decomposition of a

domain, Ω, and to put it into context, the notion of a cross is recalled below. A
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(a) Valence three. (b) Valence five.

Figure 3.1: High-order quadrilateral meshes: irregular nodes encircled in red, interior
high-order nodes represented by dots.

cross can be represented by

C (ψ) =
{
~ck = (cx, cy)k =

(
cos
(
ψ + k

π

2

)
, sin

(
ψ + k

π

2

))}
, (3.1)

for k = 0, 1, 2, 3. Here, the tangent angle, or phase, ψ, is computed from the four

quadrant inverse tangent

ψ =
1

4
atan2 (v, u) ∈

[
−π

4
,
π

4

]
(3.2)

so that a cross is represented by four unit vectors ~ck at any point ~x ∈ Ω given a vector

field ~v = (u (~x) , v (~x)) at which ~v 6= 0 from the principal direction. See Fig. 3.2.

The important property of a cross is its 4-way rotational symmetry. Rotation by

an angle π/2 does not change the cross. The axes of the cross therefore lie in the

tangent and normal directions of the guiding field lines.

The function ψ is tangent or orthogonal (due to the jump in the atan2 function)

to the streamlines of the field ~v. Hence, it is parallel to one of the branches of a

cross. It is undefined at ~v = (0, 0). Since ψ is computed from the arctangent, there

will be a jump of of value π/2 in ψ depending on the signs of u and v even if ~v is

smooth. Lines in the field across which ψ jumps are called jump lines.

A full discussion of cross fields and methods based on them is beyond the scope

of this thesis. See, for example, references [13, 14, 84, 83] for more comprehensive

discussions.
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!v ψ

Figure 3.2: A cross defined in a guiding field ~v.

Guiding field

It is necessary, then, to find the guiding field ~v from which to find the irregular

nodes and trace separatrices. The only values that can be set a priori are on the

boundary ∂Ω of Ω. The field is aligned with the boundary to ensure that the mesh

is aligned there. Therefore,

~vb = (ub, vb) = (cos (4θb) , sin(4θb)) , (3.3)

where θb is the tangent angle of the boundary where the field is being computed.

The vector ~vb at any point along the boundary defines a cross (3.1) at that point.

The factor of four in Eq. (3.3) ensures the same u, v values for each 90◦ rotation of

the angle, and hence the rotational symmetry. Fig. 3.3 shows example crosses on

the boundary of a quarter circle domain.

Figure 3.3: Boundary crosses on the quarter circle.

The following three observations can be made from Eq. (3.3) about the boundary

field ~vb:

• Along any circle, there are eight zeros each for u and v, and those zeros are

not coincident.
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• Along smooth portions of the boundary curves and at corners whose angle is

a multiple of π/2, u and v are continuous.

• At boundary corners with angles not divisible by π/2 there is a jump discon-

tinuity in ~vb and the cross field.

Once the boundary values are specified using expression (3.3), they are smoothly

propagated to the interior. Smoothing procedures that have been used in the past

include marching the associated crosses to the interior [25], minimizing an energy

functional [83], or solving a Laplace problem [64]. Solving a Laplace problem for u

and v {
∇2~v = 0, ~x ∈ Ω

~v = ~vb, ~x ∈ ∂Ω
(3.4)

guarantees that the field ~v is smooth in the interior of the domain and satisfies

the maximum principle. The solution of the Laplace problem is equivalent to the

minimisation of the Dirichlet energy. Eqs. (3.4) makes it possible to use a high-

resolution approach such as the spectral element methods. In particular, the use of

a DG approximation allows geometries where the corner angles generate jumps in

the guiding field to be handled.

CG and DG spectral/hp element methods

A key difference between this work here and that of previous work is that high-

resolution solutions are computed for the BVP1 (3.4) with either a CG or a DG

spectral/hp element method on a triangular mesh [35]. Spectral/hp element methods

are spectrally accurate, meaning that the convergence rate depends only on the

smoothness of the solution. They are high-resolution in that they use a large number

of DOF within an element. Unlike traditional finite element methods, the high-order

polynomial expansion of the solution inside each element permits to locate irregular

nodes, identify their valence, and finally trace separatrices with better accuracy.

The formulations of the CG and DG spectral/hp element methods were described

in Sec. 2.1.

3.1.2 Critical points

Points where v = u = 0 are called critical points in the guiding field and singular

points in the cross field. They are points where ψ cannot be determined uniquely.

1BVP: boundary value problem.
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Such points become the interior irregular nodes (valence 6= 4) in the quadrilateral

decomposition.

The form of the boundary values usually implies that critical points will exist

in the interior of the domain. Since there are interlaced zeros in u and v on the

boundary, such as occur when the boundary is smooth and θb varies continuously,

the fact that the interior field is smooth implies that zero contours of u and v must

cross somewhere in the interior, thereby creating a critical point. Zeros in u will exist

along the boundary at any point where θb smoothly passes through θb = kπ/8, k

odd, and in v for k even. Therefore, one can infer the existence of interior irregular

nodes in the final quadrilateral mesh from the boundary curves. A semi-circular

section of a boundary, for instance will have four zeros in ub and five in vb and, in

the absence of other nearby features, will create two interior critical points. See

Fig. 3.4. Although the cross field directions are undefined at critical points, the field

~v is smooth because the solutions of the Laplace problem (3.4) are regular.

(a) Solution u. (b) Solution v.

(c) Computed ψ.

Figure 3.4: Guiding field on the half disc: isocontours of u = 0 and v = 0 shown in
white and black respectively.
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Irregular nodes in the mesh occur as recognisable critical point topologies in the

~v field [77, 13, 14]. They can be categorised analytically by the Poincaré index

iγ =
1

2π

∮
γ

dφ, (3.5)

where

φ = atan2 (v, u) = 4ψ. (3.6)

When γ encloses a critical point, iγ = ±1, where −1 corresponds to a saddle

point. Other critical points have index +1. If there is no critical point inside the

contour γ then the index is zero. The categorisation of the critical point lets one

determine the number of streamlines to emanate from the irregular node, and hence

its valence in the mesh. When iγ = −1 there are five separatices. When iγ = +1

there are three [37], [83, Lemma 5.1]. It is possible to have an index of +2 at which

six elements would meet. However such points are unstable and in practice will split

into separate critical points of lower valence. For this reason, such critical points

are not considered here.

Using definition (3.5) and relation (3.6), the following integral is similarly defined

Ic =
1

π/2

∮
c

dψ

dθ
dθ, (3.7)

where c is a (small) counter-clockwise circular contour centred on the critical point.

Table 3.1 shows the values of Ic for three separatrix topologies in the neighbourhood

of a critical point. It is equal to the sum of the jumps in ψ around the contour. The

valence V of the critical point is then

V = 4− Ic. (3.8)

Note, for consistency, that if there is no critical point inside the contour then Ic = 0

and the point is regular with valence four.

Table 3.1: Value of Ic, from Eq. (3.7), and the associated valence.

Ic Valence (V)

−1 5
0 4

+1 3

If one generalises the integral Ic to be over a part of the circle, one can characterise
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boundary vertices, too [14]. Let

I (θ0, θf ) =
1

π/2

∫ θf

θ0

dψ

dθ
dθ, (3.9)

so that Ic = I (0, 2π). At a boundary point, then, the number of quadrilaterals at-

tached to the point (the boundary itself already being a streamline by construction)

is

V =
∆θ

π/2
− I (θ0, θf ), (3.10)

where ∆θ = θf − θ0. I (θ0, θf ) can be viewed as a correcting factor to ∆θ towards a

multiple of π
2
.

3.1.3 Streamlines

The guiding field is also used to trace streamlines that will form the separatrices of

the block decomposition. The problem is formulated as finding the trajectory ~x(t)

that satisfies
d~x

dt
= ṽ (ψ′(~x)) , (3.11)

where t is the integration parameter and ṽ (ψ′(~x)) is the adjusted guiding field

vector. Eq. (3.2) gives a guiding field ψ ∈
[
−π

4
, π

4

]
, but crosses are invariant to

rotations of π/2. It is therefore necessary to account for the branches of the cross

that don’t lie within
[
−π

4
, π

4

]
. These adjusted guiding directions can be obtained by

adding a certain number k = 0, 1, 2, 3 of π/2 so that ψ′ lies within the appropriate

quadrant
[
−π

4
+ k π

2
, π

4
+ k π

2

]
. This adjustment operation is especially important

when streamlines cross jump lines where ψ abruptly changes by ±π/2, but the

streamline has to continue in the same overall direction.

The ODE2 (3.11) requires initial conditions in the form of

~x(t0) = ~x0, (3.12)

where t0 is the initial integration time and ~x0 the location of the start of the stream-

line. In this case, the start of the streamline will either be an irregular node or a

corner from which a non-boundary separatrix emerges. The ODE (3.11) can then be

integrated in a traditional numerical manner as will be described below in Sec. 3.2.3.

2ODE: ordinary differential equation.
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3.2 Implementation

From the discussion above, the decomposition of a domain into quadrilateral sub-

domains has four stages:

1. Computation of a guiding field. This includes the generation of a triangular

mesh and solution of the Laplace problem (3.4).

2. Finding critical points of the guiding field and their valences, including the

valences of corners at boundary vertices.

3. Integration of streamlines, from critical points and corners, to generate the

interior boundaries of the quadrilateral decomposition.

4. Cutting of the domain into quadrilaterals using the separatrices as subdomain

boundaries, then further subdivision into elements, as necessary.

This section presents details of the implementation of the process and walks

through the four stages needed to generate a quadrilateral mesh. The procedure

is illustrated using a geometry commonly used in the cross field literature [37, 84],

that of a half disc as shown in Fig. 3.5.

3.2.1 Solution of the field equations

To solve the Laplace problem (3.4) the spectral/hp element formulation of Ch. 2 is

used. A triangular finite element mesh is first generated which is then made high-

order and curved by projecting interior nodes onto the curved boundaries [70]. This

procedure is carried out in NekMesh, which also has the capability to optimise the

high-order mesh should some elements be of low quality or simply invalid [80]. Such

a mesh is shown in Fig. 3.5 for the reference geometry.

For the purposes of generating the quadrilateral decomposition, as coarse a tri-

angular mesh as possible is generated and then high-order polynomials are used to

approximate the solution within the elements to get the desired accuracy. First, it

is desirable to take advantage of the spectral accuracy of the spectral/hp element

Laplace solver, where a fine mesh is not necessary. Second, as will be discussed in

Sec. 3.2.2 and Sec. 3.2.3, a small number of elements is desirable to simplify and

speed up the critical point detection and streamline tracing. For the half circle

geometry and triangle mesh shown in Fig. 3.5, it was sufficient to use third order

polynomials (fourth order convergence with element size).

Once the curvilinear triangular mesh is generated, the Laplace problem (3.4)

is solved. A special implementation of the Laplace solver has been implemented
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Figure 3.5: High-order triangular mesh on the half disc.

in Nektar++ for the BVP (3.4), where the BC are automatically computed using

Eq. (3.3).

Choice of a discretisation

Nektar++ supports both CG and DG discretisations. The CG approximation is

used when the BC are continuous along all boundary curves. As can be seen in

the discussion in Sec. 3.1, BC are continuous if the boundaries satisfy one of two

conditions:

• The curve at each point is C1-continuous, i.e. it is a smooth curve; or

• The boundary curve is only C0-continuous, i.e. a corner, and the angle is a

multiple of π/2.

In this work, CG is employed whenever possible and DG only when the geometry

requires discontinuous BC. For example, the reference geometry of Fig. 3.5 contains

only smooth curves and π/2 corners. Therefore a CG formulation is used. The

solution for ~v on the half disc geometry is shown in Fig. 3.4. As expected, BC

and the solution are smooth, so the solution benefits from rapid convergence of the

spectral/hp element methods.

If neither smoothness condition is satisfied at a boundary corner point, the

BC (3.3) has a jump discontinuity there. In that case, a DG formulation is used,

which can account for discontinuous BC. Unlike the CG approximation used in tra-

ditional methods, no ad hoc smoothing of a corner’s BC is required, leading to a

discretisation-consistent solution. It is important to note that a DG formulation

may also be used at all times. The use of a DG formulation would especially be
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unaffected by a loss of C1-continuity at boundaries with too coarse a discretisa-

tion. Indeed, smoothness of the boundary discretisation is only valid to a certain

tolerance. As the resolution decreases, so does the smoothness to the point where

BC become discontinuous. For this reason, the DG formulation is a more robust

choice. The discussion and use of the CG formulation in this work are included for

completeness.

As an example of a geometry that does not satisfy the smoothness conditions, a

polygon geometry is used, shown in Fig. 3.6, which shows the solution and ψ fields.

The triangular mesh used to obtain this solution is shown in Fig. 3.7. It is quite

coarse, yet a solution is obtained with enough resolution, through higher polynomial

order, to properly carry out the rest of the procedure.

(a) Solution u. (b) Solution v.

(c) Computed ψ.

Figure 3.6: Guiding field on a polygon with arbitrary corners using a DG discret-
isation: isocontours of u = 0 and v = 0 shown in white and black respectively.

Using a DG formulation to handle corners with angles that are not multiples
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Figure 3.7: Triangular mesh on the polygon with arbitrary corners.

of π/2 has two consequences. First, jump lines can originate from corners. This

fact is important, for it shows that one cannot a priori and ad hoc determine the

valence of a boundary corner solely from its angle. Fig. 3.8a shows how the jump

line originating from the top corner A in the geometry ends in the sole critical

point of the domain. Although curvature produces critical points, see Sec. 3.1.2,

this straight-sided example shows that a corner whose angle is not a multiple of π/2

can also generate interior critical points, again, see Fig. 3.8a.

(a) Uppermost corner. (b) Lowermost corner.

Figure 3.8: Guiding field ψ on the polygon: close-up views.

Second, observe that discontinuous BC are naturally enforced in the DG formu-
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lation. No ad hoc smoothing of the boundary is required, as shown in Fig. 3.8b. At

a convex corner (see lower corner, B ), both boundary edges are shared by a single

element. In this case, the BC are enforced through fluxes between the boundary

edge elements and the interior volume element so that the solution remains continu-

ous inside this interior volume element. This is clearly seen in Fig. 3.8b where the

solution is smoothed out at the corner, in a formulation consistent manner. At a

concave corner (see upper corner, C ), however, the boundary edges are not shared

by a single element and the Dirichlet BC can be enforced exactly. This naturally

leads to a discontinuity in the solution between elements in the vicinity of the corner.

When a DG method is used to solve the Laplace problems for the guiding fields,

the fields are discontinuous between elements. This is especially true in domains

where discontinuous BC are present, as is clear in Fig. 3.8b. Enough resolution

(either through h- or p-refinement) needs to be provided so that the jumps at the

element interfaces are small. Too low resolution could result in zero isocontours

located within solution jumps between elements. The current implementation would

not be able to detect such isocontours, nor could it consequently detect critical

points. See Sec. 3.2.2 for more details.

Fortunately, critical points should naturally be located in regions of smooth fields

where jumps between elements are small. Discontinuities between elements are large

only near boundaries where discontinuous BC appear. The field on the inside of the

domain is mostly smooth, due to the properties of the Laplace problem, resulting in

very small jumps between elements. If strong curvature is present, critical points can

appear near curved boundaries where BC are continuous and the field is smooth. If

no (or little curvature) is present, critical points are controlled by discontinuous BC

and are seen far away from the boundaries, on the inside of the domain, again where

the field is smooth. In all cases, critical points are not expected to naturally occur

in areas where large jumps between elements exist due to nearby discontinuous BC.

Subsequently, the integration of streamlines is unaffected by the discontinuous

nature of the discretisation. By using a multi step high-order integrator, as explained

later in Sec. 3.2.3, streamline direction is not strongly affected by abrupt changes of

direction between elements. Streamlines remain smooth even when gradients in the

guiding field are large, e.g. when crossing a large jump between elements.

3.2.2 Detection of critical points

Once the solution to Eqs. (3.4) is computed, zeros in the field ~v are found. Un-

like the traditional cross field approach, crosses are in fact never generated in this

method. As seen in Sec. 3.1 the analysis can be performed on the ~v field, and ψ is
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computed only when necessary, i.e. for computing the valence of vertices and tracing

streamlines via Eqs. (3.10) and (3.11). All other operations can be accomplished by

operating on ~v.

Critical points inside the domain are located at ~v = ~0. To find those, each

element that may contain a ~v = ~0 point is first flagged. These correspond to elements

crossed by both a u = 0 and a v = 0 isocontours. To contain a u = 0 isocontour,

there must be at least one quadrature point with value u ≤ 0 on one side of the

isocontour and one quadrature point with value u ≥ 0 on the other side of the

isocontour. The argument is the same for a v = 0 isocontour. If these conditions are

fulfilled, the element is flagged. Then, in each flagged element, Newton’s method

is found to approach the location of ~v = ~0. To do so efficiently, the critical point

search is performed in parametric space. If a critical point is found outside the

reference element, this element is dismissed as it is assumed that it will be found

through parametric search in a neighbour element. In Fig. 3.4, the two symmetrically

located critical points can be clearly seen where the black and white contours cross,

consistent with the irregular nodes found by others, e.g. [37], for this geometry.

Calculation of valences

After completing the search for all critical points, a valence must be computed for

each. From Sec. 3.1.2 and Eq. (3.8), the integral Ic can be evaluated solely by

looking for the presence of jump lines. In a counter-clockwise manner, a positive

jump (i.e. from −π
4

to π
4
) leads to a negative integral Ic = −1, and vice versa. The

sign of the jump can itself be determined solely by values of ~v, without the need to

compute ψ or the cross field.

A jump must satisfy two conditions: u must be negative and v must change

sign. A positive increase of v indicates a positive jump, and vice versa. To detect

jumps, and therefore compute the valence of a critical point, a sequence of uniformly

distributed quadrature points located on a circle of small radius c, centred on the

critical point, is used to step counter-clockwise. At the present time, this parameter

c is chosen empirically to be 10−6. This value has little importance on the accuracy

of the evaluation of the integral. Importantly, the circle formed by c around the

critical point should not encircle any other critical point. This would lead to a

wrong valence. Following this logic, the critical points seen in Fig. 3.4 are both

determined to have a valence of three.

The valences of all boundary vertices are computed in a similar fashion, this

time from expression (3.10). The angle at the corner, determined from θ0 and θf ,

is computed from the geometry. To compute the integral I (θ0, θf ), ∆ψ = ψf − ψ0
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is found from the values of ψ at the boundaries using the BC. If present, a jump

contribution is added to ∆ψ in the same way as for the computation of critical point

valences. Because both corners in Fig. 3.4 have an angle of π
2
, a valence of one can

be trivially determined.

It is important to note that the boundary vertex operation does not require an a

priori determination of the corner valence based on angle only. The corner valences

can be determined through Eq. (3.10) which does not only depend on the known BC

but also on the existence of jump lines in the computed ψ field in the neighbourhood

of the vertex, like that seen in Fig. 3.8.

The boundary vertex valence gives the number of quads located at the associated

corner. Due to the definition, this valence could be zero. Indeed, ∆θ and ∆ψ could

cancel out if the corner is sufficiently sharp. Physically, this indicates the presence of

a degenerate quadrilateral block (i.e. a triangular block) where all streamlines would

converge towards the degenerate corner. This topology requires ad hoc manipulation

where the streamlines are used later to construct the quadrilateral subdivision of

the domain. This manipulation will be explained in the next section.

3.2.3 Integration of streamlines

Streamlines are traced throughout the domain after the valences of all irregular

nodes and vertices are determined. The first step is to find the initial direction

of each streamline. Because ~v = ~0 at critical points, ψ is undefined. Therefore,

streamline angles are determined from ~v at a small distance c of the critical point.

This distance is currently set empirically based on the size of the elements.

The initial direction is refined iteratively from an initial guess using Alg. 1, which

is inspired by bisection. For the first streamline, an arbitrary initial guess is taken

for the direction. For subsequent streamlines, an initial guess is taken at angles

multiples of 2π
V . The size of the tolerance, ε is not critical; in this work, ε = 10−9.

The angle search in Alg. 1 can also be applied to boundary vertices, including

those where the BC might be discontinuous and ψ is ambiguous. An initial guess

for all streamlines may be obtained at angles multiples of ∆θ
V .

After an initial direction is obtained, streamlines are synchronously advanced

throughout the domain. This part of the procedure is the most computationally

expensive. Each new streamline point requires the search for the element that

contains it. Next, the inverse map ~ξ = X−1
e (~x) is used to transform to parametric

coordinates. Finally the high-order interpolation of ~v is computed via Eq. (2.4).

A 4th order multi step Adams-Bashforth integrator is used to advance the stream-

lines. The current implementation uses fewer points at the beginning of the integ-
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Data: Direction α0 (initial guess), irregular node location ~p0

Result: Direction αf (converged value)
Initialise α from α0 ;
while |∆α| > ε do

Compute point ~p1 at distance c and direction α of ~p0 ;
Interpolate ~v and compute ψ at ~p1 ;
Find ψ′ = ψ + k π

2
where k = 0, 1, 2, 3 such that ∆α = |α− ψ′| is

minimised ;
Update α = ψ′ ;

end
Return αf = α ;

Algorithm 1: Initial direction of a streamline at an irregular node.

ration when the point history of the streamline trace is limited. While advancing

the streamlines, it is important to validate the direction α obtained at the latest

point. When a streamline crosses a jump line, ψ abruptly rotates ±π/2 and α must

be adjusted accordingly.

Manipulation of streamlines

As streamlines are advanced throughout the domain, they may meet. To anticipate

two streamlines meeting, the front points of each are compared at each step. If

the distance between the front points of two streamlines is less than the step size

d and they are advancing in opposite directions, the streamlines are assumed to

meet. When the absolute value of the difference in the latest α values equals π

when rounded to the nearest π/2, the streamlines are considered to be advancing in

opposite directions. This process is summarised in Alg. 2.

When two streamlines meet, they are advanced to the starting point of the other,

keeping the same number of points in each, before merging. See Alg. 3 for more

details. A merged streamline is created by weight-averaging a pair of streamline

points. A simple linear weight function could be used, but that will change the angles

computed with Alg. 1 at the starting points, both irregular nodes and boundary

vertices. This not desirable as the PDE problem has already optimised these angles

to be as equally distributed as possible. Instead trigonometric weight functions of

the form W0(x) = cos2(x) and W1(x) = sin2(x) are used, where x ∈ [0, 1] is the

parametrisation along the streamline. Because dW0

dx
and dW1

dx
are zero at x = 0 and

x = 1, angles are preserved at the initial and final points of the merged streamline.
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Data: Starting point x0 and initial direction α for each streamline, step
size d

Result: List of points ~x for each final, merged streamline
repeat

forall incomplete streamline i do
Advance streamline i by one step ;
Push new point x to the front of the list, becoming x0 ;
if x0 outside of domain then

Mark streamline i completed ;
Skip to the next streamline i ;

end
Update αi ;
forall incomplete streamline j 6= i do

if |xi,0 − xj,0| < d and mod (|αi − αj| , 2π) = π then
Merge streamlines i and j into streamline k ;
Delete streamlines i and j ;
Mark streamline k completed ;
Skip to the next streamline i ;

end

end

end

until all streamlines are completed ;
Return ~x for each streamline ;

Algorithm 2: Advancing of streamlines.

Aggressive merging

What has been described above constitutes expected or normal merging. But the

user may also want to reduce the number of separatices and thereby simplify a valid

block decomposition. One approach is to perform aggressive merging of the sep-

aratrices. For aggressive merging, a larger distance threshold is carefully chosen to

make streamlines that would normally just miss each other merge anyway. Trigo-

nometric weight functions are especially useful when performing aggressive merging

of two reasonably distant streamlines. An example of aggressive merging with tri-

gonometric weight functions is presented in Fig. 3.9 where Fig. 3.9a corresponds

to normal merging and Fig. 3.9b to aggressive merging. In this case, a distance

threshold of 5 times the step size was used for aggressive merging. This example

shows that the separatrix graph is greatly simplified and that the curving of some

streamlines helps preserve the original direction at each end. Note, importantly,

that irregular nodes obtained from the critical points are not modified a posteriori ;

only separatrices are.
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Data: List of points ~x and latest direction α for each of streamlines i and j
Result: List of points ~x for the merged streamline k
Advance streamline i by length (~xj)− 1 and streamline j by length (~xi)− 1 ;
N = length (~xi) ;
Invert list ~xj ;
forall t = 0, 1, . . . , N − 1 do

xk,t = cos2
(

t
N−1

)
xi,t + sin2

(
t

N−1

)
xj,t ;

end
Return ~xk ;

Algorithm 3: Merging of two streamlines.

(a) Normal merging. (b) Aggressive merging.

Figure 3.9: Merging of streamlines.

3.2.4 Quadrilateral decomposition

NekMesh relies on the Open Cascade platform [58] as its CAD engine for mesh

generation and for the projection to high-order boundary representations. Open

Cascade also includes tools for CAD manipulation. These capabilities are used, in

this work, for spline and wire creation and for face splitting.

The separatrices computed from the guiding field are transformed into Open Cas-

cade edges represented by interpolating splines. These edges can be joined into a

set of wires, with each wire consisting of topologically connected edges. The original

CAD file is loaded again, consisting of a single two dimensional face, representing the

domain Ω. This face is then iteratively split by each wire and a set of quadrilateral

faces is obtained. These faces are topologically connected, meaning that the future

mesh will be conforming. At this point, each face can be trivially meshed with a

single quadrilateral and projected to high-order. Fig. 3.10a illustrates the quadrilat-
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eral decomposition and coarse quadrilateral mesh obtained for the half circle after

computing the location of irregular nodes and tracing the separatrices.

(a) Coarse mesh. (b) Split mesh.

Figure 3.10: Quadrilateral meshes on the half disc.

For this coarse mesh, the worst scaled Jacobian is found to be Js,min = 0.490. In

this chapter, values for the worst scaled Jacobian are typically only reported for the

coarse mesh. Indeed, as the mesh is split, the quality of elements improves and the

worst scaled Jacobian increases. In this case for example, the worst scaled Jacobian

goes up to Js,min = 0.965 for the split mesh shown in Fig. 3.10b.

The midpoint division approach [39] is used to split a triangular block that forms

when a corner valence is zero. An artificial 3-valence irregular node is inserted which

is connected to each of the three sides of the triangle. One separatrix can then be

physically integrated away from the degenerate corner and throughout the domain.

The other two branches of the 3-valence irregular node are defined as straight lines

at ±2π
3

from the physical separatrix. Fig. 3.11 shows what the midpoint division of

a degenerate quadrilateral might look like.

Figure 3.11: Midpoint division of a degenerate quadrilateral: close-up view of
Fig. 3.17.
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3.2.5 Bidirectional isoparametric refinement

If desired, an isoparametric splitting approach [54] can be used to further sub-

divide the quadrilateral subdomains into smaller elements. This technique, initially

developed for boundary layer mesh division, guarantees that subdivided elements

have the same quality as the macro element from which they are created. In the

current context, it also ensures that angles are preserved.

Since elements are valid thanks to the nature of cross fields, there exists a biject-

ive mapping χ between a reference element Ωst and the physical space element Ω.

The mapping is used to introduce subdivisions, according to a user-defined criterion,

of the reference element along the height to generate layers in the physical space,

as shown in Fig. 3.12. This way very thin elements can be generated that are

themselves valid if the mapping satisfies certain restrictions [53, 54].

�! �!

7�! 7�! 7�!

⌦

⌦st

� � �

Refine
2 sides

Refine
1 side

Figure 3.12: Adaptation of the isoparametric splitting for two directions.

The original isoparametric refinement technique [54] splits a valid prismatic

macro-element into a stack of high-order prismatic elements by using the polynomial

mapping that defines the curvature of the element. Mathematically, this mapping

χ : Ωst → Ω is defined between a reference element Ωst and a given element Ω. The

key observation in the isoparametric splitting technique is that, to generate the stack

of elements, the standard element Ωst may be split into reference sub-elements, and

then χ applied to these to produce sub-elements in Cartesian space. This process is

depicted visually on the left-hand side of Fig. 3.12 for a simple quadrilateral element.
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To apply this technique for the present problem of quadrilateral block refinement,

an adapted version of this approach is required wherein the reference element is

split in not one but two directions. From the perspective of the mathematical

justification for the validity of the method, this aspect actually makes very little

difference. As noted in reference [54], the splitting of the reference element in the

original isoparametric technique can be viewed as an affine mapping f : Ωst → Ω̃st,

where Ω̃st is a sub-element of Ωst. The curvature mapping of a sub-element of the

Cartesian element Ω̃ can then be viewed as the composition f ◦ χ : Ωst → Ω̃. Then,

as long as f is defined such that its Jacobian determinant Jf (ξ) > 0 for all ξ ∈ Ωst,

then this new mapping is valid so long as χ is also valid.

To adapt this technique for bidirectional splitting, a slightly different refinement

strategy is therefore required, as depicted on the right-hand side of Fig. 3.12, where

the standard element is split in each direction. A small extension to the method

has been applied which computes the orientation of the quadrilaterals and alters the

distribution of the splitting points in the reference element accordingly, but the core

of the method remains mostly the same.

Each row of quads can now be individually split using the isoparametric ap-

proach. The fine mesh in Fig. 3.10b shows what the coarse mesh in Fig. 3.10a looks

like after a conformal splitting of each row of quads.

3.3 Application

Five geometries are presented here taken from, or inspired by, the literature, for

which meshes are generated. The meshes shown in Fig. 3.10 are typical of those

already generated by traditional approaches [37, 84, 83]. The additional examples

are used to illustrate the application of the high-resolution approach on multiply

connected geometry, one for which traditional approaches have been shown to have

difficulty, a polygon with both acute and obtuse angles, a NACA3 0012 aerofoil, and

a gear.

3.3.1 Geometry I: multiply connected rectangle

Geometry I shown in Fig. 3.13 is a rectangle with two quarter circle holes. This

geometry has also been meshed, for example, in reference [37]. Some traditional im-

plementations have produced spurious asymmetric irregular nodes, see Fig. 3.13 [32],

for example. The high-order guiding field approach, however, produces the minimum

3NACA: National Advisory Committee for Aeronautics.
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number of irregular nodes (two 3-valence irregular nodes) while preserving the sym-

metry of the geometry without the need to coalesce spurious irregular nodes that

can result from traditional detection algorithms. Fig. 3.14 shows the coarse quadri-

lateral mesh obtained on this geometry using the guiding field approach. The worst

scaled Jacobian for this coarse mesh is Js,min = 0.786.

Figure 3.13: Block decomposition on Geometry I with spurious asymmetric irregular
nodes, generated with a traditional implementation [32].

Figure 3.14: Coarse quadrilateral mesh on Geometry I using the high-resolution
guiding field approach.

3.3.2 Geometry II: nautilus

Geometry II is the nautilus. The domain and guiding fields shown in Fig. 3.15

give the decomposition shown in Fig. 3.16 when aggressive merging is applied. This



CHAPTER 3. TWO-DIMENSIONAL QUADRILATERAL MESH
GENERATION 65

domain is one that traditional methods generate spurious spiral separatices that

end in a limit cycle, therefore creating an invalid block decomposition [84, 83].

To date, no approach using cross fields has been presented that generates a valid

separatrix graph. The use of high-order integration of an accurate guiding field

allows NekMesh to generate separatrices that do not form a spiral. In fact, the

irregular nodes found by NekMesh on this geometry are identical to those one would

obtain for a simple disc. Fig. 3.16 shows the coarse quadrilateral mesh obtained on

this nautilus geometry. The worst scaled Jacobian for this coarse mesh is Js,min =

0.671. This decomposition was generated using aggressive merging with a distance

threshold of value 5 times the step size. If normal merging was to be used, the block

decomposition would have looked more complicated, as shown in Fig. 3.9a, reducing

the flexibility for users to split the mesh to their liking.

The nautilus has a similar (mirrored) guiding field to that obtained on the half

disc in Fig. 3.4. The nautilus itself consists of two half discs of different size attached

by their chord. The irregular node pattern (four 3-valence nodes) is therefore expec-

ted. One major difference is found with the irregular nodes obtained with previous

techniques, e.g. references [84, 83]: the upper left irregular node is located further

outside than in previous works. This seems to lead to streamlines successfully es-

caping a limit cycle.

3.3.3 Geometry III: polygon

Geometry III consists of a polygon whose corners include acute and obtuse angles.

This example is used to demonstrate the use of the DG discretisation for the solution

of the guiding field. The rest of the meshing procedure remains the same and is in

fact unaffected by the type of discretisation. Fig. 3.6 has already shown the solution

~v and computed ψ field for this geometry, with u = 0 and v = 0 isocontours

shown in white and black, respectively. As mentioned earlier in Sec. 3.2.3, the only

consideration when using the DG formulation is that the approximate solutions are

accurate enough to not affect the streamline integration.

Geometry III features a sharp corner (far right, Fig. 3.17) whose valence is eval-

uated as zero. That creates a degenerate quadrilateral that must be split into three

valid quads as explained in Sec. 3.2.3. Fig. 3.17 shows the coarse quadrilateral mesh

obtained on the polygon geometry. It contains only two irregular nodes, one created

ad hoc for the degenerate corner and the other detected as a critical point in the

guiding field. The worst scaled Jacobian for this coarse mesh is Js,min = 0.392.
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(a) Solution u. (b) Solution v.

(c) Computed ψ.

Figure 3.15: Guiding field on Geometry II: isocontours of u = 0 and v = 0 shown
in white and black respectively.
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Figure 3.16: Coarse quadrilateral mesh on Geometry II.

Figure 3.17: Coarse quadrilateral mesh on Geometry III.
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3.3.4 Geometry IV: NACA 0012

Geometry IV is that of a NACA 0012 profile in a rectangular domain, more relevant

for CFD4 applications. Since the trailing edge angle is not a multiple of π/2, a DG

discretisation was used to compute the guiding field. With this example, the flexibil-

ity of the isoparametric splitting module in NekMesh to define different distributions

of elements is demonstrated. This allows the user to easily obtain elements of the

required size, e.g. high aspect ratio elements in the boundary layer of the aerofoil.

Fig. 3.18 shows the coarse and the split quadrilateral meshes obtained on this NACA

0012 geometry. The worst scaled Jacobian for the fine mesh is Js,min = 0.084, which

is abnormally low, suggesting a potential issue in the mesh.

3.3.5 Geometry V: gear

Finally, Geometry V (Fig. 3.19) illustrates the preservation of symmetries and pat-

terns. The geometry is that of a simple gear and the same irregular node pattern

as seen in the cross field literature [83] is observed.

3.3.6 Fine meshes

The coarse meshes can be split further according to the user’s preference using the

isoparametric splitting described in Sec. 3.2.5. Examples of two split meshes for

some of the quadrilateral decompositions obtained above are shown in Fig. 3.20.

4CFD: computational fluid dynamics.
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(a) Coarse mesh.

(b) Split mesh.

Figure 3.18: Quadrilateral meshes on Geometry IV.
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Figure 3.19: Block decomposition on Geometry V.
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(a) Geometry I.

(b) Geometry III.

Figure 3.20: Split meshes on Geometries I and III.
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Chapter 4

Three-dimensional hybrid mesh

generation

The method presented in the previous chapter is well defined in two dimensions but

does not translate well to three dimensions because of the lack of rigorous frame

arithmetic. A semi-structured approach is instead pursued in this chapter where a

structured mesh is generated in the near-field and an unstructured one in the far-

field. This yields several advantages. A global hexahedral block decomposition is

not sought, a task that remains a challenge for the community. Instead, a near-field

partition is generated using the medial axis description of the geometry. The medial

axis is a technique that allows geometries to be analysed such that smaller regions

of simple shape can be created and a skeleton built [3]. This near-field partition

yields a coarse boundary layer mesh that can be easily curved and refined in the

wall-normal direction. The rest of the domain is then discretised using traditional

unstructured mesh generation techniques. This semi-structured approach brings the

benefits of both approaches together: high anisotropy is achieved near boundaries

to better capture viscous effects; and no global block decomposition of the whole

domain is needed.

The layout of this chapter goes as follows. The CFI CAD interface implemented

in NekMesh is first described in Sec. 4.1. The medial axis is then described in Sec. 4.2,

which is used for near-field partitioning and for the generation of the coarse linear

mesh. A fine high-order mesh is then generated using a bottom-up approach, in

Sec. 4.3, with some examples shown in Sec. 4.4. Finally Sec. 4.5 covers a recent

extension of the method to generate structured meshes in the wake of streamlined

bodies.

73
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4.1 CAD interface

Processes for both linear and high-order meshing regularly interrogate the CAD

geometry and thus a robust CAD interaction is required. NekMesh provides a

lightweight wrapper that hides the complexity and size of the CAD interface from

users and developers. In the examples presented here CFI , the CAD interface of

CADfix [33], has been used but NekMesh also provides a CAD back-end to Open

Cascade [58] as its CAD engine.

The use of CADfix , and its interface CFI , is motivated by the more stringent

requirements on CAD quality for high-order meshing. CAD representations that

may work very well within linear mesh generators, may not work for their high-order

counterpart. For example, distortion levels in the surfaces, which might be perfectly

acceptable for generating linear meshes, could induce poor quality or invalid elements

in high-order meshes. Therefore access to high quality CAD and CAD repair tools

for poor quality CAD, along with a robust CAD interface, is vital to the creation of

robust tools for quality high-order meshing.

The flowchart of Fig. 4.1 depicts the integration of CFI into NekMesh. In a

nutshell, a CADfix session produces a linear mesh that NekMesh will read via CFI

and process through its own high-order routines. More details of the method will

be given in the following sections.

CAD geometry

Linear 
mesh

High-order

 mesh NekMesh

CAD repair

CADfix/CFI

CAD queries

Figure 4.1: Flowchart of the proposed approach.

4.2 Linear mesh

In order to produce a high-order mesh, a linear mesh first needs to be generated.

CADfix is a commercially available tool with functionality covering the import, pre-

paration and interrogation of geometry but the 3D medial object based partitioning

and linear mesh generation uses results from active research projects [11] and are
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not yet commercially available. However, in order to provide appropriate geometry

and prismatic meshes for upgrade to high-order, CADfix has additional functionality

which has been designed for this framework and is under active development. There

are several automatic and semi-automatic tools which are included in the pipeline

for generating linear meshes. First, the geometry is prepared to repair any CAD de-

fects and to define a valid domain. Second, the domain is automatically subdivided,

using the medial axis, to create partitions for meshing. Finally, edges and faces of

the partitions are meshed using a coarse set of divisions, designed to be balanced,

well aligned and to allow periodicity at the boundary. Each part of this process

has been designed to be suitable for a posteriori high-order mesh generation. The

methodologies presented in this section are available in CADfix and have not been

implemented as part of this project. They are presented here for completeness.

To illustrate the various steps of the procedure for constructing a high-order

mesh, a simple geometrical domain is used that consists of an unswept wing of

rectangular planform composed of NACA 0012 aerofoil sections and a round tip,

essentially a wing tip, enclosed in a rectangular box. This geometry is also of

aerodynamic interest as a case study of vortex roll-up proposed and experimentally

measured by Chow et al. [18] which has been used in CFD validation studies, see

for instance [42].

4.2.1 Preparation

Not all CAD models are suitable for CFD analysis. CAD geometry often lacks far-

field boundary definitions, it may have defects such as sliver surfaces or small gaps

and the geometry may not be watertight. For meshing purposes a CFD-ready CAD

geometry is required: the fluid domain must be a watertight CAD solid. CADfix can

import the geometry from a wide range of design sources and provide automatic,

manual and diagnostic driven tools for repairing poor quality CAD geometry, con-

structing outer domain boundaries and building a watertight and well connected

CAD model. The 3D medial object algorithm also needs a certain level of quality

from the input CAD model. Sharp corners, large vertex-face and edge-face gaps all

need to be repaired before the medial object can be generated to guide the partition-

ing and ultimately the meshing. As the domain partitioning and meshing process

respects the CAD topology, excessively short edges and narrow sliver faces should

also be removed. The requirements outlined here are not that different to those

imposed by standard surface and volume meshing algorithms, and typically can be

automatically detected and removed.
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4.2.2 Medial object

The medial axis, first introduced by Blum [7], is a method for analysing shapes.

For a fluid domain, it can be defined as the set of all points in the domain which

have more than one closest point on the boundary of the domain. If these points are

taken together with their distance to the domain boundary (the medial radius), they

form a complete description of the flow domain. The medial axis is computed and

returned as a non-manifold CAD object called the medial object, which contains

extra information to describe the relationships between the different components of

the medial object along with medial radius information. See Fig. 4.2 for an example

3D medial object of the fluid domain around the NACA wing tip. The colour map

used on the medial object indicates the distance from that point to the nearest

(two) boundaries, namely the wing and the wall. The red line, on the other hand,

represents the medial halo, described in the next section.

The medial object can be used for structured meshing, feature recognition and

mid-surfacing as well as the automatic partitioning used here, and robust generation

of the medial object has been a long standing challenge for the CAE1 community.

This algorithm is based on a domain Delaunay triangulation [69], and recent devel-

opments [10] allow it to robustly work on a range of production CAD models or in

the air volume around such models.

Figure 4.2: 3D medial object around the NACA wing tip.

1CAE: computer-aided engineering.
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4.2.3 Partitioning

The 3D medial object is used to guide this partition generation in complex junctions.

First the 3D medial object must be constructed, which is then used to generate an

offset surface, or shell, from the boundaries of the fluid domain. The offset distance

is defined directly by the user and will determine the thickness of the boundary

layer mesh. The medial object is used to locate lines where simply offsetting the

CAD faces would cause the shell to self-intersect, known as medial halos (the red

lines in Fig. 4.2). The shell (Fig. 4.3) generated splits the fluid domain into two

partitions: one near-field partition close to the boundary and one far-field partition.

The near-field partition is subdivided into multiple smaller partitions using feature

lines on the CAD model to guide the location of the partition faces.

Figure 4.3: Shell around the NACA wing tip: medial halos in red.

If the fluid domain contains a sharp concave corner or edge (for example, at a

wing/fuselage junction), flows will occur with potentially large velocity gradients

in two or even three directions. Ideally this coarse linear mesh requires elements

aligned with these principal directions. Using the medial object, there are several

options available to achieve a mesh suitable for high-order upgrade.

The medial halos and medial object itself can be used to guide partition construc-

tion around concavities in wing root junctions, giving better mesh alignment when

using hexahedral meshing. For streamlined bodies like a wing, three topologies are

possible. They are shown in Fig. 4.4. The natural or direct topology that emerges

from the medial axis is obtained when the medial object is used to separate different
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near-field blocks without any post-treatment of the concavities; see Fig. 4.4a. This

topology, however, yields a distorted prismatic layer in orthogonal concavities, e.g.

at wing-root junctions, as can be seen for example in Fig. 4.5. For this reason, a

concave multi-normal topology (see Fig. 4.4b) is preferred. This topology requires

the manipulation of the near-field partitions so as to obtain a hexahedral block at

the junctions.

(a) Direct. (b) Concave multi-normal. (c) Concave/-vex multi-normal.

Figure 4.4: The different topologies and shell structures.

The use of a concave multi-normal topology, together with hexahedral elements,

enhances the quality of the linear mesh at junctions. This is illustrated by Fig. 4.5,

which compares the meshes obtained with a direct and a concave multi-normal

approaches and shows that the concave multi-normal mesh avoids the distortion of

prismatic layers at the concavity. The concave multi-normal mesh could potentially

prevent the propagation of the prismatic layers due to self-intersection.

Figure 4.5: Meshes on direct and concave multi-normal topologies.

A third and last identified topology is the concave/convex multi-normal (see

Fig. 4.4c), a further extension of the concave multi-normal topology. The con-

cave/convex multi-normal topology is discussed further, in Sec. 4.5.
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4.2.4 Linear mesh

The medial object based partitioning of the flow domain has been designed for use

with certain mesh styles.

The concave multi-normal near-field topology permits the use of prismatic linear

elements which can be swept from the CAD surfaces through the near-field partition

to interface with a tetrahedral mesh in the far field, with only one element generated

through the thickness of the near field partition.

A bottom-up mesh generation process is used to ensure the mesh is fully con-

formal between all partitions. Lines are meshed first, then surfaces are meshed with

elements conforming to the lines, and finally the volumes of the partitions are meshed

with elements which conform to the faces. The concave multi-normal topology fea-

tures a structured hexahedral junction partition, and in this case the line meshes

must be “balanced” to satisfy rules which are imposed via a structured mesh style.

This is solved as an integer programming problem [73], and solved using an open

source solver [26]. To further ensure good quality in the final mesh, a least-squares

optimisation is performed to the line nodes to reduce potential skew.

The swept meshing of the partitions is performed by Delaunay triangulations of

the designated template faces. This Delaunay mesh is swept into prismatic elements

using the CADfix sweep mesher. Once the partition mesh and the tetrahedral far-

field mesh have been completed, a mesh quality test is performed to make sure all

elements produced during the linear meshing stage are not inverted. An example of

a coarse linear mesh obtained with this method for the NACA wing tip geometry

is shown in Fig. 4.6. The boundary layer mesh in the near-field region consists of

1,224 triangular prisms and 25 hexahedra and the far-field region is discretised into

12,576 tetrahedra. While a much finer mesh would be needed for simulations, these

numbers show that the method is robust for coarse meshes too. In particular, the

boundary layer mesh can be arbitrarily a posteriori refined to obtain any level of

wall-normal resolution.

Periodicity

For the Rotor 67 example that follows in Sec. 4.4, a rotationally periodic mesh

is required. The far-field boundary edges and surfaces need matching divisions so

identical meshes can be made to ensure periodicity of the solution. This is achieved

by performing an additional step in the linear mesh generation process during the

balancing and alignment step. By calculating a rotational transformation which

takes one side of the far field to the other, edges can be geometrically matched

and the divisions copied from one side of the outer far field faces to the other.
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Figure 4.6: Linear mesh around the NACA wing tip.

As these edges and surfaces have already been balanced and aligned it is safe to

duplicate the divisions on the other side of the far field, maintaining the density and

quality required for these coarse meshes. Once the divisions have been duplicated

the volume can be meshed and quality checked as outlined above.

4.3 High-order mesh

The a posteriori generation of a high-order mesh from a linear mesh proceeds in

a bottom-up fashion following the ideas proposed in reference [70]. The additional

points required for the high-order polynomial discretisation are incorporated sequen-

tially first along the curves, then on the surfaces of the CAD geometry and, finally,

in the interior of the domain. The generation of points along the curves is essentially

the one proposed in reference [70]. The following sections describe the improvements

incorporated into the methodology to achieve the type of meshes sought in this work.
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4.3.1 Optimisation of the surface mesh

Inaccuracies in the representation of the geometry of the boundary of the computa-

tional domain due to CAD distortion, even if small, could have a significant impact

on the accuracy of the flow solution. To overcome this problem, NekMesh optimises

the location of the high-order nodes in the mesh to reduce distortion by modelling

the mesh entities as spring networks and minimising their deformation energy. The

optimal location of the mesh nodes is obtained in a bottom-up fashion.

The first step is to optimise the location of mesh nodes belonging to edges that lie

on CAD curves by minimizing the deformation energy of a spring system in the para-

metric space of the curve with the vertices in the linear mesh fixed. This is followed

by the processing of mesh nodes on edges that lie on the CAD surfaces. Again, the

optimal position of the mesh nodes of an edge is found on the 2D parametric space

of the surface by minimizing the deformation energy of the 3D high-order edge. As a

result, the optimised high-order edge will lie approximately on the geodesic between

the two end points on the surface [70]. The final step is the relocation of the mesh

nodes in interior triangle faces that lie on CAD surfaces. Here, the mesh nodes on

the edges of the triangles are fixed and the interior nodes are free to move. Each of

the free interior nodes is connected to a system of six surrounding nodes by springs.

The minimum deformation energy of this system of spring is found using a bounded

version of the BFGS2 algorithm that accounts for the limits of the parameter space

in the CAD entities [16]. The gradients required by the optimisation procedure can

be evaluated from the CAD information provided by CFI . This procedure leads to

an overall distribution of points which ensures the surface mesh is smooth, unless

pathological distortion is present in the CAD geometry.

4.3.2 Refined boundary layer mesh

The generation of highly stretched elements with high aspect ratios, say 100:1,

which are required to accurately simulate the high shear of boundary layer flows

at aeronautically-relevant Reynolds numbers, poses a significant challenge for high-

order mesh generation. If the high-order mesh is produced using a posteriori meth-

ods, then curving thin elements in the boundary layer mesh will almost certainly pro-

duce self-intersecting elements in regions of high curvature. To avoid this, high-order

boundary layer meshes are generated by applying the isoparametric approach [54]

to the linear meshes produced via the medial object.

First a macro boundary layer hybrid mesh consisting of a single layer of hexa-

2BFGS: Broyden–Fletcher–Goldfarb–Shanno.
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hedra and triangular prisms is generated by the medial object method in the near-

field region and the far-field partition is discretised into tetrahedra. The medial

object allows the thickness of the near-field region and the height of the elements

to be controlled to a much greater extent than most commercial mesh generators.

By selecting a thickness of the shell that gives enough room to accommodate the

surface curvature, the likelihood of generating invalid high-order elements within

the macro boundary layer mesh is reduced.

The volume generation proceeds next to split these high-order elements using

the isoparametric approach [54], previously described in Sec. 3.2.5. The splitting

strategy used here is to specify a number of subdivisions, or layers, along the para-

metric coordinate representing the wall normal, and a growth, or progression, rate

for the height of the elements. This progression rate is characterised by a factor r

that is the ratio of heights of adjacent elements. The generation of the boundary

layer mesh by this approach is illustrated in Fig. 4.7, which shows a boundary layer

region of macro-prisms split to produce highly curved, valid boundary layer elements

with very high aspect ratio.

r=1 r=1.5

(a) Coarse mesh. (b) Uniform split. (c) Non-uniform split.

Figure 4.7: Boundary layer meshes using the isoparametric splitting: adapted from
reference [54].

Bidirectional isoparametric splitting

The generation of concave multi-normal meshes in junction regions allows for the

generation of structured, hexahedral elements that avoid the effects of layer dis-

tortion. However, this approach breaks the original isoparametric splitting of pris-

matic stacks of elements that has been used thus far to produce boundary layer

meshes of arbitrary thickness. The method is adapted to deal with concave multi-

normal boundary layer refinement in order to generate valid, curved meshes through

a straightforward extension of the technique.
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A similar extension to bidirectional splitting was described in Sec. 3.2.5 for two-

dimensional quadrilaterals. The extension of this technique to three-dimensional

hexahedra is straightforward, so much so that tridimensional splitting could even

be achieved. An example of the boundary layer mesh generated by bidirectional

hexahedral splitting for the wing tip geometry is shown in Fig. 4.8. The mesh in the

near-field region has been subdivided into 10 layers using a growth rate r = 1.5. The

resulting boundary layer mesh is formed by 12,240 prismatic and 2,500 hexahedral

elements with an aspect ratio of up to 70.

4.3.3 Volume mesh

The introduction of the curvature of the CAD surfaces onto the high-order surface

triangulation produces high-order elements in the interior of the volume with curved

faces and edges that could become invalid. Controlling the thickness of the near-field

via the medial object permits the generation of linear boundary layer meshes that

can accommodate the deformation induced by surface curvature without producing

invalid elements. The positions of the additional nodes required for the polyno-

mial representation of the high-order elements are obtained by means of a mapping

between a reference element and the physical element which accounts for the pres-

ence of curvature on its faces and edges lying on the CAD definition, whilst the

other edges are straight and their faces planar.

A high-order mesh of the volume is shown in Fig. 4.9 which contains, in ad-

dition to the elements in the boundary layer mesh, 12,576 tetrahedral elements of

polynomial order 4.

4.4 Application

This section presents an illustration of the proposed mesh generation methodology

and the high-order meshes it produces using two geometries proposed by NASA3

for CFD validation: the Common Research Model and the Rotor 67. These are

described in the following sections and, for reference, all the corresponding high-

order meshes have been generated using a polynomial order of 4.

3NASA: National Aeronautics and Space Administration.
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(a) Coarse mesh.

(b) Split mesh.

Figure 4.8: High-order boundary layer meshes around the NACA wing tip: the wing
and wall surfaces are shown in yellow for perspective.
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Figure 4.9: Final high-order mesh around the NACA wing tip.

4.4.1 NASA Common Research Model

The NASA CRM4 presented here is one of the five configurations designed by

NASA [81] for CFD validation. It is a wing/body alone configuration with a fu-

selage with a maximum radius of 0.17m, and a 35 degrees backward-swept wing of

aspect ratio of 9 and span of 1.60m.

In the first instance, the original definition of the CAD geometry in STEP5

format [57] is processed through CADfix to clean it and fix a number of inconsist-

encies and severe distortions that might prevent the successful generation of the

medial object decomposition and the high-order mesh.

The medial object interface, depicted in Fig. 4.10a, was designed to generate a

hexahedral mesh at the wing-fuselage junction. Fig. 4.10b shows the block partition-

ing of the near-field region that provides the framework for generating the boundary

layer mesh around the aircraft. Fig. 4.11 provides a more detailed view of the blocks

in the near-field region via a wireframe representation of the edges of the partitions

in that region.

4CRM: Common Research Model.
5STEP: Standard for the Exchange of Product model data; ISO 10303.
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(a) Interface of the medial object at the junction.

(b) Shell.

Figure 4.10: Medial object around the NASA CRM.

Figure 4.11: Wireframe of the partitions around of the NASA CRM: close-up near
the junction..
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The medial object decomposition was used to produce an initial coarse linear

mesh with a single layer of elements in the near-field partition. This boundary

layer mesh consisted of 33 hexahedra and 2,042 prisms. The far-field region was

discretised using 18,084 tetrahedra. The characteristics of the linear mesh can be

observed in Fig. 4.12a that shows a cut normal to the fuselage through the mesh

and in the enlargement of that mesh in the wing-fuselage junction of Fig. 4.13a.

(a) Coarse linear mesh.

(b) Split high-order mesh.

Figure 4.12: Volume mesh around the NASA CRM: cut view.

In the final step of the generation process the isoparametric approach is applied

to subdivide the coarse boundary layer mesh into 10 layers with a progression ratio
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r = 1.5. This produces a high-order mesh with 20,420 prisms and 3,300 hexahedra

with a maximum element stretching ratio of 60. Views of the cut through the

high-order mesh and the enlargement near the wing-fuselage junction are shown in

Fig. 4.12b and Fig. 4.13b, respectively.

4.4.2 NASA Rotor 67

The geometry considered here is a first stage rotor (NASA Rotor 67) of a two-stage

transonic fan designed and tested at the NASA Glenn center [61]. The original

rotor has 22 blades with a tip leading-edge radius of 25.7cm and a tip trailing-edge

radius of 24.25cm. The hub to tip radius ratio is 0.375 at the leading edge and 0.478

at the trailing edge. Here the geometry for a single blade with periodic BC and

without tip clearance is considered. The distinctive feature of this geometry is the

incorporation of periodic features both in the medial object decomposition and the

linear and high-order meshes.

The medial object for this geometry is shown in Fig. 4.14a. Fig. 4.14b depicts

the block decomposition in the near-field region. The linear mesh in that region,

which consists of 53,830 prisms and 236 hexahedra, is shown in Fig. 4.14c.

Enlarged views of the surface mesh and the boundary layer mesh in the vicinity

of the blade root are shown in Fig. 4.15a and Fig. 4.15b, respectively. The surface

mesh contains 53,830 triangles and 472 quadrilaterals.

The coarse mixed prismatic-hexahedral linear mesh is split via the isoparametric

mapping into 10 layers with a progression ratio r = 1.5 which leads to a maximum

stretching ratio of 80 for the elements near the wall. This linear mesh is then

transformed into a high-order mesh with polynomial order four. A close-up view of

the high-order surface mesh near the leading edge of the blade’s root is shown in

Fig. 4.16.

A pictorial summary of the mesh characteristics of the linear and high-order

meshes is given in Fig. 4.17 which shows enlargements of these meshes around the

mid-chord of the blade in the near-field region.

4.5 Concave/convex multi-normal topologies

This approach can be extended to concave/convex multi-normal topologies (see

Fig. 4.4c) too. This topology is typical of streamlined bodies with a sharp or

squared-off trailing edge, the former being a specific case with zero thickness. In

this configuration, the near-field blocks are extended downstream instead of looping

around the trailing edge. This makes it possible to obtain a structured mesh in the
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(a) Coarse linear mesh.

(b) Split high-order mesh.

Figure 4.13: Volume mesh around the NASA CRM: cut, close-up view on the junc-
tion.
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(a) Medial object. (b) Shell. (c) boundary layer mesh.

Figure 4.14: Near-field partition around the NASA Rotor 67.

wake of the body too. While the boundary layer blocks were previously closed in dir-

ect and concave multi-normal configurations, they are now open in concave/convex

multi-normal configurations. The open end of the blocks are exposed to the far-

field unstructured mesh and splitting them will require the propagation of these

subdivisions into the unstructured mesh.

The original workflow is modified to accommodate for the concave/convex multi-

normal topology. During the generation of the linear mesh, only the coarse boundary

layer mesh in the near-field partitions is produced; not the far-field unstructured

mesh just yet. The partial linear mesh is passed on to NekMesh where a high-order

mesh is produced and split in the exact same way as for direct and concave multi-

normal topologies. Improvement of the data flow in NekMesh had to be made.

In particular, the conservation of CAD information within the data structures of

NekMesh is important both for nodes and for elements of all dimensionality so that

the future export (see below) to CADfix and the rest of the workflow can be carried

out. Not only did the CAD information have to flow throughout the NekMesh

workflow, new nodes and elements are also created during the isoparametric splitting

that need to be matched with the relevant CAD entities.

After splitting, the mesh is finally returned to CADfix . A new module had to be

implemented to cover this export in a way that mirrors the initial import of a CADfix

mesh into NekMesh. Importantly, nodes and elements must be exported to CADfix

with the right CAD information so that the surface meshes on the boundaries of

the far-field partitions can be appropriately extracted. From this surface mesh,

the unstructured mesh can finally be generated in CADfix with the knowledge of

the subdivisions of the boundary layer mesh. Because the boundary layer mesh is

open-ended downstream, a quadrilateral interface exists between the near- and the
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(a) Surface mesh.

(b) boundary layer mesh.

Figure 4.15: Near-field partition around the NASA Rotor 67: close-up view on one
junction.
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Figure 4.16: Split surface mesh around the NASA Rotor 67: close-up view on the
leading edge.

(a) Linear boundary layer mesh. (b) High-order boundary layer mesh.

(c) Linear volume mesh. (d) High-order volume mesh.

Figure 4.17: Meshes around the NASA Rotor 67: close-up view on the mid-chord.
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far-field meshes, which must be connected with pyramids before transitioning to an

all-tetrahedra mesh.

Difficulty can, however, arise in the extension of the wake partition when the

surface to which the body is fixed is not plane, e.g. in a wing-fuselage configura-

tion. In this situation, the wake-fuselage junction not only would be hard to trace

along the curved fuselage but it might also expand out of reach in either or both

the streamwise and the spanwise directions. For this reason, a gap may be intro-

duced between the boundary layer mesh generated around the fuselage and the wake

block. This approach gives greater flexibility in the generation and manipulation of

the wake block partition. This is illustrated in Fig. 4.18 on the NACA wing tip.

This wing has a squared-off trailing edge of finite thickness and is attached to a flat

wall. In this example, the wake block has been expanded on purpose to demon-

strate the flexibility of the linear mesher to generate wake blocks suited to the flow

configuration.

Figure 4.18: Gap between the wake block of the NACA wing tip and the wall.

The procedure then proceeds. The near-field is discretised with a linear mesh,

then transferred to NekMesh for high-order meshing and finally split. The structured

mesh on a portion of span before and after splitting is shown in Fig. 4.19. A

progression ratio of 2.0 and 5 elements in the thickness were used for the splitting in

the boundary layer of the wing. The progression then linearly varies with distance

from the trailing edge until reaching 1.0 (uniform distribution of elements) at the

far end of the wake.
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(a) Coarse mesh.

(b) Split mesh.

Figure 4.19: Near-field meshes around the NACA wing tip with concave/convex
multi-normal topology.



Chapter 5

r-adaptation

In r -adaptation the aim is to increase resolution by locally reducing the mesh size,

h, whilst keeping the number of DOF in the mesh constant. This effectively requires

mesh nodes to be clustered in the vicinity of those regions where additional resolution

is required, e.g. at shocks. This chapter proposes to accomplish this by adapting a

variational framework for the optimisation of high-order meshes [80].

First, the variational formulation for high-order mesh optimisation is recalled

in Sec. 5.1. The proposed modification of this technique for r -adaptation is then

described in Sec. 5.2 along with some analytical examples. Sec. 5.3 finally proposes

to use an error estimator to drive the adaptation process for compressible flow

simulations.

5.1 Variational mesh optimisation

The objective of this variational framework [80] is to improve the quality of high-

order curvilinear elements using a node-based optimisation approach using a formu-

lation based on the energy of deformation. An important aspect of such energy-based

formulation is that a suitable choice of the energy functional, namely polyconvex,

would guarantee the existence of a minimum and therefore of a solution to the

minimisation problem.

Fig. 5.1 shows that a mapping φM exists from a reference element Ωst to a

curvilinear high-order element Ωe. The mapping φM can be further decomposed

into two distinct mappings: a mapping φI from reference to ideal elements and a

mapping φ from the ideal to the curvilinear elements. The ideal element is defined

as the high-order linear element, which after minimisation will be the element that

the optimiser seeks to achieve.

From this ideal element, the deformation energy is calculated. The mesh is

95
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ξ = (ξ1, ξ2) ∈ Ωst

reference element

ξ1

ξ2

ξn

y = (y1, y2) ∈ Ωe
I/T

ideal/target element

yn

x = (x1, x2) ∈ Ωe

curvilinear/adapted element

xn

φI/T

φM

φ

Figure 5.1: Mappings between the reference, the ideal/target and the curvilin-
ear/adapted elements.

deformed to minimise an energy functional E(∇φ):

find min
φ
E(∇φ) =

∫
Ωe
W (∇φ)dy, (5.1)

where W (∇φ) is a formulation of the deformation energy. Several formulations were

tested and it was found that the best results were obtained when using a hyperelastic

model [80]. For this model, the strain energy takes the form

W =
µ

2
(IC1 − 3)− µ ln J +

λ

2
(ln J)2, (5.2)

where λ and µ are material constants, C is the right Cauchy-Green tensor, IC1 is its

trace and J is the determinant of the Jacobian matrix J = ∇φ. This formulation

is used in the work that follows.

When optimising a high-order mesh, the ideal element of Fig. 5.1 corresponds

to the linear element before generation of a high-order element by addition and

projection of high-order nodes. To obtain best performance, not only high-order

nodes but vertices are optimised too. This ideal element becomes an arbitrary

target element. The optimiser now aims at adapting element Ωe towards a size

and a shape similar to the target element Ωe
T .
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5.2 r-adaptation

In the framework of adaptive meshes, the ideal element Ωe
I becomes a target element

Ωe
T . Because this target element Ωe

T is modified, the optimisation of the mesh by

minimisation of the energy functional E(∇φ) will force element Ωe towards a shape

and dimensions similar to Ωe
T . The manipulation of Ωe

T is achieved by modification

of its mapping φT and can be isotropic or anisotropic alike. Linear transformations

can be applied to the Jacobian of the mapping JT = ∇φT . In the anisotropic case,

the Jacobian is multiplied by a metric tensor M :

JT = MJI (5.3)

In the isotropic case, the Jacobian is simply scaled by a linear factor r, which can

in turn be expressed more generally as a metric tensor rI multiplication:

JT = rJI = (rI)JI (5.4)

5.2.1 Application

This section demonstrates the feasibility of this method using analytical expressions

for the metric tensor. The example hereby presented proposes to adapt a homogen-

eously meshed double unit side domain such as the one shown in Fig. 5.2a. The aim

is to refine along the circumference of a circle of unit diameter. This is achieved

anisotropically by shrinking elements in the radial direction only.

A scaling factor r is defined in the radial direction at an angle α from the x-axis.

The metric tensor can be expressed as a succession of linear 2D transformations:

1. Rotate the element so that the radial axis coincides with the x-axis

M1 =

(
cosα sinα

− sinα cosα

)
(5.5)

2. Scale the element along the x-axis

M2 =

(
r 0

0 1

)
(5.6)

3. Rotate the element back to its initial orientation

M3 =

(
cosα − sinα

sinα cosα

)
(5.7)
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The combined metric tensor becomes:

M = M1M2M3 =

(
1− s cos2 α s sinα cosα

s sinα cosα 1− s sin2 α

)
, (5.8)

where s = 1− r is the relative reduction in size.

Additionally, a distribution of r(d) is defined, with d =
√
x2 + y2 the distance

from the centre of the domain, using a Gaussian distribution such as

r(d) = 1− A√
2πσ2

e−
(x−µ)2

2σ2 , (5.9)

with the mean µ = 0.5, the standard deviation σ = 0.05 and A = 0.9
√

2πσ2 such

that mind r(d) = 0.1.

Results are shown for a quad mesh in Fig. 5.2. The adapted mesh in Fig. 5.2b

shows important refinement in the unit diameter circumference area. Coarsening

is also observed everywhere else with bigger elements noted inside the circle. Such

coarsening is to be expected as nodes are moved towards the unit diameter circum-

ference and therefore stretch elements in the rest of the domain. It can also be

observed from Fig. 5.2c that adaptation is indeed anisotropic: elements are shrunk

in the radial direction only, keeping the size in the angular direction constant. How-

ever, elements are distorted; this is discussed below.

Another example is shown in Fig. 5.3. This domain corresponds to the truncated

upper-right quadrant of the previous example, meshed this time by triangulation.

The method behaves equally well for a less uniformly distributed triangular mesh

as shown in Fig. 5.3b. The reader should note that this is a smaller domain, not a

zoom in on a bigger domain, therefore demonstrating the CAD sliding capabilities

in NekMesh for nodes on the boundaries.

In both examples, highly curved elements can be observed in the vicinity of the

unit diameter region, which is indeed the expected behaviour. At the present time,

a single metric tensor is used per element, computed at the barycentre of the linear

element. This results in linear target elements. However, because high-order nodes

are also optimised, elements are deformed by the algorithm in ways not intended by

the metric tensor. To avoid this kind of behaviour, all subsequent r -adaptation is

applied onto the linear mesh and the adapted mesh is then made high-order. This

also allows a considerable speed up in compute time.
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(a) Initial mesh. (b) Adapted mesh.

(c) Close-up view on the adapted mesh.

Figure 5.2: Anisotropic adaptation of a uniform quadrilateral mesh.

5.3 Error-driven adaptation

This section explores the use of an a posteriori error estimator to drive the r -

adaptation procedure. Unlike traditional h-adaptation, r -adaptation has one major

limitation: the number of elements, and therefore DOF, is constant. Regions of the

mesh can only be refined by coarsening others. Additionally the mesh connectivities

are preserved. Decreasing or increasing the size of elements directly translates into

the deformation of neighbouring elements. These considerations must be taken into

account when driving r -adaptation using an error indicator.

This section, unlike the rest of the thesis, makes use of Aghora [65], a high-

order DG solver, for the inviscid compressible flow simulations. The details of the

formulation and implementation of this solver can be found in the cited article and
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(a) Initial mesh. (b) Adapted mesh.

Figure 5.3: Anisotropic adaptation of a triangular mesh.

are beyond the scope of this thesis.

5.3.1 Error indicator

To identify the target element size, the definition of an error estimator, providing

an indication of the distribution of the local error over the spatial discretisation, is

required. To this purpose, a local measure in an element K of the L2-norm of the

discretisation error of momentum is ideally employed:

εK :=

(∫
K

(
(ρv)h,p − (ρv)ex

)2

dx

) 1
2

, (5.10)

with the global error being defined as

εΩ :=

(∫
Ω

(
(ρv)h,p − (ρv)ex

)2

dx

) 1
2

, (5.11)

where ex denotes the exact solution.

The exact solution is in general unknown. The VMS1 error estimator, previously

used for p-adaptation [55, 56], is considered here. This error indicator estimates εK

in Eq. (5.10) at order p− 1 by considering the error between the numerical solution

1VMS: variational multiscale.
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(ρv)h,p and its projection on a reduced order space (ρv)h,p−1:

eK :=

(∫
K

(
(ρv)h,p−1 − (ρv)h,p

)2

dx

) 1
2

. (5.12)

Despite its simplicity and conservative nature, this indicator has shown good

performances for guiding p-adaptation procedures [55, 56]. It has been retained for

this work because of the smoothness of its field, providing better conditioning for the

r -adaptation process. An example is shown in Fig. 5.4 for an inviscid compressible

flow over a Gaussian bump at M = 0.5, p = 2.

Figure 5.4: VMS error estimates for a Gaussian bump.

5.3.2 Target element size

From this error indicator, it is now necessary to determine a target element size to

inject into the r -adaptation module of Sec. 5.2. Because the VMS error indicator is

isotropic, only isotropic r -adaptation is considered.

It is known that for a high-order DG formulation, the discretisation error decays

exponentially at a rate of p+ 1 under uniform refinement such that

ε = Chp+1, (5.13)

where C is a constant that depends on the mesh and the regularity of the solution,

and h the local element size. The theoretical decay rate can be obtained only under

uniform refinement and is valid for h→ 0. Here it is loosely assumed that a similar

relation is also valid for the local error and for the initial spatial discretisation. By

making this assumption, an expression for the target element size can be obtained.

First the current error eK and target error e′K of a single element are defined as

eK = Chp+1
K , e′K = C(h′K)

p+1
, (5.14)
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which give a measure of the target element size h′K with respect to the initial element

size hK :

h′K = hK

(
e′K
eK

) 1
p+1

. (5.15)

The target element size now only requires the definition of a target error e′K .

5.3.3 Target error

Three different approaches are considered here to determine the target error e′ = e′K
for all elements K. They are later tested and analysed in Sec. 5.3.5.

Method 1: Constant L2-norm

In the first approach, it is assumed that the total L2-norm is unchanged:∫
Ω

(
(ρv)h,p − (ρv)h,p−1

)2

dx =
∑
K

(e′K)
2

= N(e)′2, (5.16)

where N is the number of elements. Thus,

e′ =

√∑
K e

2
K

N
. (5.17)

Method 2: Maximum size reduction

In the second approach, a maximum size reduction is defined a priori for the element

with the largest error. This allows for better control of the change in size imposed

to the optimiser. This also limits elements with very large error to shrink, and

therefore distort the mesh, too much. With q the minimum value of
h′K
hK

, assuming

p ≥ 0, the following condition is obtained:

min
K

h′K
hK

= min
K

(
e′

eK

) 1
p+1

=

(
e′

emax

) 1
p+1

= q, (5.18)

where q is a user parameter and chosen to be 2 in this work. Thus,

e′ = emaxq
p+1. (5.19)
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Method 3: Constant domain size

In the third and last approach, the fixed total domain size constitutes the starting

point. In two dimensions, this is expressed as∑
K

h′K
2

=
∑
K

h2
K . (5.20)

After adaptation, the surface area covered by the r -adapted mesh will be the

same as that covered by the initial mesh. From Eq. (5.20), the value of e′ can then

be derived by substituting the expression for h′K (e′).

5.3.4 Limit deformation

Large variations in target element size can be obtained from Eq. (5.15). In particular,

very low values of the error indicator in areas of free stream conditions, for example,

yield very large target sizes. This can practically hinder the convergence of the

optimisation procedure, due to the fixed mesh connectivities of r -adaptation. To

limit this deformation, two constraints are considered here:

• Limit the maximum growth rate rmax = h′K/hK ;

• Limit the maximum absolute size h′max = maxh′K .

In the constant L2-norm approach of Eq. (5.17) and the maximum size reduction

approach of Eq. (5.19), these constraints are applied to h′K . In the constant domain

size approach of Eq. (5.20), however, the value of e′ must be updated by solving∑
K

h′K(e′)
2

=
∑
K

hK
2. (5.21)

5.3.5 Application

The test case of Fig. 5.4 is used here to illustrate the different approaches and limit

constraints. It consists of an inviscid compressible flow over a Gaussian bump at

M = 0.5, p = 2. There are no discontinuities and the flow is reversible. The L2-

norm of the error is calculated with respect to a very fine reference solution. All

CPU times are reported in seconds on a single processor.

An initial solution is calculated in Aghora on a uniform unstructured mesh, shown

in Fig. 5.4. From this solution, the VMS error indicator is exported to NekMesh

where the mesh undergoes r -adaptation following the conversion of eK into e′ and,

subsequently, h′K using one of the three approaches described above with possibly
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a limit constraint. The mesh then returns to Aghora where the cycle is repeated.

The process goes on until the L2-norm of the error reaches a minimum for this given

number of DOF and mesh connectivities.

First, it is interesting to note that, to the naked eye, the final mesh looks very

similar for all cases. Fig. 5.5 shows a typical final mesh after convergence is reached

in the r -adaptation iterations. Note that this mesh has a lower element density than

the initial mesh shown in Fig. 5.4.

Figure 5.5: Example of a final r -adapted mesh.

Figs. 5.6, 5.7 and 5.8 first compare the different limit constraints for each of

the three approaches. Only in the maximum size reduction approach, the limit

constraint makes a difference in the convergence history. In this approach, the

maximum growth rate constraint seems to aggressively limit the deformation of the

mesh and convergence is reached slower. The same final value of L2-norm of the

error is however still reached.

The right hand side figures each correspond to the corresponding CPU2 time to

solve the problem on the corresponding meshes, thus giving insight into the quality

of the meshes. In all cases, r -adapted meshes take longer to solve. The maximum

growth rate constraint, however, generates meshes that are faster to solve for a given

L2-norm of the error. This seems consistent with the previous observation, proving

that this constraint tends to better reduce the deformation of the mesh.

Figs. 5.9 and 5.10 then compare the different approaches for each limit constraint.

The constant L2-norm approach seems to converge the fastest at first while the

constant domain size approach gives the lowest final L2-norm of the error. In terms

of CPU time, it is the maximum size reduction approach that outperforms the

other two for a given L2-norm of the error, with the constant L2-norm approach

consistently the slowest. From this, one can conclude that the constant L2-norm

approach is the most aggressive of the three approaches and the constant domain

size approach a decent compromise between deformation and speed of convergence.

2CPU: central processing unit.
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Figure 5.6: Convergence history with the constant L2-norm approach for two dif-
ferent mesh densities: coarse in black, fine in red.

0 5 10 15
10−7

10−6

10−5

10−4

iteration

‖e
‖ L

2

no limit

rmax = 1

h′
max = maxhK

101 102 103

CPU time

Figure 5.7: Convergence history with the maximum size reduction approach for two
different mesh densities: coarse in black, fine in red.
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Figure 5.8: Convergence history with the constant domain size approach for two
different mesh densities: coarse in black, fine in red.
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Figure 5.9: Convergence history with the maximum growth rate constraint for two
different mesh densities: coarse in black, fine in red.
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Figure 5.10: Convergence history with the maximum absolute size constraint for two
different mesh densities: coarse in black, fine in red.
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In all cases, mesh convergence is reached within typically 10 iterations, sometimes

faster. Importantly, the quality of the mesh does not degrade at any point and the

error remains constant after reaching convergence.
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Chapter 6

rp-adaptation

This chapter proposes to use r -adaptation, as derived in the previous chapter, with

a p-adaptation strategy already present in Nektar++. The advantageous proper-

ties of these two strategies are combined in the same simulation to maximise their

effect in increasing the resolution of shocks and decreasing the computational cost

of compressible flow simulations. More specifically, r -adaptation will be responsible

for the resolution of shocks whereas p-adaptation will resolve smooth flow regions.

p-adaptation is used in the smooth flow regions because of its higher convergence

rates [15, 40, 24]. This advantage, however, does not apply to regions of flow discon-

tinuities, where h-type adaptation is preferred. In this work, r -adaptation is used

at shocks to achieve h-like refinement.

These two adaptation strategies are applied one after the other in a sequential

approach proposed in Sec. 6.3 while Sec. 6.1 and Sec. 6.2 describe the specific uses of

r - and p-adaptation in this workflow. Two numerical examples are then presented

and discussed in Sec. 6.4.

6.1 Improving shock resolution via r-adaptation

Although in principle the target element Ωe
T can take any shape and size, a practical

approach was adopted in this chapter that aims to avoid too large deformations. The

rationale for this is that the definition of a target element Ωe
T that is very different

from the ideal element Ωe
I — i.e. the initial linear element before r -adaptation —

introduces extra energy in the system that the optimiser has to minimise and thus

slows down the process. For this reason, a target element Ωe
T is defined with respect

to the ideal element Ωe
I . In this chapter, elements are shrunk isotropically where

additional resolution is required, i.e. in the shock regions. As shown in Sec. 5.2, this

109
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is accomplished by scaling the Jacobian of the mapping J = ∇φ by a factor r:

JT = (rI)JI . (6.1)

6.2 Reducing overall cost via p-adaptation

To enhance resolution in regions of smooth flow through local p-adaptation, the

following, fairly straightforward, procedure [24, 51] is used. The local resolution is

improved by increasing the polynomial order within the elements where the local

error is estimated to be high and vice versa. This procedure is summarised in Alg. 4

where e denotes an individual element, se and pe are its associated error indicator

and polynomial order, εu and εl are the upper and lower error thresholds, and pmax

and pmin are the maximum and minimum polynomial orders allowed. In this work,

the formulation of sensor se in Eq. (2.24) is used as the indicator of the discretisation

error.

repeat
Calculate the steady-state solution ;
forall e do

Calculate se ;
if se > εu and pe < pmax then

Increment pe ;
end
else if se < εl and pe > pmin then

Decrement pe ;
end
else

Maintain pe ;
end

end

until no pe is modified ;
Algorithm 4: Employed p-adaptation procedure.

6.3 Workflow

In the proposed rp-adaptation workflow, these adaptive techniques will be alternat-

ively applied in a sequence of three steps.

First an initial high-order mesh is generated for the domain. The requirements

of r -adaptation and the need for DOF to be moved around when deforming the

mesh are anticipated. For this reason, a relatively coarse mesh is generated, but
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with enough resolution to allow for node movement. The solver is then run on

this initial mesh and a flow solution obtained which represents the base solution.

During this step, appropriate parameter values must be determined for the artificial

viscosity. As is common practice in codes based on artificial viscosity, Nektar++

default values are first used and then tuned for the specific problem. The artificial

viscosity parameters (sκ and κ) are adjusted to ensure that artificial viscosity is only

triggered in the direct vicinity of shock waves, and the level of artificial viscosity

(µ0) adjusted so that the shock is stable but not overly dissipative.

From this base solution, r -adaptation is applied to the mesh. The list of elements

where artificial viscosity was added during the initial simulation is first extracted. If

the run was set up properly, these elements only represent the regions where a shock

is present. The barycentre of these elements is extracted and an isotropic shrinking

factor r is assigned to them (see Sec. 6.1). For all the other elements, the barycentres

are also extracted and assigned a factor r = 1. In practical terms, elements in the

shock regions are forced to shrink and pull mesh nodes from all other parts of the

mesh. This field of r factors is then supplied to the variational r -adaptation code

which is then run on the linear mesh. The variational framework optimises the mesh

so that each element is as close as possible to its target size, effectively moving nodes

from areas of r = 1 to areas of r < 1. Importantly r -adaptation is run on the linear

mesh before making the r -adapted mesh high-order again. This significantly speeds

up the optimisation procedure and improves the validity of the final mesh. The

solver is then run on the r -adapted high-order mesh and a new solution is obtained

with enhanced shock resolution. This procedure can optionally be repeated based

on the new solution.

From this solution on the r -adapted mesh, p-adaptation can be run as described

in Sec. 6.2. At the end of each cycle, a sensor value is computed for each element and

the local polynomial order of that element is decreased, kept the same or increased

based on the value of the sensor. In this work, Nektar++ default values are used

for the p-adaptation parameters: εu = −6, pmax = 6, εl = −8 and pmin = 2. The

simulation then proceeds onto a new cycle and the process is repeated until a steady

solution is obtained and the local polynomial orders do not vary.

The user can also choose to restrict the polynomial order of elements within

the shock regions. These are the zones that have been previously identified in the

r -adaptation procedure. The local polynomial order of the elements in these regions

is then set to a user-defined value, which should be typically low (p < 3). The

proposed rp-adaptation workflow is summarised in Alg. 5.
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Generate an initial high-order mesh ;
Calculate the steady-state solution ;
repeat

Extract shock areas based on sensor values ;
Apply r -adaptation in shock areas to linear mesh and re-project to
high-order ;

Calculate the steady-state solution ;

until shocks are well captured ;
Apply p-adaptation as described in Alg. 4 ;
Calculate the final solution ;

Algorithm 5: Proposed rp-adaptation workflow.

6.4 Application

In this section, two different test cases are used to demonstrate the rp-adaptation

workflow: a NACA 0012 aerofoil in transonic regime and a supersonic intake. Dif-

ferent difficulties arise for each of these test cases as will be discussed below. Most

importantly, slightly different approaches are taken when it comes to r -adaptation

and p-adaptation.

For the first test, only two simple shocks are present on the upper and lower

surfaces of the aerofoil. It is easy for the variational framework to pull mesh nodes

from the smooth regions and a single round of r -adaptation is therefore run. For

the second test, a complex diamond-like pattern of oblique shocks is expected due

to reflections inside the internal configuration of the intake. The number of nodes

available for deforming the mesh is limited, which places additional stress on the

variational optimisation process. A two-step approach to r -adaptation is therefore

used where each step is run with a milder shrinking factor in order to retain good

mesh quality.

In terms of p-adaptation, the first test case is used as a benchmark for this order

restriction strategy. Three different approaches to order restriction are studied. In

the first, no restriction is applied and the local polynomial order of elements in

shock areas is left free to increase. In the second, the local polynomial order of these

elements is kept constant, i.e. the order of the initial simulation. Finally, in the

third case the local polynomial order of these elements is immediately decreased to

the minimum allowed in the run.

6.4.1 NACA 0012 profile

The new technology is first demonstrated on a canonical aeronautical test case: a

transonic (M = 0.8) inviscid flow past a NACA 0012 aerofoil at 1.25◦ angle of attack.
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This configuration produces two shocks [82]: a strong shock on the suction side and

a weak shock on the pressure side at approximately 60% and 35% of the chord

respectively. This provides a relatively easy test case to showcase the technology

where the shocks are quasi-vertical. The main difficulty lies in the relative weakness

of the shock on the pressure side and in capturing it appropriately.

The domain used has external boundaries at a distance of 40c from the aerofoil,

where c denotes the chord length. The domain is discretised uniformly along the

chord with an element size of ∼ 0.05c on the aerofoil boundary and a smooth

progression is used towards an element size of ∼ 10c on the outer boundary. The

automatic sizing of elements in the field is determined through an octree system [79].

The mesh is curvilinear of order p = 4 and it is optimised using the variational

framework described in Sec. 5.1. The worst scaled Jacobian for this mesh is found

to be Js,min = 0.770 after optimisation. Fig. 6.1a shows what the mesh looks like

in the near field. The starting mesh is relatively coarse but it is run through the

compressible flow solver described in Sec. 2.2 at uniform p = 4 order. This order

p = 4 is kept throughout the procedure until p-adaptation is finally applied. The

reader should note the importance of having sufficient resolution (either through h

or p) in the initial mesh in order to distinguish shocks, i.e. actual discontinuities,

from smooth high-gradient regions when looking at high discontinuity sensor values.

The solver is first run on the initial mesh to obtain a base solution. Slip wall BC

are imposed on the surface of the profile and far-field BC at the external boundaries

of the domain. The HLLC1 Riemann solver [76] is used. For the artificial viscosity,

the solver parameters are tuned to sκ = −1.2, κ = 0.7 and µ0 = 1.0. Fig. 6.1e shows

that large values of the sensor are obtained in both shock areas but also near the

leading and trailing edges. However, Fig. 6.1g shows that artificial viscosity only

triggers in the vicinity of the two shocks, proving adequate tuning of the artificial

viscosity parameters. As a result, the simulation is stable and steady state is reached.

The flow solution in Fig. 6.1c displays very thick shocks as expected on this relatively

coarse mesh. Oscillations are also observed further in Fig. 6.2 in the field past the

strong shock caused by the under-resolution of the shock and the generation of

entropy.

r-adaptation

From the base solution, the workflow explained in Sec. 6.3 is employed. The shock

regions are first extracted: these correspond to the elements of non-null artificial

viscosity in Fig. 6.1g. To these regions, a shrinking factor of 0.1 is assigned and

1HLLC: Harten-Lax-van Leer-Contact.
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the r -adaptation procedure is run. A new mesh is obtained which, for quality

considerations, is re-optimised before simulation. The worst scaled Jacobian for this

mesh is found to be Js,min = 0.648 after optimisation. This is mostly due to the

coarsening of element at the leading edge. The new mesh shown in Fig. 6.1b shows

refinement in the shock areas and consequently a slight coarsening outside of those

zones. Shrinking is also observed, to a smaller extent, in the vertical direction due

to the isotropy of the r -adaptation approach. However, the resulting mesh is clearly

anisotropic and aligned to the presence of the shock.

The old solution is now interpolated onto the r -adapted mesh and the simulation

run again. In order to avoid any instability of the solver due to the interpolation

of the under-resolved shock onto the new mesh, the solver is first run over a few

hundred time steps with a decreased step size. The simulation is then run, using

the exact same artificial viscosity parameters, until steadiness is achieved. The flow

solution in Fig. 6.1d shows better resolution of both shocks as seen by the sharpness

of the shocks. Reduced oscillations are also observed in the wake of the strong shock.

Figs. 6.1f & 6.1h finally show that discontinuity, as per the sensor, is now observed

in a narrower area and that the artificial viscosity reaches lower values.

The improvement of the resolution of the shock can be better seen in 2D plots.

Fig 6.2 shows the Mach number on the surface of the profile. Because elements

are so large in the initial mesh, the solution shows strong oscillatory behaviour,

known as the Gibbs phenomenon. After r -adaptation, elements in the region of the

shock are much smaller and, although oscillations are still present, they have both a

smaller amplitude and a narrower range. This confirms the qualitative observation

of the increased sharpness of the shock seen in Fig. 6.1d. Because there is less mesh

movement at the weak shock, the reduction in the Gibbs phenomenon is also smaller.

To retain accurate boundary representation, it is important that the r -adaptation

code has access to a CAD system. In this instance, NekMesh was implemented to

use the Open Cascade [58] kernel as its CAD engine under a small wrapper layer.

This allows NekMesh to query the geometry and ensure that all nodes remain on the

boundaries at all time, allowing CAD sliding. This capability is shown in Fig. 6.3

where nodes remain on the aerofoil surface throughout the r -adaptation process.

Fig. 6.3 also shows that the optimiser is able to move nodes across large distances,

as seen through the row of coloured elements before (Fig. 6.3a) and after (Fig. 6.3b)

r -adaptation.

Fig. 6.3 further demonstrates the strong anisotropic nature of the r -adaptation

procedure, although the target element is shrunk isotropically. Shrinking occurs

predominantly in the horizontal direction while elements mostly retain their initial
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Figure 6.1: Mesh and fields for the NACA 0012 profile before and after the round
of r -adaptation: white line denoting M = 1.
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Figure 6.2: Plot of the Mach number before and after the round of r -adaptation.

(a) Initial mesh. (b) r -adapted mesh.

Figure 6.3: Close-up view on boundary elements during CAD sliding : elements
coloured identically.
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height, both inside and outside the shock region. This is easily explained by the

balance in energy in the system. The optimiser finds a minimum in deformation

energy when elements are only mildly shrunk vertically. Indeed, while elements in

the shock are trying to pull vertices from all directions, incl. vertically, elements

outside the shock are trying to keep their size. This tension reaches equilibrium in

the mesh shown in Fig. 6.3b. This tension does not exist, however, in the horizontal

direction, in which case vertices are allowed to freely shrink elements to best match

the size of their target element.

p-adaptation

After better resolving the shocks, local p-adaptation can now be applied for the

smooth field. For this test case, three scenarios are compared. In the first scenario,

local p-adaptation is applied without any restriction (see Figs. 6.5a) while, in the

other two scenarios, the local polynomial order is restricted inside the shock areas. In

the second scenario, the local polynomial order of the uniform p = 4 order simulation

of Sec. 6.4.1 (see Fig. 6.5c) is preserved. In the third and last scenario, the local

polynomial order inside the shock areas is decreased to the lowest user-allowed order

(see Fig. 6.5e).

For these tests, the field obtained at p = 4 in Sec. 6.4.1 is used as initial con-

ditions and values of pmin = 2 and pmax = 6 are used. The sensor is based on the

density ρ field and the solver default values of lower and upper sensor tolerances are

respectively 10−8 and 10−6. Fig. 6.5 shows the results. Figs. 6.5a, 6.5c, 6.5e show a

final map of the local number of modes (= p+ 1) after a steady solution is reached

and, by extension, when the local polynomial order remains constant throughout

p-adaptation steps. The number of DOF for each simulation is shown in Table 6.1.

All scenarios produce fewer DOF than the simulation at uniform p, thanks to local

p-coarsening in low-error regions. As expected, the unrestricted p-adaptation scen-

ario increases the local polynomial orders of elements in the shock thickness to the

maximum user-allowed value. This leads to a higher global number of DOF than

the other two scenarios. Then follows the second scenario while the last scenario has

the smallest number of DOF. Each of these DOF counts also translates into similar

increases or decreases in compute times.

These solutions are compared to a reference solution computed on a very fine

mesh. To evaluate the performance of each mesh and p-adaptation scenario, the

Mach number distribution on the surface of the aerofoil is compared for each scen-
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ario. The L2-norm of the error is used, defined as

‖e‖2
L2(S) =

∫
S

(M −Mref )2 dS, (6.2)

where M is the Mach number of the test solution, Mref is the Mach number of the

reference solution and S is the chord. Results are reported in Table 6.1. Note that

CPU times per time step are reported as run on a 16-core machine, once convergence

is reached. It is first noted that r -adaptation alone provides an important boost in

terms of accuracy. Scenarios #1 and #2 both suffer a loss of accuracy due to the

coarsening of the solution in large parts of the domain. This slight increase in the

error, however, allows the number of DOF to be cut in half. Scenario #3, on the

other hand, performs very poorly, with the error going even higher than on the

initial mesh. Decreasing the polynomial order inside the shock — a rather small

region — allows a few more DOF to be saved but at too great a cost.

Table 6.1: Number of DOF, error and CPU time per time step at convergence for
the NACA 0012 profile.

Simulation Number of DOF
‖e‖2

L2(S) (10−4)
CPU time (ms)

Pressure Suction Total

Initial mesh 65 550 0.547 5.28 5.83 65
r -adapted mesh 65 550 0.751 1.36 2.11 118

Scenario #1 29 201 0.875 2.54 3.41 48
Scenario #2 29 117 0.919 1.82 2.74 56
Scenario #3 27 736 1.045 6.61 7.65 45

Fig. 6.4 shows a comparison of the Mach number and artificial viscosity fields for

the uniform p simulation and the three test scenarios. Little difference is observed

between scenarios #1 and #2. Scenario #3 on the other hand exhibits under-

resolution of the shock, seen through its thicker profile. This is consistent with the

local element size and the lack of DOF in the thickness of the shock at lower order.

As a result, the last lower-order scenario exhibits some oscillations in the wake, due

to the generated entropy in the shock area. It is also observed that lower-order

scenarios induce more artificial viscosity. This phenomenon is consistent with the

previous assessment of the lack of resolution of the shock. The discontinuity sensor

detects a certain lack of resolution and therefore more artificial viscosity is added to

the system.

Overall all scenarios expectedly exhibit similar distributions of local polynomial

order in the smooth field regions in Fig. 6.5. When analysing the distribution of

local polynomial orders, higher orders are observed in the area above the strong
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Figure 6.4: Mach number and artificial viscosity for the uniform p simulation and
the three test scenarios of the NACA 0012 profile: white line denoting M = 1.
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shock and below the weak shock, in all scenarios. These areas were not detected

in Sec. 6.4.1 as part of the shock due to the then under-resolved and therefore too

short shocks. Now that the shocks are better resolved, they reach further out and

require additional resolution, in the form of higher polynomial order in this case. It

is also observed, in the lower-order scenarios, that parasite higher-order zones are

created. This is especially obvious around the weak shock in the third scenario.

This is due, as noted above, to the thicker shock profile and therefore the need to

add resolution around the shock. Fig. 6.5e is consistent with this explanation as

a larger area of high sensor values is observed, extending beyond the shock areas

determined in Sec. 6.4.1.

6.4.2 Supersonic intake

This section illustrates the new approach on a test case with a more complicated

shock pattern. The test case is that of a supersonic intake at M∞ = 3.0 first studied

experimentally [2] and later numerically [34]. The intake consists of two straight

ramps inclined with respect to the incoming free-stream flow at angles of 7◦ and

14◦ respectively. The first ramp creates an oblique shock which impinges on the

horizontal cowl and in turn leads to a complex pattern of reflecting oblique shocks

throughout the diffuser of the intake. The difficulty here is the presence of multiple

shocks with different orientations in the very narrow regions of the diffuser.

The domain is discretised uniformly in the streamwise direction. An element

size of 0.01L (L being the length of the intake) is used inside the intake and let it

coarsen outside the intake up to an element size of 0.05L in the far-field. The mesh

is curvilinear of order p = 4 and it is optimised in the throat. The worst scaled

Jacobian for this mesh is found to be Js,min = 0.925 after optimisation. Fig. 6.6a

shows what the mesh looks like inside the intake and in its immediate surrounding.

The solver is run at uniform order p = 3 on the initial mesh to obtain a base

solution. This order p = 3 is kept throughout the procedure until p-adaptation

is finally applied. Wall BC are imposed on the surfaces of the intake, outlet BC

with a low enough pressure at the outlet until a fully supersonic field is obtained

(Pb = 0.9Pinf) and far-field BC at the external boundaries of the domain. Roe’s

approximate Riemann solver [76] is used. For the artificial viscosity, the solver

parameters are tuned to sκ = 0.0, κ = 0.0 and µ0 = 0.1. Fig. 6.6e shows that large

values of the sensor are obtained in all shocks and that moderate values are obtained

everywhere after the first upstream shock. However, artificial viscosity only really

triggers in the vicinity of the shocks as Fig. 6.6g shows, proving adequate tuning of

the artificial viscosity parameters. A steady state solution is reached thanks to a
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Local number of modes Sensor

Full p-adaptation.

(a) (b)

p-adaptation with original order restriction.

(c) (d)

p-adaptation with lowest order restriction.

(e) (f)

Figure 6.5: Local number of modes (= p+ 1) and sensor for the three test scenarios
of the NACA 0012 profile: white line denoting M = 1.
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stable simulation. Just like for the NACA 0012 test case, the shocks demonstrate a

thick profile, as can be seen in Fig. 6.6c due to the relatively coarse local mesh as

well as some oscillations near the leading edge of the cowl.

rr-adaptation

The workflow laid out in Sec. 6.3 is again employed except that two rounds of

r -adaptation are run, obtaining rr -adaptation. Each round uses a less aggressive

shrinking factor of 0.5. Before each simulation, the mesh is again optimised for high-

order mesh quality reasons. The worst scaled Jacobian for this mesh is found to be

Js,min = 0.985 after optimisation, mostly thanks to the refinement of elements near

the curvature at the throat. The new mesh after one round of r -adaptation is shown

in Fig. 6.6b. Refinement is observed in all areas of interest although stronger in the

area of the first upstream shock. Indeed, elements in the first shock are able to pull

DOF from the freestream areas whereas elements inside the intake are interacting

with each other. Refinement is nonetheless obtained in all shock areas and aniso-

tropy naturally appears such that elements are shrunk in mostly the shock normal

direction. The r -adaptation strategy works by pulling nodes together. Because the

shrinking areas are long and narrow, nodes are naturally moved normally rather

than tangentially to the underlying shock, without the need for the optimiser to be

aware of the shock structures.

The solver is now run on the new r -adapted mesh using the same solver para-

meters. A stable flow solution is obtained and shown in Fig. 6.6d. All shocks now

appear sharper and the oscillations observed near the leading edge of the cowl has

disappeared. Figs. 6.6f & 6.6h also show that discontinuity, as per the sensor, occurs

in a narrower region.

A second round of r -adaptation is then applied in the exact similar fashion: shock

areas are detected and used as input for the optimiser. The worst scaled Jacobian

for this mesh is found to be Js,min = 0.982 after optimisation. Fig. 6.7b shows the

final rr -adapted mesh which demonstrates further refinement of the shock regions.

It is also noticed that the oblique shocks inside the intake past the throat have

moved upstream due to the refinement of the oblique shocks located upstream of

the throat. While the r -adapted mesh could not capture these downstream shocks,

the rr -adapted mesh can. By using a two-step approach, it is possible to pull more

mesh nodes together than when using a one-step approach.

This becomes even more obvious when looking at the plot of the Mach number in

Fig. 6.8. The initial mesh largely overestimates the values of the Mach number past

the throat (x/L ≈ 0.57). This is mostly solved by r -adaptation although further
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Initial r -adapted

Mesh.

(a) (b)

Mach number.

(c) (d)

Sensor.

(e) (f)

Artificial viscosity.

(g) (h)

Figure 6.6: Mesh and fields for the intake before and after the first round of r -
adaptation.
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r -adapted rr -adapted

Mesh.

(a) (b)

Mach number.

(c) (d)

Sensor.

(e) (f)

Artificial viscosity.

(g) (h)

Figure 6.7: Mesh and fields for the intake before and after the second round of
r -adaptation.
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improvement is obtained through rr -adaptation. This is due to the good resolution

of upstream shocks through the clustering of DOF.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x/L

M

Initial mesh
r -adapted mesh
rr -adapted mesh
rrp-adapted mesh

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x/L

M

Initial mesh
r -adapted mesh
rr -adapted mesh
rrp-adapted mesh

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x/L

M

Initial mesh
r -adapted mesh
rr -adapted mesh
rrp-adapted mesh

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x/L

M

Initial mesh
r -adapted mesh
rr -adapted mesh
rrp-adapted mesh

Figure 6.8: Plot of the Mach number on the lower surface.

p-adaptation

p-adaptation is now applied to the rr -adapted mesh. For this test case, only unres-

tricted p-adaptation is used where the local polynomial order inside elements is left

free to change, even in shock areas. The field obtained at p = 4 in Sec. 6.4.2 is used

as initial conditions and values of pmin = 2 and pmax = 6 are used. A sensor based

on the density ρ and solver default values for the thresholds are again used.

First, it is observed that no steady state is achieved. Upon inspection, it is no-

ticed that the system jumps back and forth between two states at each p-adaptation

cycle. The two states correspond roughly to coarser and finer resolved fields. In the

coarser resolved state, sensor values in shock areas are high. At the end of the

p-adaptation cycle, these large sensor values trigger an increase in local polynomial
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order of a number of elements. Simulation goes on and the finer resolved state

is obtained where sensor values are low. This in turn triggers a decrease in local

polynomial order of the same elements, returning the system to the former coarser

resolved field. This is shown in Fig. 6.9 with the coarser resolved state in Fig. 6.9g

and the finer one in Fig. 6.9h. This behaviour is explained by a naive p-adaptation

approach using simple sensor thresholds. The problem is highly non-linear and non-

local and error from refining/coarsening regions propagates along characteristics.

The non-adjoint nature of the refinement strategy is bound to produce this sort of

behaviour.

Nevertheless it is observed that additional resolution in the form of higher local

polynomials is found in sensible areas: in the shocks, inside the intake (especially

in the throat) and right above the coil. The only very high polynomial orders are

obtained in the shocks whereas smooth regions reach order p = 3 at most. The

number of DOF for each simulation and state is shown in Table 6.2. Note that CPU

times per time step are reported as run on a 16-core machine, once convergence is

reached. Referring back to Fig. 6.8, that little difference in the solution can be seen

from rr -adaptation to rrp-adaptation despite the decrease in number of DOF.

Table 6.2: Number of DOF and CPU time per time step at convergence for the
intake.

Simulation State Number of DOF CPU time (ms)

Uniform p 40 210 27
Unrestricted p-adaptation Finer 39 527 74
Unrestricted p-adaptation Coarser 36 696 69
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Coarser state Finer state

Number of local modes (= p+ 1).

(a) (b)

Sensor.

(c) (d)

Artificial viscosity.
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Mach number.
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Figure 6.9: Fields for the intake in its coarser and finer resolved states during
unrestricted p-adaptation.
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Chapter 7

Conclusions

The proposed techniques for mesh generation and adaptation are recalled and then

discussed in this chapter. Limitations are also noted where appropriate, leading

to recommendations for future work, as evaluated from the author’s experience

developing and working with these techniques.

7.1 Mesh generation

This thesis first covered the generation of quality initial meshes. In two dimensions,

the proposed method aimed at creating valid quadrilateral block decompositions that

can be refined into naturally curved, high-order meshes. This approach, however,

does not extend well to three dimensions, in which case a semi-structured approach

is used that partitions the domain into near-field and far-field regions that can be

discretised separately in an easier way. The near-field partition, in particular, yields

a structured boundary layer mesh with high aspect ratio, flow-aligned elements that

are curved and valid. These two strategies, two- and three-dimensional, are discussed

in what follows.

7.1.1 Two dimensions

The method presented in Ch. 3 is inspired by cross field methods. Among the

possibilities for computing the guiding field, a Laplace problem is solved to smoothly

propagate the boundary constraints to the interior. This approach differs from

previous work in two ways: first high-resolution spectral/hp element methods are

used to solve for the guiding field; second the location of the critical points and

separatrices are not computed from crosses, but instead from the continuous guiding

field. As a result, the method has advantages over the traditional techniques where

129
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numerical accuracy is the issue, but retains any disadvantages stemming from the

original formulation of the problem. This means that there are both limitations and

areas for further improvement.

Limitations

The method has the same limitations due to the formulation as cross field methods.

One such limitation is the inability of cross fields to generate singular/critical points

(and therefore irregular nodes) in domains where crosses are easily aligned with all

nearby boundaries. Reference [25] documents a modified geometry of the nautilus

(of Figs. 3.9, 3.15, 3.16) with a hole, for which a cross field is unable to generate a

valid decomposition. Fig. 7.1 indeed shows that the field is aligned everywhere and

that no critical point appears in the domain. Without critical points, however, a

limit cycle is unavoidable and no valid quadrilateral decomposition can be obtained.

Also, the use of the high-order approximations mitigates, but does not eliminate

numerical errors. Therefore, although the nautilus geometry is easily decomposed

with the high-resolution approximation, it is still possible that spiral streamlines are

generated if the accuracy is not high enough.

Finally the extension of this approach to three dimensional domains remains

difficult. In three dimensions, crosses become frames but the corresponding arith-

metic is currently lacking. Because this method is based on cross/frame fields, it

will likewise inherit a lack of robustness in three dimensions.

Summary

A field guided method was developed to generate quadrilateral meshes for general

two dimensional domains. Inspired by cross field mesh generation methods, the

procedure consists of four steps: The first is to compute the guiding field on an

existing triangular mesh. For that, a spectral/hp element method is used to compute

a high-resolution approximation to the two Laplace problems for the guiding field.

Either a CG or DG method is used depending on the angles formed along the

physical boundaries. If the angles are not multiples of π/2, the DG formulation

can handle the discontinuous BC in a discretisation consistent manner, without the

need for ad hoc smoothing required by the CG formulation. Critical points in the

field and their valences are then found by exploiting the local high-order polynomial

approximations within each element. Streamlines are computed in the field, again,

using the high-order solutions rather than crosses defined only at element corners.

Finally the domain can be cut into elements of the desired size, or used as is.
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(a) Solution u. (b) Solution v.

(c) Computed ψ.

Figure 7.1: Guiding field on the holed nautilus: isocontours of u = 0 and v = 0
shown in white and black respectively.
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An advantage of the approach is that it can generate meshes with naturally

curved quadrilateral elements that do not need to be curved a posteriori to eliminate

invalid elements. It avoids low-order errors that make it difficult to locate irregular

nodes and accurately trace separatrices.

7.1.2 Three dimensions

Due to the lack of robust volume block decomposition methods based on frame fields,

the approach of Ch. 3 is not explored in three dimensions. Instead, a semi-structured

approach is proposed in Ch. 4 for generating high-order meshes with high aspect

ratio elements to efficiently simulate boundary layer flows. It combines a linear

mesh generator for hybrid linear meshes of hexahedral, prismatic and tetrahedral

elements, based on a medial object approach for domain decomposition, and an a

posteriori high-order mesh generator.

The domain is decomposed into near-field and far-field regions using a medial-

object approach currently under development within CADfix . The medial object

permits to design near-field regions that allow a boundary layer mesh which is

“thicker” that those achievable by most commercially available mesh generators.

The far-field region is discretised into tetrahedra. These topologies are simpler to

obtain than a general multi-block decomposition, and yet they are sufficiently flex-

ible to deal with reasonably complex geometries.

There are two main contributions of this chapter. The first one is the design of

a concave and a concave/convex multi-normal topology for the near-field region in

combination with a modified isoparametric approach that produces hybrid meshes

with hexahedral elements at junctions. These meshes have a higher quality and fewer

elements than those corresponding to direct topologies. The second contribution is

the incorporation of periodic surfaces both in medial-object decomposition and mesh

generation. This permits the numerical treatment of flow simulations incorporating

periodic BC.

The proposed method is robust for both linear and, to some extent, high-order

meshing, but its ability to produce high-order meshes of very good quality depends

strongly on the quality of the linear mesh and of the distortions induced by the CAD

surface mappings. The major contributing factors to this problem are the coarse-

ness of the linear mesh required and the higher sensitivity of high-order algorithms

to distortions in the mappings defining the CAD curves and surfaces. However,

through the use of the semi-structured approach proposed here, the rate of suc-

cess of producing high-order meshes with complex geometries has been significantly

improved.
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7.2 Mesh adaptation

A novel strategy has been presented for adaptive simulations, based on a combin-

ation of both r - and p-adaptation. The proof-of-concept work applied here takes

advantage of both strategies in different manners, as appropriate for the simulation

of compressible flows containing shocks. Mesh movement required for r -adaptation is

achieved through the use of the variational optimisation strategy, using the combin-

ation of a local discontinuity sensor and a target element size in order to effectively

cluster DOF in the presence of shocks and more sharply simulate their features.

At the same time, a p-adaptation technique is applied in the rest of the domain in

order to benefit from the spectral rate of convergence of high-order discretisations

for smooth solutions. The simulation is effectively stabilised through the use of an

artificial diffusion term, again using the local discontinuity sensor.

7.2.1 r-adaptation

A variational framework for moving meshes, referred to here as r -adaptation, was

presented in Ch. 5. It is derived from a variational formulation originally designed

for high-order mesh optimisation. The technique has been modified to achieve ad-

aptation by manipulating a target element. The optimiser, by minimisation of the

energy functional, deforms the mesh to best fit the target element shape and size

defined by the user.

The framework is first demonstrated on toy analytical problems before being

driven by an error estimator. These examples show promising results with regards

to the feasibility of this approach. Most importantly, the framework retains the

benefits of the original work, in particular its scalability. Secondly, the ability to

conform to complex CAD surfaces and curves whilst permitting nodes to slide across

them is clearly important in the context of this work, where adaptation is required

at or near solid surfaces. This functionality can be difficult to achieve in other mesh

deformation techniques, particularly those that require the solution of a PDE system

of an appropriate solid body model.

7.2.2 rp-adaptation

The rp-adaptation strategy proposed in Ch. 6 exhibits a number of benefits from

a computational perspective, as seen in the presented results, where the canonical

NACA 0012 test case and a more challenging supersonic intake have been examined.

The main benefit of this dual-adaptive technique is the possibility to significantly

reduce the number of DOF required to resolve a given simulation, when compared to
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a uniformly refined grid or using solely r -adaptation. Table 6.1 shows that, for the

various p-adaptation strategies considered, the error when compared to a very fine

solution remains roughly the same, whilst the simulation requires only 50% of the

DOF of the initial simulation. This has important consequences from the perspective

of computational efficiency, since a significant reduction in the number of DOF will

lead to a reduction in runtime. Likewise, the cost of operations per DOF is reduced

as the polynomial order decreases, which offers the opportunity to further reduce

computational cost. The rp-adaptation technique therefore permits an effective

balance to be achieved between the attained error and simulation expense.

From the context of more general conclusions of these results, it is demonstrated

that care must be taken when selecting a p-adaptation strategy. In particular, the

NACA 0012 simulations demonstrate that p-coarsening can have important negative

effects on the solution for minimal computational gains. Additionally, the supersonic

intake exhibits a complex shock pattern. Because of the complexity and strength

of the reflecting shocks, it is shown that multiple r -adaptation steps are not only

possible but desirable. Despite the lack of nodes to redistribute inside the intake,

sufficient mesh deformation is achieved to better capture the different shocks.

Although the overall strategy has been shown to be effective, it is important

to emphasise that some of the benefits highlighted in this work can be attributed

to this particular implementation of the r -adaptation technique. Importantly, the

use of the variational framework yields several advantages. In particular, the use

of a target element size allows the grid to deform in an anisotropic manner within

restricted regions of the domain. Even when the deformation is substantial, this still

permits a valid grid to be obtained, as shown in Fig. 6.1.

7.3 Recommendations for future work

This final section presents some recommendations towards future work related to the

techniques presented in this thesis, in particular the field guided quadrilateral mesh

generation and rp-adaptation. These two methods are proofs-of-concept requiring

more improvements and analysis. The hybrid approach to three dimensional mesh

generation, on the other hand, has been discussed above and is considered, by the

author, to have have reached a certain level of maturity. Refinements are certainly

possible but to a lesser extent.
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7.3.1 Quadrilateral meshes

First the limitations of the guiding field approach to quadrilateral mesh generation

point the way towards possible improvements to both the formulation and solution of

the problem. Modifications to the guiding field formulation might be used to affect

the number and location of critical points and even the existence of a valid quad-

rilateral decomposition. Modifications to the algorithm could be made to control

such problems.

The guiding field could be adjusted by adding a forcing term to Eqs. (3.4), thus

solving a Poisson rather than a Laplace problem, which would allow the guiding field

to be modified in several ways. For example, critical points could be added [13, 14] so

that a valid decomposition can be obtained for problems like the holed nautilus. The

reader should note that the midpoint splitting the degenerate triangle in Fig. 3.11

is also an example of placing an extra irregular point in the decomposition. For

the nautilus with hole, a hand sketch shows that adding one 3- and one 5-valent

irregular nodes is sufficient. Existing critical points might also be moved away

from boundaries to avoid thin blocks in the decomposition using the idea of control

functions used in elliptic grid generation [74]. Finally a forcing term would allow

one to generate a guiding field that partially aligns with a metric field (incl. from a

three dimensional surface), such as was demonstrated in [25].

Performance improvements can also be made. Streamline integration can be

performed in reference space [21], akin to the location and analysis of the critical

points. This would not only be computationally cheaper, it would also allow one to

more easily handle geometries with large differences in scales. Where small scales

are present, small elements are typically automatically generated for the background

mesh to represent the geometry boundaries accurately. By performing all of the ana-

lysis of the guiding field in reference space, different scales would be automatically

handled and better performance might be achieved. Streamline integration with

a symplectic integrator might also be implemented to further mitigate the appear-

ance of numerically created spirals. Finally adaptive ODE time integration methods

could further enhance the accuracy of the streamline integration.

An extension of this methodology to volume block decompositions would rep-

resent a breakthrough in cross field based techniques. It would, however, require a

reformulation of the problem based on frame arithmetic, which is currently lacking.

Promising work in reference [63] points to a nine variable problem to solve.
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7.3.2 rp-adaptation

A number of directions for potential future work are also clear in the area of rp-

adaptation. An extension of this method to transient flows, especially with moving

shocks, would constitute an interesting application of this rp-adaptation strategy.

The variational moving mesh framework would be able to track shocks throughout

the simulation without the need to generate a new mesh. With preserved mesh con-

nectivities, the system of equations would not need to be re-built at each adaptation

step. This is especially desirable on large meshes and large HPC1-based simulations

where I/O and inter-node communication can incur significant expense.

Several developments would, however, be needed for the approach to work in

transient simulations. Most importantly, the compressible flow solver would need

an arbitrary Lagrangian-Eulerian formulation to handle mesh movements and avoid

any kind of interpolation that would reduce the accuracy of the simulation. A more

thorough analysis of the current shock sensor and its link to shock detection will

be needed to ensure robustness in both the addition of artificial diffusion for shock

capturing and the r -adaptation procedure. More generally, the workflow will have

to be redesigned to account for the unsteadiness of the simulation.

1HPC: high-performance computing.
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