49,398 research outputs found

    Quantum Computational Complexity in the Presence of Closed Timelike Curves

    Full text link
    Quantum computation with quantum data that can traverse closed timelike curves represents a new physical model of computation. We argue that a model of quantum computation in the presence of closed timelike curves can be formulated which represents a valid quantification of resources given the ability to construct compact regions of closed timelike curves. The notion of self-consistent evolution for quantum computers whose components follow closed timelike curves, as pointed out by Deutsch [Phys. Rev. D {\bf 44}, 3197 (1991)], implies that the evolution of the chronology respecting components which interact with the closed timelike curve components is nonlinear. We demonstrate that this nonlinearity can be used to efficiently solve computational problems which are generally thought to be intractable. In particular we demonstrate that a quantum computer which has access to closed timelike curve qubits can solve NP-complete problems with only a polynomial number of quantum gates.Comment: 8 pages, 2 figures. Minor changes and typos fixed. Reference adde

    Pairing in finite nuclei from low-momentum two- and three-nucleon interactions

    Full text link
    The present contribution reviews recent advances made toward a microscopic understanding of superfluidity in nuclei using many-body methods based on the BCS ansatz and low-momentum inter-nucleon interactions, themselves based on chiral effective field theory and renormalization group techniques.Comment: 15 pages, contribution to "50 years of nuclear BCS", edited by R.A. Broglia and V. Zelevinsk

    Reflections on the Role of Entanglement in the Explanation of Quantum Computational Speedup

    Get PDF
    Of the many and varied applications of quantum information theory, perhaps the most fascinating is the sub-field of quantum computation. In this sub-field, computational algorithms are designed which utilise the resources available in quantum systems in order to compute solutions to computational problems with, in some cases, exponentially fewer resources than any known classical algorithm. While the fact of quantum computational speedup is almost beyond doubt, the source of quantum speedup is still a matter of debate. In this paper I argue that entanglement is a necessary component for any explanation of quantum speedup and I address some purported counter-examples that some claim show that the contrary is true. In particular, I address Biham et al.'s mixed-state version of the Deutsch-Jozsa algorithm, and Knill \& Laflamme's deterministic quantum computation with one qubit (DQC1) model of quantum computation. I argue that these examples do not demonstrate that entanglement is unnecessary for the explanation of quantum speedup, but that they rather illuminate and clarify the role that entanglement does play

    Infinite-range transverse field Ising models and quantum computation

    Full text link
    We present a brief review on information processing, computing and inference via quantum fluctuation, and clarify the relationship between the probabilistic information processing and theory of quantum spin glasses through the analysis of the infinite-range model. We also argue several issues to be solved for the future direction in the research field.Comment: 13 pages, 6 figures, using svjour.cls, to appear in EPJ-Special Topic

    Almost quantum correlations

    Get PDF
    There have been a number of attempts to derive the set of quantum non-local correlations from reasonable physical principles. Here we introduce Q~\tilde{Q}, a set of multipartite supra-quantum correlations that has appeared under different names in fields as diverse as graph theory, quantum gravity and quantum information science. We argue that Q~\tilde{Q} may correspond to the set of correlations of a reasonable physical theory, in which case the research program to reconstruct quantum theory from device-independent principles is met with strong obstacles. In support of this conjecture, we prove that Q~\tilde{Q} is closed under classical operations and satisfies the physical principles of Non-Trivial Communication Complexity, No Advantage for Nonlocal Computation, Macroscopic Locality and Local Orthogonality. We also review numerical evidence that almost quantum correlations satisfy Information Causality.Comment: 15+2 pages, 1 figur

    A bird's eye view of quantum computers

    Full text link
    Quantum computers are discussed in the general framework of computation, the laws of physics and the foundations of quantum mechanics.Comment: 6 pages, 1 figur

    Energy Spectrum and Exact Cover in an Extended Quantum Ising Model

    Full text link
    We investigate an extended version of the quantum Ising model which includes beyond-nearest neighbour interactions and an additional site-dependent longitudinal magnetic field. Treating the interaction exactly and using perturbation theory in the longitudinal field, we calculate the energy spectrum and find that the presence of beyond-nearest-neighbour interactions enhances the minimal gap between the ground state and the first excited state, irrespective of the nature of decay of these interactions along the chain. The longitudinal field adds a correction to this gap that is independent of the number of qubits. We discuss the application of our model to implementing specific instances of 3-satisfiability problems (Exact Cover) and make a connection to a chain of flux qubits.Comment: 9 pages, 3 figures, published versio
    corecore