82 research outputs found

    A Survey on Metamorphic Testing

    Full text link

    A Survey on Metamorphic Testing

    Get PDF
    A test oracle determines whether a test execution reveals a fault, often by comparing the observed program output to the expected output. This is not always practical, for example when a program's input-output relation is complex and difficult to capture formally. Metamorphic testing provides an alternative, where correctness is not determined by checking an individual concrete output, but by applying a transformation to a test input and observing how the program output “morphs” into a different one as a result. Since the introduction of such metamorphic relations in 1998, many contributions on metamorphic testing have been made, and the technique has seen successful applications in a variety of domains, ranging from web services to computer graphics. This article provides a comprehensive survey on metamorphic testing: It summarises the research results and application areas, and analyses common practice in empirical studies of metamorphic testing as well as the main open challenges

    A Survey on Metamorphic Testing

    Get PDF
    A test oracle determines whether a test execution reveals a fault, often by comparing the observed program output to the expected output. This is not always practical, for example when a program’s input-output relation is complex and difficult to capture formally. Metamorphic testing provides an alternative, where correctness is not determined by checking an individual concrete output, but by applying a transformation to a test input and observing how the program output “morphs” into a different one as a result. Since the introduction of such metamorphic relations in 1998, many contributions on metamorphic testing have been made, and the technique has seen successful applications in a variety of domains, ranging from web services to computer graphics. This article provides a comprehensive survey on metamorphic testing: It summarises the research results and application areas, and analyses common practice in empirical studies of metamorphic testing as well as the main open challenges.European Commission (FEDER)Spanish Govermen

    A survey on adaptive random testing

    Get PDF
    Random testing (RT) is a well-studied testing method that has been widely applied to the testing of many applications, including embedded software systems, SQL database systems, and Android applications. Adaptive random testing (ART) aims to enhance RT's failure-detection ability by more evenly spreading the test cases over the input domain. Since its introduction in 2001, there have been many contributions to the development of ART, including various approaches, implementations, assessment and evaluation methods, and applications. This paper provides a comprehensive survey on ART, classifying techniques, summarizing application areas, and analyzing experimental evaluations. This paper also addresses some misconceptions about ART, and identifies open research challenges to be further investigated in the future work

    Metamorphic testing: a review of challenges and opportunities

    Get PDF
    Metamorphic testing is an approach to both test case generation and test result verification. A central element is a set of metamorphic relations, which are necessary properties of the target function or algorithm in relation to multiple inputs and their expected outputs. Since its first publication, we have witnessed a rapidly increasing body of work examining metamorphic testing from various perspectives, including metamorphic relation identification, test case generation, integration with other software engineering techniques, and the validation and evaluation of software systems. In this paper, we review the current research of metamorphic testing and discuss the challenges yet to be addressed. We also present visions for further improvement of metamorphic testing and highlight opportunities for new research

    Deep representation learning: Fundamentals, Perspectives, Applications, and Open Challenges

    Full text link
    Machine Learning algorithms have had a profound impact on the field of computer science over the past few decades. These algorithms performance is greatly influenced by the representations that are derived from the data in the learning process. The representations learned in a successful learning process should be concise, discrete, meaningful, and able to be applied across a variety of tasks. A recent effort has been directed toward developing Deep Learning models, which have proven to be particularly effective at capturing high-dimensional, non-linear, and multi-modal characteristics. In this work, we discuss the principles and developments that have been made in the process of learning representations, and converting them into desirable applications. In addition, for each framework or model, the key issues and open challenges, as well as the advantages, are examined

    Proceedings of the XXVIIIth TELEMAC User Conference 18-19 October 2022

    Get PDF
    Hydrodynamic

    Automated Realistic Test Input Generation and Cost Reduction in Service-centric System Testing

    Get PDF
    Service-centric System Testing (ScST) is more challenging than testing traditional software due to the complexity of service technologies and the limitations that are imposed by the SOA environment. One of the most important problems in ScST is the problem of realistic test data generation. Realistic test data is often generated manually or using an existing source, thus it is hard to automate and laborious to generate. One of the limitations that makes ScST challenging is the cost associated with invoking services during testing process. This thesis aims to provide solutions to the aforementioned problems, automated realistic input generation and cost reduction in ScST. To address automation in realistic test data generation, the concept of Service-centric Test Data Generation (ScTDG) is presented, in which existing services used as realistic data sources. ScTDG minimises the need for tester input and dependence on existing data sources by automatically generating service compositions that can generate the required test data. In experimental analysis, our approach achieved between 93% and 100% success rates in generating realistic data while state-of-the-art automated test data generation achieved only between 2% and 34%. The thesis addresses cost concerns at test data generation level by enabling data source selection in ScTDG. Source selection in ScTDG has many dimensions such as cost, reliability and availability. This thesis formulates this problem as an optimisation problem and presents a multi-objective characterisation of service selection in ScTDG, aiming to reduce the cost of test data generation. A cost-aware pareto optimal test suite minimisation approach addressing testing cost concerns during test execution is also presented. The approach adapts traditional multi-objective minimisation approaches to ScST domain by formulating ScST concerns, such as invocation cost and test case reliability. In experimental analysis, the approach achieved reductions between 69% and 98.6% in monetary cost of service invocations during testin
    • …
    corecore