33 research outputs found

    Microcontroller-based random number generator implementation by using discrete chaotic maps

    Get PDF
    In recent decades, chaos theory has been used in different engineering applications of different disciplines. Discrete chaotic maps can be used in encryption applications for digital applications. In this study, firstly, Lozi, Tinkerbell and Barnsley Fern discrete chaotic maps are implemented based on microcontroller. Then, microcontroller based random number generator is implemented by using the three different two-dimensional discrete chaotic maps. The designed random number generator outputs are applied to NIST (National Institute of Standards and Technology) 800-22 and FIPS (Federal Information Processing Standard) tests for randomness validity. The random numbers are successful in all tests

    An image steganography using improved hyper-chaotic Henon map and fractal Tromino

    Get PDF
    Steganography is a vital security approach that hides any secret content within ordinary data, such as multimedia. First, the cover image is converted into a wavelet environment using the integer wavelet transform (IWT), which protects the cover images from false mistakes. The grey wolf optimizer (GWO) is used to choose the pixel’s image that would be utilized to insert the hidden image in the cover image. GWO effectively selects pixels by calculating entropy, pixel intensity, and fitness function using the cover images. Moreover, the secret image was encrypted by utilizing a proposed hyper-chaotic improved Henon map and fractal Tromino. The suggested method increases computational security and efficiency with increased embedding capacity. Following the embedding algorithm of the secret image and the alteration of the cover image, the least significant bit (LSB) is utilized to locate the tempered region and to provide self-recovery characteristics in the digital image. According to the findings, the proposed technique provides a more secure transmission network with lower complexity in terms of peak signal-to-noise ratio (PSNR), normalized cross correlation (NCC), structural similarity index (SSIM), entropy and mean square error (MSE). As compared to the current approaches, the proposed method performed better in terms of PSNR 70.58% Db and SSIM 0.999 respectively

    Image steganography using least significant bit and secret map techniques

    Get PDF
    In steganography, secret data are invisible in cover media, such as text, audio, video and image. Hence, attackers have no knowledge of the original message contained in the media or which algorithm is used to embed or extract such message. Image steganography is a branch of steganography in which secret data are hidden in host images. In this study, image steganography using least significant bit and secret map techniques is performed by applying 3D chaotic maps, namely, 3D Chebyshev and 3D logistic maps, to obtain high security. This technique is based on the concept of performing random insertion and selecting a pixel from a host image. The proposed algorithm is comprehensively evaluated on the basis of different criteria, such as correlation coefficient, information entropy, homogeneity, contrast, image, histogram, key sensitivity, hiding capacity, quality index, mean square error (MSE), peak signal-to-noise ratio (PSNR) and image fidelity. Results show that the proposed algorithm satisfies all the aforementioned criteria and is superior to other previous methods. Hence, it is efficient in hiding secret data and preserving the good visual quality of stego images. The proposed algorithm is resistant to different attacks, such as differential and statistical attacks, and yields good results in terms of key sensitivity, hiding capacity, quality index, MSE, PSNR and image fidelity

    Novel lightweight video encryption method based on ChaCha20 stream cipher and hybrid chaotic map

    Get PDF
    In the recent years, an increasing demand for securing visual resource-constrained devices become a challenging problem due to the characteristics of these devices. Visual resource-constrained devices are suffered from limited storage space and lower power for computation such as wireless sensors, internet protocol (IP) camera and smart cards. Consequently, to support and preserve the video privacy in video surveillance system, lightweight security methods are required instead of the existing traditional encryption methods. In this paper, a new light weight stream cipher method is presented and investigated for video encryption based on hybrid chaotic map and ChaCha20 algorithm. Two chaotic maps are employed for keys generation process in order to achieve permutation and encryption tasks, respectively. The frames sequences are encrypted-decrypted based on symmetric scheme with assist of ChaCha20 algorithm. The proposed lightweight stream cipher method has been tested on several video samples to confirm suitability and validation in term of encryption–decryption procedures. The performance evaluation metrics include visual test, histogram analysis, information entropy, correlation analysis and differential analysis. From the experimental results, the proposed lightweight encryption method exhibited a higher security with lower computation time compared with state-of-the-art encryption methods

    A NOVEL PRIORITY BASED DOCUMENT IMAGE ENCRYPTION WITH MIXED CHAOTIC SYSTEMS USING MACHINE LEARNING APPROACH

    Get PDF
    Document images containing different types of information are required to be encrypted with different levels of security. In this paper, the image classification is carried out based on the feature extraction, for color images. The K-Nearest Neighbor (K-NN) method of image classification technique is used for classifying the query Document with trained set of features obtained from the Document database. Optical Character Recognition (OCR) technique is used to check for the presence as well as location of text/numerals in the Documents and to identify the Document type. Priority level is assigned in accordance with the Document type. Document images with different priorities are encrypted with different multi-dimensional chaotic maps. The Documents with different priority levels are diffused with different techniques. Document with highest priority are encrypted with highest level of security but Documents with lower priority levels are encrypted with lesser security levels. The proposed work was experimented for different document types with more number of image features for a large trained database. The results reveals a high speed of encryption for a set of document pages with priorities is more effective in comparison with a uniform method of encryption for all document types. The National Institute of Standards and Technology (NIST) statistical tests are also conducted to check for the randomness of the sequence and achieved good randomness. The proposed work also ensures security against the various statistical and differential attacks
    corecore