
1

A Survey on Metamorphic Testing
Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés

Abstract—A test oracle determines whether a test execution reveals a fault, often by comparing the observed program output to the
expected output. This is not always practical, for example when a program’s input-output relation is complex and difficult to capture
formally. Metamorphic testing provides an alternative, where correctness is not determined by checking an individual concrete output,
but by applying a transformation to a test input and observing how the program output “morphs” into a different one as a result. Since
the introduction of such metamorphic relations in 1998, many contributions on metamorphic testing have been made, and the
technique has seen successful applications in a variety of domains, ranging from web services to computer graphics. This article
provides a comprehensive survey on metamorphic testing: It summarises the research results and application areas, and analyses
common practice in empirical studies of metamorphic testing as well as the main open challenges.

Index Terms—Metamorphic testing, oracle problem, survey.

F

1 INTRODUCTION

Software testing is an essential but costly activity applied
during software development to detect faults in programs.
Testing consists of executing a program with test inputs,
and to detect faults there needs to be some procedure by
which testers can decide whether the output of the program
is correct or not, a so–called test oracle [1]. Often, the test
oracle consists of comparing an expected output value with
the observed output, but this may not always be feasible. For
example, consider programs that produce complex output,
like complicated numerical simulations, or code generated
by a compiler — predicting the correct output for a given
input and then comparing it with the observed output may
be non-trivial and error-prone. This problem is referred to
as the oracle problem and it is recognised as one of the
fundamental challenges of software testing [1], [2], [3], [4].

Metamorphic testing [5] is a technique conceived to alle-
viate the oracle problem. It is based on the idea that often
it is simpler to reason about relations between outputs of
a program, than it is to fully understand or formalise its
input-output behaviour. The prototypical example is that
of a program that computes the sine function: What is the
exact value of sin(12)? Is an observed output of −0.5365
correct? A mathematical property of the sine function states
that sin(x) = sin(π−x), and we can use this to test whether
sin(12) = sin(π − 12) without knowing the concrete values
of either sine calculation. This is an example of a metamorphic
relation: an input transformation that can be used to gener-
ate new test cases from existing test data, and an output
relation, that compares the outputs produced by a pair of
test cases. Metamorphic testing does not only alleviate the
oracle problem, but it can also be highly automated.

• S. Segura, Ana. B. Sánchez and A. Ruiz-Cortés are with the Dept. of
Computer Languages and Systems, Universidad de Sevilla, Spain. E-mail:
sergiosegura@us.es

• G. Fraser is with the Dept. of Computer Science, the University of
Sheffield, Sheffield, UK.

The introduction of metamorphic testing can be traced
back to a technical report by Chen et al. [5] published
in 1998. However, the use of identity relations to check
program outputs can be found in earlier articles on test-
ing of numerical programs [6], [7] and fault tolerance [8].
Since its introduction, the literature on metamorphic test-
ing has flourished with numerous techniques, applications
and assessment studies that have not been fully reviewed
until now. Although some papers present overviews of
metamorphic testing, they are usually the result of the
authors’ own experience [9], [10], [11], [12], [13], review of
selected articles [14], [15], [16] or surveys on related testing
topics [3]. At the time of writing this article, the only known
survey on metamorphic testing is written in Chinese and
was published in 20091 [17]. As a result, publications on
metamorphic testing remain scattered in the literature, and
this hinders the analysis of the state of the art and the
identification of new research directions.

In this article, we present an exhaustive survey on meta-
morphic testing, covering 119 papers published between
1998 and 2015. To provide researchers and practitioners
with an entry point, Section 2 contains an introduction to
metamorphic testing. All papers were carefully reviewed
and classified, and the review methodology followed in
our survey as well as a brief summary and analysis of the
selected papers are detailed in Section 3. We summarise the
state of the art by capturing the main advances on meta-
morphic testing in Section 4. Across all surveyed papers, we
identified more than 12 different application areas, ranging
from web services through simulation and modelling to
computer graphics (Section 5). Of particular interest for
researchers is a detailed analysis of experimental studies
and evaluation metrics (Section 6). As a result of our survey,
a number of research challenges emerge, providing avenues
for future research (Section 7); in particular, there are open
questions on how to derive effective metamorphic relations,
as well as how to reduce the costs of testing with them.

1. Note that 86 out of the 119 papers reviewed in our survey were
published in 2009 or later.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51399490?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

(a) Source test case. (b) Follow-up test case.

Figure 1. Metamorphic test on the Google search engine checking the relation Count(q) ≥ Count(q + k).

2 METAMORPHIC TESTING

Identity relations are a well-known concept in testing, and
have been used even before the introduction of meta-
morphic relations. For example, Blum et al. [7] checked
whether numerical programs satisfy identity relations such
as P (x) = P (x1) + P (x2) for random values of x1 and
x2. In the context of fault tolerance, the technique of data
diversity [8] runs the program on re-expressed forms of
the original input; e.g., sin(x) = sin(a) × sin(π/2 − b) +
sin(π/2−a)×sin(b) where a+b = x. The concept of meta-
morphic testing, introduced by Chen [5] in 1998, generalises
these ideas from identity relations to any type of relation,
such as equalities, inequalities, periodicity properties, con-
vergence constraints, subsumption relationships and many
others. In general, a metamorphic relation for a function f
is expressed as a relation among a series of function inputs
x1, x2, . . . , xn (with n > 1), and their corresponding output
values f(x1), f(x2), . . . , f(xn) [18]. For instance, for the sine
example from the introduction the relation between x1 and
x2 would be π − x1 = x2, and the relation between f(x1)
and f(x2) would be equality, i.e.:

R = {(x1, x2, sinx1, sinx2) | π−x1 = x2 → sinx1 = sinx2}

This resembles the traditional concept of program invari-
ants, which are properties (for example expressed as assert
statements) that hold at certain points in programs [19].
However, the key difference is that an invariant has to
hold for every possible program execution, whereas a meta-
morphic relation is a relation between different executions.
A relation between two executions implicitly defines how,
given an existing source test case (x1), one has to transform
this into a follow-up test case (x2), such that an abstract
relation R (e.g., sinx1 = sinx2) can be checked on the
inputs represented by x1 and x2, as well as the outputs
produced by executing x1 and x2. The term metamorphic
relation presumably refers to this “metamorphosis” of test
inputs and outputs. If the relation R does not hold on a pair
of source and follow–up test cases x1 and x2, then a fault has
been detected. In this article, we use the term metamorphic
test case to refer to a pair of a source test case and its follow–
up test case.

The basic process for the application of metamorphic
testing can be summarised as follows:

1) Construction of metamorphic relations. Identify necessary
properties of the program under test and represent
them as metamorphic relations among multiple test
case inputs and their expected outputs, together with
some method to generate a follow–up test case based
on a source test case. Note that metamorphic relations

may be associated with preconditions that restrict the
source test cases to which they can be applied.

2) Generation of source test cases. Generate or select a set of
source test cases for the program under test using any
traditional testing technique (e.g., random testing).

3) Execution of metamorphic test cases. Use the metamorphic
relations to generate follow–up test cases, execute
source and follow–up test cases, and check the relations.
If the outputs of a source test case and its follow–up test
case violate the metamorphic relation, the metamorphic
test case is said to have failed, indicating that the
program under test contains a bug.

As an illustrative example, consider a program that
computes the shortest path between a source vertex s and
destination vertex d in a graph G, SP (G, s, d). A meta-
morphic relation of the program is that if the source and
destination vertices are swapped, the length of the shortest
path should be equal: |SP (G, s, d)| = |SP (G, d, s)|. Sup-
pose that a source test case (G, a, b) is selected according
to some testing method (e.g., randomly). Based on the
metamorphic relation, we can now easily generate a new
follow–up test case by swapping the source and destination
vertices (G, b, a). After executing the program with both
test cases, their outputs can be checked against the relation
to confirm whether it is satisfied or not, i.e., whether the
outputs are equal. If the metamorphic relation is violated, it
can be concluded that the metamorphic test has failed and
the program is faulty.

As a further example, consider testing an online search
engine such as Google or Yahoo [20]. Let Count(q) be the
number of results returned for a search query q. Intuitively,
the number of returned results for q should be greater or
equal than that obtained when refining the search with
another keyword k. This can be expressed as the following
metamorphic relation: Count(q) ≥ Count(q + k), where +
denotes the concatenation of two keywords. Fig. 1 illustrates
the application of this metamorphic relation on Google.
Consider a source test case consisting in a search for the
keyword “metamorphic”, resulting in “About” 4.2M results.
Suppose that a follow–up test case is constructed by search-
ing for the keywords “metamorphic testing”: This leads to
8,380 results which is less than the result for “metamorphic”,
and thus satisfies the relation. If more results were found,
then that would violate the metamorphic relation, revealing
a bug in the system.

If source test cases are generated automatically, then
metamorphic testing enables full test automation, i.e., in-
put generation and output checking. In the sine example
presented in Section 1, for instance, metamorphic testing
could be used together with random testing to automatically

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

generate random source test cases (x) and their respective
follow–up test cases (π − x), until a pair is found that
violates the metamorphic relation, or a maximum time out
is reached. Similarly, in the search engine example, meta-
morphic testing could also be used together with a random
word generator to automatically construct source test cases
(e.g., “algorithm”) and their respective follow–up test cases
(e.g., “algorithm colour”) until a pair that reveals a bug is
found, if any such pairs exists.

3 REVIEW METHOD

To perform a survey on metamorphic testing we fol-
lowed a systematic and structured method inspired by the
guidelines of Kitchenham [21] and Webster et al. [22]. A
similar approach was followed by some of the authors in
the context of software product lines [23]. To report the
results, we also took inspiration from recent surveys on
related topics such as the oracle problem [3], search–based
testing [24], automated test case generation [2] and mutation
analysis [25]. Below, we detail the main data regarding the
review process and its results.

3.1 Research questions

The aim of this survey is to answer the following research
questions on metamorphic testing:

• RQ1: What improvements to the technique have been made?
• RQ2: What are its known application domains?
• RQ3: How are experimental evaluations performed?
• RQ4: What are the future research challenges?

We propose RQ1 to obtain an in–depth view on meta-
morphic testing outlining the state of the art in terms
of the main advances in the application of the technique
since its original introduction. RQ2 is proposed to give
an insight into the scope of metamorphic testing and its
applicability to different domains including its integration
with other testing techniques. We also want to know how
different approaches of performing metamorphic testing are
evaluated including the subject programs used, types of
detected faults, evaluation metrics, and empirical studies
involving humans. Finally, based on the answer to the pre-
vious questions, we expect to identify unresolved problems
and research opportunities in response to RQ4.

3.2 Inclusion and exclusion criteria

We scrutinised the existing literature, looking for papers
addressing any topic related to metamorphic testing, includ-
ing methods, tools or guidelines for the application of the
technique, applications to specific testing problems, empir-
ical evaluations, and surveys. Articles of the same authors
but with very similar content were intentionally classified
and evaluated as separate contributions for a more rigorous
analysis. Later, in the presentation of results, we grouped
those articles with no major differences. We excluded PhD
theses as well as those papers not related to the computer
sciences field, not written in English, or not accessible on the
Web.

Table 1
Search engines and number of primary studies

Search engine Primary studies

ACM digital library 15
Elsevier ScienceDirect 6
IEEEXplore digital library 65
Springer online library 13
Wiley InterScience 4
Google Scholar (+5 citations) 16

Total 119

3.3 Source material and search strategy

The search for relevant papers was carried out in the on-
line repositories of the main technical publishers, including
ACM, Elsevier, IEEE, Springer and Wiley. We collected
computer science papers published between January 1st
1998 (when Chen’s report was published) and November
30th 2015 which have either “metamorphic test”, “meta-
morphic testing”, “metamorphic relation” or “metamorphic
relations” in their title, abstract or keywords. We refer the
reader to the technical report [26] which contains all data
forms and query details. After a quick review of the res-
ults, we noticed that some articles on metamorphic testing
with many citations were not among the candidate papers,
including the technical report of Chen et al. [5] where the
technique was introduced. To include those papers, we
performed the search in the Google Scholar database, and
additionally selected all papers with 5 or more citations
published outside our target publication sources2. These
were merged with our previous results, resulting in a final
set of 362 candidate papers.

Next, we examined the abstracts of the papers identified
in the previous step and filtered them according to our
inclusion and exclusion criteria, checking the content of
the papers when unsure. This step was performed by two
different authors who agreed on the results. The set of
candidate papers was filtered to 116 publications within the
scope of our survey. Then, we contacted the corresponding
authors of the 116 selected papers and asked them to inform
us about any missing papers within the scope of our search.
Based on the feedback received, we included 3 new papers
meeting our search criteria, except for the inclusion of the
search terms in their title, abstract or keywords. As a result,
the search was finally narrowed to 119 publications that
were in the scope of this survey. These papers are referred
to as the primary studies [21]. Table 1 presents the number of
primary studies retrieved from each source.

It is possible that our search has failed to find all papers
since we focused on a subset of reputed publishers. How-
ever, we remain confident that the overall trends we report
are accurate and provide a fair picture of the state of the art
on metamorphic testing.

3.4 Data collection

All 119 primary studies were carefully analysed to answer
our research questions. For each study, we extracted the
following information: full reference, brief summary, type of

2. The search was performed on December 30th, 2015.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

(a) Number of publications per year. (b) Cumulative number of publications per year.

Figure 2. Metamorphic testing papers published between January 1st 1998 and November 30th 2015.

contribution (e.g., case study), application domains, integra-
tion with other testing techniques, number of metamorphic
relations proposed, evaluation details, lessons learned and
suggested challenges. To facilitate the process, we filled in a
data extraction form for each primary study. All data forms
were collected and published in a technical report [26].

Primary studies were read at least twice by two different
authors to reduce misunderstandings or missing informa-
tion. As a sanity check, we contacted the corresponding
author of each primary study and sent them the technical
report to confirm that the information collected from their
papers was correct. Some minor changes were proposed
and corrected. We also asked them to inform us about any
missing paper within the scope of our search as described
in the previous section.

3.5 Summary of results

The following sections summarise the primary studies in
terms of publication trends, authors, venues, and research
topics on metamorphic testing.

3.5.1 Publication trends

Fig. 2a illustrates the number of publications on meta-
morphic testing published between January 1st 1998 and
November 30th 2015. The graph shows a constant flow of
papers on the topic since 2001, in particular from 2010 on-
wards. The cumulative number of publications is illustrated
in Fig. 2b. We found a close fit to a quadratic function with
a high determination coefficient (R2 = 0.997), indicating a
strong polynomial growth, a sign of continued health and
interest in the subject. If the trend continues, there will be
more than 170 metamorphic testing papers by 2018, two
decades after the introduction of the technique.

3.5.2 Researchers and organisations

We identified 183 distinct co-authors from 74 different or-
ganisations in the 119 primary studies under review. Table 2
presents the top authors on metamorphic testing and their
most recent affiliation. Unsurprisingly, Prof. T. Y. Chen, with
44 papers, is the most prolific author on the topic.

Table 2
Top 10 co-authors on metamorphic testing

Author Institution Papers

T. Y. Chen Swinburne University of Technology 44
T. H. Tse The University of Hong Kong 20
F.-C. Kuo Swinburne University of Technology 17
Z. Q. Zhou University of Wollongong 14
W. K. Chan City University of Hong Kong 11
H. Liu RMIT University 9
C. Murphy Columbia University 9
G. Kaiser Columbia University 8
X. Xie Swinburne University of Technology 7
B. Xu Nanjing University 7

Table 3
Geographical distribution of publications

Country Papers

Australia 36
China 25
United States 17
Hong Kong 12
Germany 8
Spain 7
India 5
United Kingdom 3
Switzerland 3
Malaysia 2
France 1

3.5.3 Geographical distribution of publications
We related the geographical origin of each primary study
to the affiliation country of its first co–author. Interestingly,
we found that all 119 primary studies originated from only
11 different countries with Australia and China ahead, as
presented in Table 3. By continents, 37% of the papers
originated from Asia, 30% from Oceania, 19% from Europe
and 14% from America. This suggests that the metamorphic
testing community is formed by a modest number of coun-
tries but fairly distributed around the world.

3.5.4 Publication venues
The 119 primary studies under review were published in
72 distinct venues. This means that the metamorphic testing
literature is very dispersed, probably due to its applicability
to multiple testing domains. Regarding the type of venue,
most papers were presented at conferences and symposia

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

(a) Type of contribution. (b) Research topic.

Figure 3. Classification of primary studies by publication type and research topic.

Table 4
Top venues on metamorphic testing.

Venue Papers

Int Conference on Quality Software 9
Int Computer Software & Applications Conference 8
Int Workshop on Automation of Software Test 4
Int Conference on Software Engineering 4
IEEE Transactions on Software Engineering 4
Software Testing, Verification and Reliability 4
Int Conf on Software Testing, Verification and Validation 3
Information and Software Technology 3

(58%), followed by journals (23%), workshops (16%) and
technical reports (3%). Table 4 lists the venues where at least
three metamorphic testing papers have been presented.

3.5.5 Types of contributions and research topics
Fig. 3a classifies the primary studies according to the type of
contribution. We found that half of the papers present case
studies (50%), followed by new techniques and methodo-
logies (31%), and assessments and empirical studies (10%).
We also found a miscellany of papers (7%) including related
surveys, tutorial synopsis, and guidelines. Only two of the
papers (2%) presented a tool as their main contribution.

A similar classification based on the main research topic
is presented in Fig. 3b. Interestingly, we found that 49%
of the papers report applications of metamorphic testing
to different problem domains. The rest of papers address
the construction of metamorphic relations (19%), integration
with other testing techniques (10%), assessment of meta-
morphic testing (6%), execution of metamorphic test cases
(5%) and generation of source test cases (4%). Finally, a few
papers (7%) present brief overviews on the technique, its
applications and research directions.

4 STATE OF THE ART IN METAMORPHIC TESTING

In this section, we address RQ1 by summarising the main
contributions to metamorphic testing in the literature. First,
we review the papers studying the properties of effective

metamorphic relations. Then, approaches are classified ac-
cording to the step they contribute to in the metamorphic
testing process presented in Section 2, namely, construction
of metamorphic relations, generation of source test cases,
and execution of metamorphic test cases.

4.1 Properties of good metamorphic relations

The effectiveness of metamorphic testing is highly
dependent on the specific metamorphic relations that
are used, and designing effective metamorphic relations is
thus a critical step when applying metamorphic testing.
For most problems, a variety of metamorphic relations
with different fault–detection capability can be identified
[9], [16], [18], [27], [28], [29], [30], [31], [32], [33], [34],
[35]. Therefore, it is advisable to use a variety of diverse
metamorphic relations to effectively test a given program.
Several authors even suggest using as many metamorphic
relations as possible during testing [28], [29], [36], [37].
However, because defining metamorphic relations can be
difficult, it is important to know how to select the most
effective ones. In this section, we review papers studying
the properties that make metamorphic relations good at
detecting faults.

Defining good metamorphic relations requires knowledge
of the problem domain. Chen et al. [27] compared the
effectiveness of metamorphic relations solely based on the
theoretical knowledge of the problem (black–box) versus
those derived from the program structure (white–box)
using two case studies. They concluded that theoretical
knowledge of the problem domain is not adequate for
distinguishing good metamorphic relations. Instead, good
metamorphic relations should be preferably selected with
regard to the algorithm under test following a white–box
approach. However, this was later disputed by Mayer
and Guderlei [38], who studied six subject programs
for matrix determinant computation with seeded faults.
They concluded that metamorphic relations in the form

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

of equalities or linear equations3 as well as those close to
the implementation strategy have limited effectiveness.
Conversely, they reported that good metamorphic relations
are usually strongly inspired by the semantics of the
program under test. Other studies have also emphasised
the knowledge of the problem domain as a requirement for
the application of metamorphic testing [30], [39], [40].

Metamorphic relations should make execution of the
follow–up test case as different as possible from the
source test case. Chen et al. [27] reported that good
metamorphic relations are those that can make the
execution of the source–test case as different as possible to
its follow–up test case. They defined the “difference among
executions” as any aspects of program runs (e.g., paths
traversed). This observation has been confirmed by several
later studies [9], [41], [42], [43], [44], [45]. In particular,
Asrafi et al. [46] hypothesised that the higher the combined
code coverage of the source and follow-up test cases, the
more different are the executions, and the more effective
is the metamorphic relation. Their study on two subject
programs showed a strong correlation between coverage
and fault–detection effectiveness in one of the two. In a
similar study, Cao et al. [47] assessed the relation between
fault–detection effectiveness of metamorphic relations
and test case dissimilarity. An extensive experiment with
83 faulty programs and 7 distance metrics between the
execution profiles of source and follow–up test cases
revealed a strong and statistically significant correlation
between the fault–detection capability of metamorphic
relations and the distance among test cases, in particular
when using branch coverage Manhattan distance [48].

Metamorphic relations derived from specific parts of
the system are more effective than those targeting
the whole system. Several authors have explored the
applicability of metamorphic testing for integration testing
with some helpful conclusions for the construction of
good metamorphic relations. Just and Schweiggert [49],
[50] assessed the applicability of metamorphic testing for
system and integration testing in the context of an image
encoder. Among other results, they concluded that the
metamorphic relations derived from the components of
a system are usually better at detecting faults than those
metamorphic relations derived from the whole system.
This finding was later confirmed by Xie et al. [51], who
reported that metamorphic relations targeting specific parts
of the program under test are easier to construct, more
constrained, and therefore more effective in detecting faults
than metamorphic relations at the system level.

Metamorphic relations should be formally described.
Chan et al. [52] formally described metamorphic relations
and metamorphic testing for a precise definition of the
technique. Their formalisation was reused by several au-
thors [29], [36] and later revised by Chan and Tse [12].
Hui and Huang [53] pointed out that most metamorphic
relations in the literature are informally described using

3. The authors literally refer to “equations with linear combinations
on each side (with at least two terms on one of the sides)”

natural language, which makes them easily misunderstood,
ambiguous and hard to reuse. The authors suggested that
good metamorphic relations should be formally described
and proposed a formal model for the rigorous description
of metamorphic relations using predicate logic, inspired by
the work of Chan et al. [52]. In particular, they proposed
representing a metamorphic relation as a 3–tuple composed
of i) relation between the inputs of source and follow–up
test cases, ii) relation between the outputs of source and
follow-up test cases, and iii) program function.

4.2 Construction of metamorphic relations

Constructing metamorphic relations is typically a manual
task that demands thorough knowledge of the program
under test. In this section, we review proposed alternative
ways to create metamorphic relations, either by combining
existing relations, or by generating them automatically.

Liu et al. [54] proposed a method named Composition of
Metamorphic Relations (CMR) to construct new metamorphic
relations by combining several existing relations. A similar
idea had been superficially explored previously by Dong
et al. [55]. The rationale behind this method is that the
resulting relations should embed all properties of the ori-
ginal metamorphic relations, and thus they should provide
similar effectiveness with a fewer number of metamorphic
relations and test executions. Intuitively, Liu et al. defined
two metamorphic relations as “compositable” if the follow–
up test cases of one of the relations can always be used as
source test case of the other. The composition is sensitive to
the order of metamorphic relations and generalisable to any
number of them. Determining whether two metamorphic re-
lations are composable is a manual task. The results of a case
study with a bioinformatics program processing an input
matrix show that the composition of a set of metamorphic
relations usually produces a composite relation with higher
(or at least similar) fault–detection effectiveness than the ori-
ginal metamorphic relations, provided that all component
relations have similar “tightness”. The tightness of a relation
determines how hard it is to satisfy it by mere chance — the
tighter a relation is, the more difficult it is to satisfy it with
some random outputs; e.g., sin(x) = sin(π − x) is tighter
than sin(x) 6= sin(π − x/2). They also concluded that the
CMR method delivers higher cost–effectiveness than classic
metamorphic testing since it involves fewer test executions.

Kanewala and Bieman [56], [57] proposed a method that
determines, given a predefined set of relations that they
believe to hold for many numerical programs, which of
these are exhibited by a given numerical program. Their
method works by extracting a function’s control flow graph
and building a predictive model using machine learning
techniques; i.e., it is a white-box method that requires static
access to the source code. The approach was evaluated
by constructing a prediction model using a code corpus
of 48 mathematical functions with numerical inputs and
outputs. The model was designed to predict three specific
types of metamorphic relations: permutative, additive and
inclusive [58]. In addition, they checked the fault–detection
effectiveness of the predictive metamorphic relations using
seeded faults. The results revealed that 66% of the faults (655
out of 988) were detected by the predicted metamorphic

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

relations. In later work [59], the authors extended their
method using graph kernels, which provide various ways
of measuring similarity among graphs. The intuition be-
hind their approach was that functions that have similar
control flow and data dependency graphs may have similar
metamorphic relations. Empirical results on the prediction
of six different types of metamorphic relations on a corpus
of 100 numerical programs revealed that graph kernels lead
to higher prediction accuracy.

Zhang et al. [60] proposed a search–based approach for
the inference of polynomial metamorphic relations. More
specifically, the algorithm searches for metamorphic rela-
tions in the form of linear or quadratic equations (e.g.,
cos(2x) = 2cos2(x) − 1). Relations are inferred by running
the program under test repeatedly, searching for relations
among the inputs and outputs. It is therefore a black–box
approach which requires no access to the source code. Since
running the program with all the possible input values is
rarely possible, the relations identified are strictly referred
to as likely metamorphic relations, until they are confirmed
by a domain expert. Their work was evaluated inferring
hundreds of likely metamorphic relations for 189 functions
of 4 commercial and open source mathematical libraries. The
results showed that the generated metamorphic relations
are effective in detecting mutants. Notice that in contrast to
the work of Kanewala and Bieman [56], [57], this approach
does not predict whether the program exhibits a previously
defined metamorphic relation, but rather infers the meta-
morphic relation from scratch.

Carzinaga et al. [61] proposed to generate oracles by
exploiting the redundancy contained in programs. Given a
source test case, they generate a test with the same code in
which some operations are replaced with redundant ones.
For instance, in the AbstractMultimap<K,V> class of
the Google Guava library4, the methods put(k,v) and
putAll(k,c) are equivalent when c is a collection con-
taining a single element v. If the outputs of both test cases
are not equal, the code must contain a bug. The author
presented an implementation of their approach using as-
pects. The identification of redundant methods is a manual
task. Although the core of their contribution was not related
to metamorphic testing, their approach can be considered
a specific application of the technique. In a related article,
Goffi et al. [62], [63] presented a search–based algorithm
for the automated synthesis of likely–equivalent method se-
quences in object–oriented programs. The authors suggest
that such likely–equivalent sequences could be used as
metamorphic relations during testing. The approach was
evaluated using 47 methods of 7 classes taken from the Stack
Java Standard Library and the Graphstream library. The
algorithm automatically synthesised 87% (123 out of 141)
of the equivalent method sequences manually identified.

Su et al. [64] presented an approach named KABU for
the dynamic inference of likely metamorphic relations in-
spired by previous work on the inference of program invari-
ants [19]. The inference process is constrained by searching
for a set of predefined metamorphic relations [58]. A Java
tool implementing the approach was presented and eval-
uated on the inference of likely metamorphic relations in

4. https://github.com/google/guava

two sample programs. As a result, KABU found more likely
metamorphic relations than a group of 23 students trained
in the task. Authors also proposed a method, Metamorphic
Differential Testing (MDT), built upon KABU, to compare
the metamorphic relations between different versions of the
same program reporting the differences as potential bugs.
Experimental results on different versions of two classifica-
tion algorithms showed that MDT successfully detected the
changes reported in the logs of the Weka library.

Chen et al. [65] presented a specification–based meth-
odology and associated tool called METRIC for the identi-
fication of metamorphic relations based on the category–
choice framework [66]. In this framework, the program
specification is used to partition the input domain in terms
of categories, choices and complete test frames. Roughly
speaking, a complete test frame is an abstract test case de-
fining possible combinations of inputs, e.g., {type of vehicle,
weekday, parking hours}. Given a set of complete test frames,
METRIC guides testers on the identification of metamorphic
relations and related source and follow-up test cases. The
results of an empirical study with 19 participants suggest
that METRIC is effective and efficient at identifying meta-
morphic relations.

4.3 Generation of source test cases

As mentioned in Section 6.2, most contributions on meta-
morphic testing use either random test data or existing test
suites for the creation of source test cases. In this section,
we review the papers proposing alternative methods for the
generation of source test cases.

Gotlieb and Botella [67] presented a framework named
Automated Metamorphic Testing (AMT) to automatically gen-
erate test data for metamorphic relations. Given the source
code of a program written in a subset of C and a meta-
morphic relation, AMT tries to find test cases that violate the
relation. The underlying method is based on the translation
of the code into an equivalent constraint logic program over
finite domains. The solving process is executed until a solu-
tion is found or a timeout is reached. The supported types
of metamorphic relations are limited to numeric expressions
over integers. The framework was evaluated using three
laboratory programs with seeded faults.

Chen et al. [28] compared the effectiveness of “special
values” and random testing as source test cases for meta-
morphic testing. Special values are test inputs for which the
expected output is well known (e.g., sin(π/2) = 1). Since
test cases with special values must be manually constructed
we consider them as manual testing. The authors found
that manual and metamorphic testing are complementary
techniques, but they also note that random testing has the
advantage of being able to provide much larger test data
sets. In a closely related study, Wu et al. [68] concluded
that random source test cases result in more effective meta-
morphic test cases than those derived from manual test
cases (special values). Segura et al. [69] compared the ef-
fectiveness of random testing and a manually designed test
suite as the source test cases for metamorphic testing, and
their results also showed that random source test cases are
more effective at detecting faults than manually designed
source test cases in all the subject programs. Even though

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/google/guava

8

this suggests that random testing is more effective, there are
also indications that combining random testing with manual
tests may be even better: Chen et al [28] concluded that
random testing is an efficient mechanism to augment the
number of source test cases; Segura et al. [69] observed that
combining manual tests with random tests leads to faster
fault detection compared to using random tests only.

Batra and Sengupta [41] presented a genetic algorithm
for the selection of source test cases maximising the paths
traversed in the program under test. The goal is to generate
a small but highly effective set of source test cases. Their
algorithm was evaluated by generating source test cases
for several metamorphic relations in a small C program,
which determines the type of a triangle, where 4 mutants
were generated and killed. In related work, Chen et al. [42]
addressed the same problem from a black–box perspect-
ive. They proposed partitioning the input domain of the
program under test into equivalence classes, in which the
program is expected to process the inputs in a similar way.
Then, they proposed an algorithm to select test cases that
cover those equivalence classes. Evaluation on the triangle
program suggests that their algorithm can generate a small
set of test cases with high detection rate.

Dong and Zhang [44] presented a method for the con-
struction of metamorphic relations and their corresponding
source test cases using symbolic execution. The method first
analyses the source code of the program to determine the
symbolic inputs that cause the execution of each path. Then,
the symbolic inputs are manually inspected and used to
guide the construction of metamorphic relations that can
exercise all the paths of the program. Finally, source test
cases are generated by replacing the symbolic inputs by real
values. As in previous work, the approach was evaluated
using a small C program with seeded faults.

4.4 Execution of metamorphic test cases

The execution of a metamorphic test case is typically per-
formed in two steps. First, a follow–up test case is generated
by applying a transformation to the inputs of a source test
case. Second, source and follow–up test cases are executed,
checking whether their outputs violate the metamorphic
relation. In this section, we present those articles that either
propose a different approach for the execution of meta-
morphic test cases, or to automate part of the process.

Several papers have contributed to the execution and
assessment of metamorphic test cases. Wu [70] presented
a method named Iterative Metamorphic Testing (IMT) to
systematically exploit more information from metamorphic
tests, by applying metamorphic relations iteratively. In
IMT, a sequence of metamorphic relations are applied in
a chain style, by reusing the follow–up test case of each
metamorphic relation as the source test case of the next
metamorphic relation. A case study was presented with a
program for sparse matrix multiplication and more than
1300 mutants. The results revealed that IMT detects more
faults than classic metamorphic testing and special value
testing. Dong et al. [71] presented an algorithm integrat-
ing IMT and program path analysis. The algorithm runs
metamorphic tests iteratively until a certain path coverage
criterion is satisfied. Segura et al. [69], [72], [73] presented

a metamorphic testing approach for the detection of faults
in variability analysis tools. Their method is based on the
iterative application of a small set of metamorphic rela-
tions. Each relation relates two input variability models and
their corresponding set of configurations, (i.e., output). In
practice, the process can generate an unlimited number of
random test cases of any size. In certain domains, it was
necessary to apply the metamorphic relations in a certain
order. Their approach was proven effective in detecting 19
real bugs in 7 different tools.

Guderlei and Mayer [74] proposed Statistical Meta-
morphic Testing (SMT) for the application of metamorphic
testing to non–deterministic programs. SMT does not con-
sider a single execution, but is based on studying the
statistical properties of multiple invocations to the program
under test. The method works by generating two or more
sequences of outputs by executing source and follow–up test
cases. Then, the sequences of outputs are compared accord-
ing to their statistical properties using statistical hypothesis
tests. The applicability of the approach was illustrated with
a single metamorphic relation on a subject program with
seeded faults. In later work, Murphy et al. [75], [76] success-
fully applied SMT to the detection of faults in a health care
simulation program with non–deterministic time events.

Murphy et al. [77], [78] presented an extension of the
Java Modelling Language (JML) [79] for the specification
and runtime checking of metamorphic relations. Their ap-
proach extends the JML syntax to enable the specification
of metamorphic properties, which are included in the Java
source code as annotations. The extension was designed so
it could express the typical metamorphic relations observed
by the authors in the domain of machine learning [80].
Additionally, they presented a tool, named Corduroy, that
pre–processes the specification of metamorphic relations
and generates test code that can be executed using JML
runtime assertion checking, ensuring that the relations hold
during program execution. For the evaluation, they spe-
cified 25 metamorphic relations on several machine learning
applications uncovering a few defects.

Murphy et al. [81] presented a framework named Ams-
terdam for the automated application of metamorphic test-
ing. The tool takes as inputs the program under test and a
set of metamorphic relations, defined in an XML file. Then,
Amsterdam automatically runs the program, applies the
metamorphic relations and checks the results. The authors
argue that in certain cases slight variations in the outputs
are not actually indicative of errors, e.g., floating point
calculations. To address this issue, the authors propose the
concept of heuristic test oracles, by defining a function that
determines whether the outputs are “close enough” to be
considered equals. This idea was also used in a later empir-
ical study [75] comparing the effectiveness of three different
techniques to test programs without oracles: “niche oracle”
(i.e. inputs with known expected outputs), metamorphic
testing and assertion checking. The study revealed that
metamorphic testing outperforms the other techniques, also
when testing non–deterministic programs.

Ding et al. [43] proposed a method named Self-Checked
Metamorphic Testing (SCMT) combining metamorphic testing
and structural testing. SCMT checks the code coverage of
source and follow-up test cases during test execution to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

evaluate the quality of metamorphic relations. It is assumed
that the higher the coverage, the more effective the meta-
morphic relation. The test coverage data obtained may be
used to refine test cases by creating, replacing or updating
metamorphic relations and their test data. It is also sugges-
ted that unexpected coverage outcomes could help detect
false–positive results, which they define as a metamorphic
relation that holds despite the program being faulty. The
approach was evaluated using a cellular image processing
program with one seeded bug.

Zhu [82] presented JFuzz, a Java unit testing tool us-
ing metamorphic testing. In JFuzz, tests are specified in
three parts, namely i) source test case inputs (x), ii) pos-
sible transformations on the test inputs (y = π − x), and
iii) metamorphic relations implemented as code assertions
(sin(x) = sin(π − x)). Once these elements are defined, the
tool automatically generates follow-up test cases by apply-
ing the transformations to the source test inputs, it executes
source and follow-up test cases, and checks whether the
metamorphic relations are violated.

5 THE APPLICATION OF METAMORPHIC TESTING

In this section, we answer RQ2 by investigating the scope
of metamorphic testing and its applications. In particular,
we review applications of metamorphic testing to specific
problem domains, and summarise approaches that use
metamorphic testing to enhance other testing techniques.

5.1 Application domains

In this section, we review those papers where the main
contribution is a case study on the application of meta-
morphic testing to specific testing problems (58 out of 119).
Fig. 4 classifies these papers according to their application
domain. In total, we identified more than 12 different applic-
ation areas. The most popular domains are web services and
applications (16%) followed by computer graphics (12%),
simulation and modelling (12%) and embedded systems
(10%). We also found a variety of applications to other fields
(21%) such as financial software, optimisation programs or
encryption programs. Each of the other domains is explored
in no more than four papers, to date. Interestingly, we found
that only 4% of the papers reported results in numerical pro-
grams, even though this seems to be the dominant domain
used to illustrate metamorphic testing in the literature.

Fig. 5 shows the domains where metamorphic testing
applications have been reported in chronological order. Do-
mains marked with (T) were only explored theoretically. As
illustrated, the first application of metamorphic testing was
reported in the domain of numerical programs back in 2002.
While in the subsequent years the potential applications of
metamorphic testing were mainly explored at a theoretical
level, there are applications in multiple domains from 2007
onwards. The rest of this section introduces the papers
reporting results in each application domain.

5.1.1 Web services and applications
Chan et al. [83], [84] presented a metamorphic testing meth-
odology for Service–Oriented Applications (SOA). Their
method relies on the use of so-called metamorphic services

Figure 4. Metamorphic testing application domains

to encapsulate the services under test, execute source and
follow–up test cases and check their results. Similarly, Sun
et al. [34], [85] proposed to manually derive metamorphic
relations from the WSDL description of web services. Their
technique automatically generates random source test cases
from the WSDL specification and applies the metamorphic
relations. They presented a tool to partially automate the
process, and evaluated it with three subject web services and
mutation analysis. In a related project, Castro–Cabrera and
Medina–Bulo [86], [87] presented a metamorphic testing–
based approach for web service compositions using the
Web Service Business Process Execution Language (WS–
BPEL) [88]. To this end, they proposed to analyse the XML
description of the service composition to select adequate
metamorphic relations. Test cases were defined in terms of
the inputs and outputs of the participant services.

In a related set of papers, Zhou et al. [20], [89] used meta-
morphic testing for the detection of inconsistencies in on-
line web search applications. Several metamorphic relations
were proposed and used in a number of experiments with
the web search engines Google, Yahoo! and Live Search.
Their results showed that metamorphic testing effectively
detected inconsistencies in the searches in terms of both
returned content and ranking quality. In later work [90], the
authors performed an extensive empirical study on the web
search engines Google, Bing, Chinese Bing and Baidu. As
a novel contribution, metamorphic relations were defined
from the user perspective, representing the properties that a
user expects from a “good” search engine, regardless of how
the engine is designed. In practice, as previously noticed
by Xie et al. [31], this means that metamorphic relations
are not only suitable to detect faults in the software under
test (verification) but also to check whether the program
behaves as the user expects (validation). The authors also
proposed using metamorphic testing to assess quality re-
lated properties such as reliability, usability or performance.
Experimental results revealed a number of failures in the
search engines under test.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

Figure 5. Timeline of metamorphic testing applications. Domains marked with (T) were only explored theoretically.

5.1.2 Computer graphics
Mayer and Guderlei [91], [92] compared several random
image generation techniques for testing image processing
programs. The study was performed on the implementa-
tion of several image operators as the Euclidean distance
transform. Several metamorphic relations were used for the
generation of follow–up test cases and the assessment of test
results. Chan et al. [93], [94] presented a testing approach
for mesh simplification programs using pattern classifica-
tion and metamorphic testing. Metamorphic relations were
used to detect test cases erroneously labelled as passed
by a trained pattern classifier. Just and Schweiggert [95]
used mutation analysis to evaluate the effectiveness of test
data generation techniques and metamorphic relations for
a jpeg2000 image encoder. Kuo et al. [33] presented a
metamorphic testing approach for programs dealing with
the surface visibility problem. A real bug was revealed in
a binary space partitioning tree program. Finally, Jameel
et al. [96] presented a case study on the application of
metamorphic testing to detect faults in morphological image
operations such as dilation and erosion. Eight metamorphic
relations were reported and assessed on the detection of
seeded faults in a binary image dilation program.

5.1.3 Embedded systems
Tse et al. [97] proposed the application of metamorphic test-
ing to context–sensitive middleware–based software pro-
grams. Context–based applications adapt their behaviour
according to the information from its environment referred
to as context. The process of updating the context inform-
ation typically relies on a middleware. Intuitively, their ap-
proach generates different context situations and checks
whether the outcomes of the programs under test satisfy
certain relations. This work was extended to deal with
changes in the context during test execution [52], [98]. Chan
et al. [99] applied metamorphic testing to wireless sensor
networks. As a novel contribution, they proposed to check
not only the functional output of source and follow–up
test cases but also the energy consumed during the exe-
cution, thus targeting both functional and non–functional
bugs. Kuo et al. [100] reported a case study on the use of
metamorphic testing for the detection of faults in a wireless
metering system. A metamorphic relation was identified

and used to test the meter reading function of a commercial
device from the electric industry in which two real defects
were uncovered. Finally, Jiang et al. [101] presented several
metamorphic relations for the detection of faults in Central
Processing Unit (CPU) scheduling algorithms. Two real bugs
were detected in one of the simulators under test.

5.1.4 Simulation and modelling

Sim et al. [102] presented an application of metamorphic
testing for casting simulation, exploiting the properties of
the Medial Axis geometry function. Several metamorphic
relations were introduced but no empirical results were
presented. Chen et al. [103] proposed the application of
metamorphic testing to check the conformance between
network protocols and network simulators. A case study
was presented testing the OMNeT++ simulator [104] for
conformance with the ad–hoc on–demand distance vector
protocol. In a related project, Chen et al. [37] proposed
using metamorphic testing for the detection of faults in open
queuing network modelling, a technique for planning the
capacity of computer and communication systems. Ding et
al. [105] presented a case study on the detection of faults
in a Monte Carlo modelling program for the simulation of
photon propagation. Based on their previous work [43], the
authors used code coverage criteria to guide the selection
of effective metamorphic relations and the creation of test
cases. Murphy et al. [76] proposed using metamorphic
relations to systematically test health care simulation pro-
grams, and presented a case study with two real–world
simulators and mutation testing. More recently, Núñez and
Hierons [106] proposed using metamorphic relations to
detect unexpected behaviour when simulating cloud pro-
visioning and usage. A case study using two cloud models
on the iCanCloud simulator [107] was reported. Cañizares
et al. [108] presented some preliminary ideas on the use
of simulation and metamorphic testing for the detection of
bugs related to energy consumption in distributed systems
as cloud environments.

5.1.5 Machine learning

Murphy et al. [58] identified six metamorphic relations that
they believe exist in most machine learning applications,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

namely: additive, multiplicative, permutative, invertive, in-
clusive, and exclusive relations. The effectiveness of the
relations was assessed on three specific machine learning
tools in which some real bugs were detected. In a related
project, Xie et al. [31], [109] proposed using metamorphic
testing for the detection of faults in supervised classifiers.
It was argued that metamorphic relations may represent
both necessary and expected properties of the algorithm
under test. Violations of necessary properties are caused
by faults in the algorithm and therefore are helpful for the
purpose of verification. Violations of expected properties
indicate divergences between what the algorithm does and
what the user expects, and thus are helpful for the purpose
of validation. Two specific algorithms were studied: K-
Nearest neighbours and Naı̈ve Bayes classifier. The results
revealed that both algorithms violated some of the necessary
properties identified as metamorphic relations indicating
faults or unexpected behaviours. Also, some real faults were
detected in the open–source machine learning tool Weka
[110]. Finally, Jing et al. [111] presented a set of metamorphic
relations for association rule algorithms and evaluated them
using a contact–lenses data set and the Weka tool.

5.1.6 Variability and decision support
Segura et al. [69], [72] presented a test data generator for
feature model analysis tools. Test cases are automatically
generated from scratch using step–wise transformations that
ensure that certain constraints (metamorphic relations) hold
at each step. In later work [73], the authors generalised their
approach to other variability domains, namely CUDF doc-
uments and Boolean formulas. An extensive evaluation of
effectiveness showed, among other results, fully automatic
detection of 19 real bugs in 7 tools. In a related domain5,
Kuo et al. [45] presented a metamorphic testing approach
for the automated detection of faults in decision support
systems. In particular, they focused on the so–called multi–
criteria group decision making, in which decision problems
are modelled as a three–dimensional matrix representing
alternatives, criteria and experts. Several metamorphic re-
lations were presented and used to test the research tool
Decider [45], where a bug was uncovered.

5.1.7 Bioinformatics
Chen et al. [40] presented several metamorphic relations for
the detection of faults in two open–source bioinformatics
programs for gene regulatory networks simulations and
short sequence mapping. Also, the authors discussed how
metamorphic testing could be used to address the oracle
problem in other bioinformatics domains such as phylogen-
etic, microarray analysis and biological database retrieval.
Pullum and Ozmen [112] proposed using metamorphic
testing for the detection of faults in predictive models for
disease spread. A case study on the detection of faults in two
disease–spread models of the 1918 Spanish flu was presen-
ted, revealing no bugs. In a related project, Ramanathan et
al. [113] proposed using metamorphic testing, data visual-
isation, and model checking techniques to formally verify
and validate compartmental epidemiological models.

5. Note that variability models can be used as decision models during
software configuration.

5.1.8 Components
Beydeda [114] proposed a self–testing method for commer-
cial off–the–shelf components using metamorphic testing. In
this method, components are augmented with self–testing
functionality including test case generation, execution and
evaluation. In practice, this method allows users of a com-
ponent to test it even without access to its source code. Lu
et al. [115] presented a metamorphic testing methodology
for component–based software applications, both at the unit
and integration level. The underlying idea is to run test cases
against the interfaces of the components under test, using
metamorphic relations to construct follow–up test cases and
to check their results.

5.1.9 Numerical programs
Chen et al. [116] presented a case study on the applic-
ation of metamorphic testing to programs implementing
partial differential equations. The case study focused on
a practical problem in thermodynamics, namely the dis-
tribution of temperatures in a square plate. They injected
a seeded fault in the program under test and compared
the effectiveness of “special” test cases and metamorphic
testing in detecting the fault. Special test cases were unable
to detect the fault, while metamorphic testing was effective
at revealing it using a single metamorphic relation. Aruna
and Prasad [117] presented several metamorphic relations
for multiplication and division of multi–precision arithmetic
software applications. The work was evaluated with four
real–time mathematical projects and mutation analysis.

5.1.10 Compilers
Tao et al. [118] presented a so–called “equivalence preserva-
tion” metamorphic relation to test compilers. Given an input
program, the relation is used to generate an equivalent vari-
ant of it, checking whether the behaviours of the resulting
executables are the same for a random set of inputs. The
authors proposed three different strategies for the genera-
tion of equivalent source programs, such as replacing an
expression with an equivalent one (e.g., e× 2 ≡ e+ e). The
evaluation of their approach revealed two real bugs in two
C compilers. A closely related idea was presented by Le et
al. [119]. Given a program and a set of input values, the au-
thors proposed to create equivalent versions of the program
by profiling its execution and pruning unexecuted code.
Once a program and its equivalent variant are constructed,
both are used as input of the compiler under test, checking
for inconsistencies in their results. So far, this method has
been used to detect 147 confirmed bugs in two open source
C compilers, GCC and LLVM.

5.1.11 Other domains
Zhou et al. [39] presented several illustrative applications of
metamorphic testing in the context of numerical programs,
graph theory, computer graphics, compilers and interactive
software. Chen et al. [120] claimed that metamorphic testing
is both practical and effective for end–user programmers.
To support their claim, the authors briefly suggested how
metamorphic relations could be used to detect bugs in
spreadsheet, database and web applications. Sim et al. [121]
presented a metamorphic testing approach for financial

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

software. Several metamorphic relations were integrated
into the commercial tool MetaTrader [122] following a self–
testing strategy. Source and follow-up test cases were de-
rived from the real–time input price data received at differ-
ent time periods. Metamorphic testing has also been applied
to optimisation programs using both stochastic [123] and
heuristic algorithms [32]. Yao et al. [124], [125], [126] presen-
ted preliminary results on the use of metamorphic testing
to detect integer overflows. Batra and Singh [127] proposed
using UML diagrams to guide the selection of metamorphic
relations and presented a small case study using a banking
application. Sun et al. [128] reported several metamorphic
relations for encryption programs. Aruna and Prasad [129]
presented a small case study on the application of meta-
morphic testing to two popular graph theory algorithms.
Finally, Lindvall et al. [130] presented an experience report
on the use of metamorphic testing to address acceptance
testing of NASA’s Data Access Toolkit (DAT). DAT is a
huge database of telemetry data collected from different
NASA missions, and an advance query interface to search
and mine the available data. Due to the massive amount
of data contained in the database, checking the correctness
of the query results is challenging. To address this issue,
metamorphic testing was used by formulating the same
query in different equivalent ways, and asserting that the
resulting datasets are the same. Several issues were detected
with this approach.

5.2 Other testing applications

Besides direct application as a testing technique, meta-
morphic testing has been integrated into other testing tech-
niques, in order to improve their applicability and effective-
ness. In this section, we review these approaches.

Chen et al. [18], [131] proposed using metamorphic
testing with fault–based testing. Fault–based testing uses
symbolic evaluation [132], [133] and constraint solving [133]
techniques to prove the absence of certain types of faults
in the program under test. The authors used several nu-
merical programs to illustrate how real and symbolic inputs
can be used to discard certain types of faults even in the
absence of an oracle. In a related project [30], [134], the
authors presented a method called semi–proving integrating
global symbolic execution and constraint solving for pro-
gram proving, testing and debugging. Their method uses
symbolic execution to prove whether the program satisfies
certain metamorphic relations or identify the inputs that
violate them. It also supports debugging by identifying
violated constraint expressions that reveal failures.

Dong et al. [135] proposed improving the efficiency of
Structural Evolutionary Testing (SET) using metamorphic
relations. In SET, evolutionary algorithms are used to gen-
erate test data that satisfy a certain coverage criteria (e.g.,
condition coverage). This is often achieved by minimising
the distance of the test input to execute the program con-
ditions in the desired way. To improve the efficiency of the
process, the authors proposed to use metamorphic relations
during the search to consider both source and follow–up
test cases as candidate solutions, accelerating the chances of
reaching the coverage target. Their approach was evaluated
with two numerical programs.

Xie et al. [136], [137] proposed the combination of
metamorphic testing and Spectrum-Based Fault Localisation
(SBFL) for debugging programs without an oracle. SBFL
uses the results of test cases and the corresponding coverage
information to estimate the risk of each program entity
(e.g., statements) of being faulty. Rather than a regular test
oracle, the authors proposed to use the violation or non-
violation information from metamorphic relations rather
than the actual output of test cases. Among other results,
their approach was used to uncover two real bugs in the
Siemens Suite [138]. In a related project, Lei et al. [139]
applied the same idea to address the oracle problem in
a variant of SBFL named Backward-Slice Statistical Fault
Localisation (BSSFL) [140]. Rao et al. [141] investigated
the ratio between non-violated and violated metamorphic
relations in SBFL. They concluded that the higher the ratio
of non–violated metamorphic relations to violated meta-
morphic relations, the less effective the technique. Aruna et
al. [142] proposed integrating metamorphic testing with the
Ochiai algorithm [143] for fault localisation in dynamic web
applications. Five metamorphic relations for a classification
algorithm were presented as well as some experimental
results.

Liu et al. [144] presented a theoretical description of a
new method called Metamorphic Fault Tolerance (MFT). In
MFT, the trustworthiness of test inputs is determined in
terms of the number of violated and non–violated meta-
morphic relations. The more relations are satisfied and the
fewer relations are violated, the more trustworthy the input
is. Also, if an output is judged as untrustworthy, the outputs
provided by metamorphic relations can be used to provide
a more accurate output.

Jin et al. [145] presented an approach called Concolic
Metamorphic Debugging, which integrates concolic testing,
metamorphic testing, and branch switching debugging, in
order to localise potential bugs. Concolic testing is a tech-
nique that executes the program under test with both, sym-
bolic and concrete inputs, and then uses symbolic path con-
ditions to derive new test inputs for paths not yet explored.
Based on a failure-inducing test input, the proposed method
explores all possible program paths in depth-first-order,
searching for the first one that passes the metamorphic
relation. The final goal is to isolate a minimum amount of
code to obtain a passing input, and use that isolation point
to localise the fault. The approach, implemented in a tool
called Comedy, was evaluated on 21 small programs with
seeded faults. Comedy successfully generated debugging
reports in 88% of the faulty programs and precisely located
the fault in 36% of them.

6 EXPERIMENTAL EVALUATIONS

In this section, we address RQ3 by reviewing the exper-
imental evaluations of the surveyed papers. In particular,
we summarise their main characteristics in terms of subject
programs, source test cases, types of faults, number of meta-
morphic relations and evaluation metrics. Additionally, we
review the results of empirical studies involving humans.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

Figure 6. Research vs real world subject programs

6.1 Subject programs

As a part of the review process, we collected information
about the subject programs used for the evaluation of
metamorphic testing contributions. The table provided as
supplemental material shows the name, language, size, de-
scription and the references of the papers reporting results
for each program. In the cases where the information was
unavailable in the literature, it is indicated with “NR” (Not
Reported). The table is ordered by the number of papers
that use the subject programs. Thus, the programs at the
top of the list are the most studied subject programs in the
metamorphic testing literature. Overall, we identified 145
different subject programs. Most of them are written in Java
(46.2%) and C/C++ (35.5%), with reported sizes ranging
between 12 and 12,795 lines of code.

In experimentation, the use of real world programs,
rather than research programs, is commonly recognised as
an indicator of the maturity of a discipline [25]. To assess
this maturity, we studied the relationship between the use
of research and real world programs in metamorphic testing
experiments. Similarly to previous surveys [25], we consider
a program to be a “real world” program if it is either a com-
mercial or an open–source program, otherwise we consider
it as a “research program”. As an exception to this rule,
we consider all open source projects that are designed as
benchmarks rather than applications as research programs
(e.g., the Siemens suite). Fig. 6 presents the cumulative
view of the number of each type of program, research
and real world, by year. As illustrated, research programs
are used since 2002, while real world programs were not
introduced in metamorphic testing experiments until 2006.
Since then, the use of both types of programs has increased
with similar trends. It is noteworthy that the number of real
world programs in 2010 was higher than the number of
research programs. The cumulative number in 2015 shows
a significant advantage of research programs (83) over real
world programs (62). The overall trend, however, suggests
that metamorphic testing is maturing.

6.2 Source test cases

Metamorphic testing requires the use of source test cases
that serve as seed for the generation of follow–up test cases.

Figure 7. Source test case generation techniques

Source test cases can be generated using any traditional
testing techniques. We studied the different techniques used
in the literature and counted the number of papers using
each of them; the results are presented in Fig. 7. As illus-
trated, a majority of studies used random testing for the
generation of source test cases (57%), followed by those
using an existing test suite (34%). Also, several papers (6%)
use tool–based techniques such as constraint programming,
search–based testing or symbolic execution. This diversity
of usable sources supports the applicability of metamorphic
testing. It also supports the use of random testing as a cost–
effective and straightforward approach for the generation of
the initial test suite (cf. Section 4.3).

6.3 Types of faults

The effectiveness of metamorphic testing approaches is as-
sessed according to their ability to detect failures caused
by faults in the programs under test. Uncovering real bugs
is the primary goal, but they are not always available for
evaluation. Thus, most authors introduce artificial faults
(a.k.a. mutants) in the subject programs either manually or
automatically, using mutation testing tools [25]. To study the
relationship between real bugs and mutants in metamorphic
testing evaluations, we calculated the cumulative number of
papers reporting results with artificial and real bugs by year,
depicted in Fig. 8. We consider a real bug to be a latent,
initially unknown, fault in the subject program. As illus-
trated in Fig. 8, the first experimental results with mutants
were presented back in 2002, while the first real bugs were
reported in 2007. Since then, the number of papers reporting
results with both types of faults has increased, although
artificial faults show a steeper angle representing a stronger
trend. Besides this, we also counted the number of faults
used in each paper. To date, metamorphic testing has been
used to detect about 295 distinct real faults in 36 different
tools, 23 of which are real world programs, suggesting that
metamorphic testing is effective at detecting real bugs.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

Figure 8. Artificial vs real faults

Figure 9. Number of metamorphic relations

6.4 Metamorphic relations

The number of metamorphic relations used in experiment-
ation may be a good indicator of the effort required to
apply metamorphic testing. As a part of the data col-
lection process, we counted the number of metamorphic
relations presented in each paper containing experimental
results. Fig. 9 classifies the papers based on the number of
metamorphic relations reported. As illustrated, the largest
portion of studies report between 5 and 9 metamorphic
relations (39%), followed by those presenting between 1 and
4 metamorphic relations (24%) and those reporting between
10 and 14 metamorphic relations (12%). Interestingly, only
9 studies (13%) presented more than 25 metamorphic re-
lations. We took a closer look at those 9 papers and ob-
served that all of them reported results for several subject
programs. These findings suggest that a modest number of
metamorphic relations (less than 10) is usually sufficient to
apply metamorphic testing with positive results.

6.5 Evaluation metrics

Numerous metrics to evaluate the effectiveness of meta-
morphic testing approaches have been proposed. Among
them, we identified two metrics intensively used in the

surveyed papers, such that they could be considered as a
de–facto standard in the metamorphic testing literature.

6.5.1 Mutation score
This metric is based on mutation analysis, where muta-
tion operators are applied to systematically produce ver-
sions of the program under test containing artificial faults
(“mutants”) [25]. The mutation score is the ratio of de-
tected (“killed”) mutants to the total number of mutants.
Mutants that do not change the program’s semantics and
thus cannot be detected are referred to as equivalent [25].
In theory, equivalent mutants should be excluded from
the total number of mutants, but in practice this is not
always possible since program equivalence is undecidable.
Suppose a metamorphic test suite t composed of a set of
metamorphic tests, i.e., pairs of source and follow–up test
cases. The Mutation Score (MS) of t is calculated as follows:

MS(t) =
Mk

Mt −Me
(1)

where Mk is the number of killed mutants by the meta-
morphic tests in t, Mt is the total number of mutants and
Me is the number of equivalent mutants. A variant of this
metric [71], [91], [121] is often used to calculate the ratio
of mutants detected by a given metamorphic relation r as
follows:

MS(t, r) =
Mkr

Mt −Me
(2)

where Mkr is the number of mutants killed by the
metamorphic tests in t derived from r. This metric is also
called mutation detection ratio [36].

6.5.2 Fault detection ratio
This metric calculates the ratio of test cases that detect a
given fault [41], [55], [68], [70], [71], [101], [124], [126]. The
Fault Detection Ratio (FDR) of a metamorphic test suite t
and a fault f is calculated as follows:

FDR(t, f) =
Tf
Tt

(3)

where Tf is the number of tests that detect f and Tt is the
total number of tests in t. A variant of this metric [27], [32],
[33], [37], [45], [54], [71] calculates the ratio of test cases that
detect a fault f using a given metamorphic relation r as
follows:

FDR(t, f, r) =
Tfr
Tr

(4)

where Mfr is the number of tests in t derived from the
relation r that detect the fault f , and Tr is the total number
of metamorphic tests derived from r. This metric is also
called fault discovery rate [34], [85], [128].

6.6 Empirical studies with humans
Hu et al. [29], [36] reported on a controlled experiment
to investigate the cost–effectiveness of using metamorphic
testing by 38 testers on three open–source programs. The
experiment participants were either asked to write meta-
morphic relations, or tests with assertions to check whether

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

the final or intermediate state of the program under test is
correct. The experiment revealed a trade–off between both
techniques, with metamorphic testing being less efficient but
more effective at detecting faults than tests with assertions.

Liu et al. [146] reported on a 3–year experience in
teaching metamorphic testing to various groups of students
at Swinburne University of Technology (Australia). The
authors explained the teaching approach followed and the
lesson learned, concluding that metamorphic testing is a
suitable technique for end–user testing. In a later paper,
Liu et al. [4] presented an empirical study to investigate
the effectiveness of metamorphic testing addressing the
oracle problem compared with random testing. For the
study, several groups of undergraduate and postgraduate
students from two different universities were recruited to
identify metamorphic relations in five subject programs of
algorithmic type. Metamorphic testing was compared to
random testing with and without oracle. Their experiment
showed that metamorphic testing was able to find more
faults than random testing with and without oracle in most
subject programs. Furthermore, it was concluded that a
small number of diverse metamorphic relations (between
3 and 6), even those identified in an ad–hoc manner, had
a similar fault-detection capability to a test oracle, i.e.,
comparing the program output with the expected one.

7 CHALLENGES

A number of open research challenges emerge from
this survey, based on problems repeatedly encountered
throughout the reviewed papers, or gaps in the literature.
These challenges answer RQ4.

Challenge 1: Guidelines for the construction of good
metamorphic relations. For most problems, a variety
of metamorphic relations with different fault–detection
capability can be identified. It is therefore key to know the
properties of effective metamorphic relations and to provide
systematic methods for their construction. Although several
authors have reported lessons learned on the properties
of good metamorphic relations (cf. Section 4.1), these are
often complementary or even contradictory (e.g., [27],
[38]). Therefore, there is a lack of reliable guidelines for
the construction of effective metamorphic relations. Such
guidelines should provide a step–by–step process to guide
testers, both experts and beginners, in the construction of
good metamorphic relations.

Challenge 2: Prioritisation and minimisation of
metamorphic relations. In certain cases using all the
available metamorphic relations may be too expensive and
a subset of them must be selected. It is therefore important
to know how to prioritise the most effective metamorphic
relations. To this end, several authors have proposed using
code coverage [43], [46] or test case similarity [47] with
promising results. However, the applicability of those
approaches as domain–independent prioritisation criteria
still needs to be explored. Furthermore, analogously to
the concept of test suite minimisation, where redundant
test cases are removed from a suite as it evolves [147],
the use of minimisation techniques to remove redundant

metamorphic relations is an open problem where research is
needed. It is worth mentioning that test case minimisation
is a NP–hard problem and therefore heuristic techniques
should be explored.

Challenge 3: Generation of likely metamorphic relations.
The generation of metamorphic relations is probably the
most challenging problem to be addressed. Although
some promising results have been reported, those are
mainly restricted to the scope of numerical programs. The
generation of metamorphic relations in other domains as
well as the use of different techniques for rule inference are
topics where contributions are expected. We also foresee
a fruitful line of research exploring the synergies between
the problem of generating metamorphic relations and the
detection of program invariants [64], [148].

Challenge 4: Combination of metamorphic relations. As
presented in Section 4.2, several authors have explored
the benefits of combining metamorphic relations following
two different strategies, namely applying metamorphic
relations in a chain style (IMT) and composing metamorphic
relations to construct new relations (CMR). It remains an
open problem, however, to compare both approaches and
to provide heuristics to decide when to use one or the other.
Also, these techniques raise new research problems such us
determining whether a given set of metamorphic relations
can be combined and in which order.

Challenge 5: Automated generation of source test cases. As
described in Section 4.3, most papers use either randomly
generated or existing test suites as source tests when
applying metamorphic testing. However, there is evidence
that the source test cases influence the effectiveness of
metamorphic relations [28], [68], [69]. Promising initial
results in generating source test cases specifically for given
metamorphic relations have been achieved, but many open
questions remain about what constitutes the best possible
source test cases and how to generate them.

Challenge 6: Metamorphic testing tools. Only two out of all
119 presented a tool as main contribution [78], [82], and very
few of the papers on metamorphic testing mentioned a tool
implementing the presented techniques [64], [65], [67], [73],
[81], [89], [118], [145]. Indeed, if practitioners want to apply
metamorphic testing today, they would have to implement
their own tool, as there are no publicly available and main-
tained tools. This is a significant obstacle for a wide-spread
use of metamorphic testing in empirical research as well as
in practice.

8 CONCLUSIONS

In this article, we presented a survey on metamorphic test-
ing covering 119 papers published between 1998 and 2015.
We analysed ratios and trends indicating the main advances
on the technique, its application domains and the character-
istics of experimental evaluations. The results of the survey
show that metamorphic testing is a thriving topic with an
increasing trend of contributions on the subject. We also

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

found evidence of the applicability of the technique to mul-
tiple domains far beyond numerical programs, as well as
its integration with other testing techniques. Furthermore,
we identified an increasing number of papers reporting the
detection of faults in real world programs. All these findings
suggest that metamorphic testing is gaining maturity as an
effective testing technique, not only to alleviate the oracle
problem, but also for the automated generation of test data.
Finally, despite the advances on metamorphic testing, our
survey points to areas where research is needed. We trust
that this work may become a helpful reference for future
development on metamorphic testing as well as to introduce
newcomers in this promising testing technique.

ACKNOWLEDGEMENTS

We would like to thank T. Y. Chen, Robert M. Hierons,
Phil McMinn, Amador Durán, Zhi Quan Zhou, Christian
Murphy, Huai Liu, Xiaoyuan Xie, Alberto Goffi, Gagandeep,
Carmen Castro-Cabrera, Yan Lei and Peng Wu for their
helpful comments in an earlier version of this article. We are
also grateful to the members of the SSE research group led
by Mark Harman for the insightful and inspiring discussion
during our visit at the University College London.

This work has been partially supported by the European
Commission (FEDER) and Spanish Government under
CICYT project TAPAS (TIN2012-32273) and the Andalusian
Government projects THEOS (TIC-5906) and COPAS (P12-
TIC-1867).

REFERENCES

[1] E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465–470, 1982.

[2] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. Mcminn,
“An orchestrated survey of methodologies for automated
software test case generation,” Journal of Systems and Software,
vol. 86, no. 8, pp. 1978–2001, Aug. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2013.02.061

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo,
“The oracle problem in software testing: A survey,” Software
Engineering, IEEE Transactions on, vol. 41, no. 5, pp. 507–525, May
2015.

[4] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively
does metamorphic testing alleviate the oracle problem?” Software
Engineering, IEEE Transactions on, vol. 40, no. 1, pp. 4–22, Jan 2014.

[5] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing:
A new approach for generating next test cases,” Technical Report
HKUST-CS98-01, Department of Computer Science, The Hong
Kong University of Science and Technology, Tech. Rep., 1998.

[6] W. J. Cody, Software Manual for the Elementary Functions. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1980.

[7] M. Blum, M. Luby, and R. Rubinfeld, “Self-testing/correcting
with applications to numerical problems,” Journal of Computer
and System Sciences, vol. 47, no. 3, pp. 549 – 595, 1993.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/002200009390044W

[8] P. E. Ammann and J. C. Knight, “Data diversity: An approach
to software fault tolerance,” IEEE Transactions on Computers,
vol. 37, no. 4, pp. 418–425, Apr. 1988. [Online]. Available:
http://dx.doi.org/10.1109/12.2185

[9] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou, “Metamorphic
testing and beyond,” in Eleventh Annual International Workshop on
Software Technology and Engineering Practice, 2003., Sept 2003, pp.
94–100.

[10] T. H. Tse, “Research directions on model-based metamorphic
testing and verification,” in 29th Annual International Computer
Software and Applications Conference, 2005. COMPSAC 2005., vol. 1,
July 2005, pp. 332 Vol. 2–.

[11] T. Y. Chen, “Metamorphic testing: A simple approach to alleviate
the oracle problem,” in Fifth IEEE International Symposium on
Service Oriented System Engineering (SOSE), 2010, June 2010, pp.
1–2.

[12] W. K. Chan and T. H. Tse, “Oracles are hardly attain’d, and hardly
understood: Confessions of software testing researchers,” in 13th
International Conference on Quality Software (QSIC), 2013, July 2013,
pp. 245–252.

[13] T. Y. Chen, “Metamorphic testing: A simple method for
alleviating the test oracle problem,” in Proceedings of the 10th
International Workshop on Automation of Software Test, ser. AST
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 53–54. [Online].
Available: http://dl.acm.org/citation.cfm?id=2819261.2819278

[14] T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Q. Zhou, “Metamorphic
testing: Applications and integration with other methods: Tu-
torial synopsis,” in 12th International Conference on Quality Soft-
ware (QSIC), 2012, Aug 2012, pp. 285–288.

[15] Z. Hui and S. Huang, “Achievements and challenges of meta-
morphic testing,” in ourth World Congress on Software Engineering
(WCSE), 2013, Dec 2013, pp. 73–77.

[16] U. Kanewala and J. M. Bieman, “Techniques for testing scientific
programs without an oracle,” in 5th International Workshop on
Software Engineering for Computational Science and Engineering (SE-
CSE), 2013, May 2013, pp. 48–57.

[17] G. Dong, B. Xu, L. Chen, C. Nie, and L. Wang, “Survey of
metamorphic testing,” Journal of Frontiers of Computer Science and
Technology, vol. 3, no. 2, pp. 130–143, 2009.

[18] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based
testing without the need of oracles,” Information & Software
Technology, vol. 45, no. 1, pp. 1–9, 2003. [Online]. Available:
http://dx.doi.org/10.1016/S0950-5849(02)00129-5

[19] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,
M. S. Tschantz, and C. Xiao, “The daikon system for
dynamic detection of likely invariants,” Sci. Comput. Program.,
vol. 69, no. 1-3, pp. 35–45, Dec. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2007.01.015

[20] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F.-C. Kuo,
and T. Y. Chen, “Automated functional testing of online search
services,” Software Testing, Verification and Reliability Journal,
vol. 22, no. 4, pp. 221–243, Jun. 2012. [Online]. Available:
http://dx.doi.org/10.1002/stvr.437

[21] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele University and NICTA, Tech. Rep., 2004.

[22] J. Webster and R. Watson, “Analyzing the past to prepare
for the future: Writing a literature review,” MIS Quarterly,
vol. 26, no. 2, pp. xiii–xxiii, 2002. [Online]. Available:
http://www.misq.org/archivist/vol/no26/issue2/GuestEd.pdf

[23] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated ana-
lysis of feature models 20 years later: A literature review,”
Information Systems, vol. 35, no. 6, pp. 615 – 636, 2010.

[24] Y. J. M. Harman and Y. Zhang, “Achievements, open problems
and challenges for search based software testing,” in 8th IEEE
International Conference on Software Testing, Verification and Valida-
tion, Graz, Austria, April 2015, keynote.

[25] Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” IEEE Trans. Softw. Eng.,
vol. 37, no. 5, pp. 649–678, Sep. 2011. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2010.62

[26] S. Segura, G. Fraser, A. B. Sánchez, and A. Ruiz-Cortés,
“Metamorphic testing: A literature review,” Applied Software
Engineering Research Group, University of Seville, Seville,
Spain, Tech. Rep. ISA-16-TR-02, February 2016, version 1.3.
[Online]. Available: http://www.isa.us.es/sites/default/files/
isa-16-tr-02 0.pdf

[27] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou, “Case studies
on the selection of useful relations in metamorphic testing,”
in Proceedings of the 4th Ibero-American Symposium on Software
Engineering and Knowledge Engineering (JIISIC 2004), 2004, pp.
569–583.

[28] T. Y. Chen, F.-C. Kuo, Y. Liu, and A. Tang, “Metamorphic testing
and testing with special values,” in 5th ACIS International Confer-
ence on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2004, pp. 128–134.

[29] Z. Zhang, W. K. Chan, T. H. Tse, and P. Hu, “Experimental
study to compare the use of metamorphic testing and assertion
checking,” Journal of Software, vol. 20, no. 10, pp. 2637–2654, 2009.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1016/j.jss.2013.02.061
http://www.sciencedirect.com/science/article/pii/002200009390044W
http://www.sciencedirect.com/science/article/pii/002200009390044W
http://dx.doi.org/10.1109/12.2185
http://dl.acm.org/citation.cfm?id=2819261.2819278
http://dx.doi.org/10.1016/S0950-5849(02)00129-5
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1002/stvr.437
http://www.misq.org/archivist/vol/no26/issue2/GuestEd.pdf
http://dx.doi.org/10.1109/TSE.2010.62
http://www.isa.us.es/sites/default/files/isa-16-tr-02_0.pdf
http://www.isa.us.es/sites/default/files/isa-16-tr-02_0.pdf

17

[30] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Semi-proving: An in-
tegrated method for program proving, testing, and debugging,”
IEEE Transactions on Software Engineering, vol. 37, no. 1, pp. 109–
125, Jan 2011.

[31] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and
T. Y. Chen, “Testing and validating machine learning classifiers
by metamorphic testing,” The Journal of Systems and Software,
vol. 84, no. 4, pp. 544–558, Apr. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2010.11.920

[32] A. C. Barus, T. Y. Chen, D. Grant, F.-C. Kuo, and
M. F. Lau, “Testing of heuristic methods: A case study
of greedy algorithm,” in Software Engineering Techniques, ser.
Lecture Notes in Computer Science, Z. Huzar, R. Koci,
B. Meyer, B. Walter, and J. Zendulka, Eds. Springer Berlin
Heidelberg, 2011, vol. 4980, pp. 246–260. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22386-0 19

[33] F.-C. Kuo, S. Liu, and T. Y. Chen, “Testing a binary space
partitioning algorithm with metamorphic testing,” in Proceedings
of the 2011 ACM Symposium on Applied Computing, ser. SAC
’11. New York, NY, USA: ACM, 2011, pp. 1482–1489. [Online].
Available: http://doi.acm.org/10.1145/1982185.1982502

[34] C. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y. Chen,
“Metamorphic testing for web services: Framework and a case
study,” in IEEE International Conference on Web Services (ICWS),
2011, July 2011, pp. 283–290.

[35] Z.-W. Hui, S. Huang, H. Li, J.-H. Liu, and L.-P. Rao, “Measurable
metrics for qualitative guidelines of metamorphic relation,” in
Computer Software and Applications Conference (COMPSAC), 2015
IEEE 39th Annual, vol. 3, July 2015, pp. 417–422.

[36] P. Hu, Z. Zhang, W. K. Chan, and T. H. Tse, “An
empirical comparison between direct and indirect test result
checking approaches,” in Proceedings of the 3rd International
Workshop on Software Quality Assurance, ser. SOQUA ’06. New
York, NY, USA: ACM, 2006, pp. 6–13. [Online]. Available:
http://doi.acm.org/10.1145/1188895.1188901

[37] T. Y. Chen, F.-C. Kuo, R. Merkel, and W. K. Tam, “Testing an open
source suite for open queuing network modelling using meta-
morphic testing technique,” in 14th IEEE International Conference
on Engineering of Complex Computer Systems, June 2009, pp. 23–29.

[38] J. Mayer and R. Guderlei, “An empirical study on the selection
of good metamorphic relations,” in 30th Annual International
Computer Software and Applications Conference, vol. 1, Sept 2006,
pp. 475–484.

[39] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang, and T. Y.
Chen, “Metamorphic testing and its applications,” in Proceedings
of the 8th International Symposium on Future Software Technology
(ISFST 2004). Software Engineers Association, 2004.

[40] T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie, “An
innovative approach for testing bioinformatics programs
using metamorphic testing,” BioMed Central Bioinformatics
Journal, vol. 10, no. 1, p. 24, 2009. [Online]. Available:
http://www.biomedcentral.com/1471-2105/10/24

[41] G. Batra and J. Sengupta, “An efficient metamorphic testing
technique using genetic algorithm,” in Information Intelligence,
Systems, Technology and Management, ser. Communications in
Computer and Information Science, S. Dua, S. Sahni, and
D. Goyal, Eds. Springer Berlin Heidelberg, 2011, vol. 141,
pp. 180–188. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-19423-8 19

[42] L. Chen, L. Cai, J. Liu, Z. Liu, S. Wei, and P. Liu, “An optimized
method for generating cases of metamorphic testing,” in 6th
International Conference on New Trends in Information Science and
Service Science and Data Mining (ISSDM), 2012, Oct 2012, pp. 439–
443.

[43] J. Ding, T. Wu, J. Q. Lu, and X. Hu, “Self-checked metamorphic
testing of an image processing program,” in 2010 Fourth Inter-
national Conference on Secure Software Integration and Reliability
Improvement (SSIRI), June 2010, pp. 190–197.

[44] G. Dong, T. Guo, and P. Zhang, “Security assurance with program
path analysis and metamorphic testing,” in 4th IEEE International
Conference on Software Engineering and Service Science (ICSESS),
2013, May 2013, pp. 193–197.

[45] F.-C. Kuo, Z. Q. Zhou, J. Ma, and G. Zhang, “Metamorphic testing
of decision support systems: a case study,” Software, IET, vol. 4,
no. 4, pp. 294–301, August 2010.

[46] M. Asrafi, H. Liu, and F.-C. Kuo, “On testing effectiveness of
metamorphic relations: A case study,” in Fifth International Con-

ference on Secure Software Integration and Reliability Improvement
(SSIRI), 2011, June 2011, pp. 147–156.

[47] Y. Cao, Z. Q. Zhou, and T. Y. Chen, “On the correlation between
the effectiveness of metamorphic relations and dissimilarities of
test case executions,” in 13th International Conference on Quality
Software (QSIC), 2013, July 2013, pp. 153–162.

[48] Z. Q. Zhou, “Using coverage information to guide test case
selection in adaptive random testing,” in Computer Software and
Applications Conference Workshops, July 2010, pp. 208–213.

[49] R. Just and F. Schweiggert, “Automating software tests with
partial oracles in integrated environments,” in Proceedings of
the 5th Workshop on Automation of Software Test, ser. AST ’10.
New York, NY, USA: ACM, 2010, pp. 91–94. [Online]. Available:
http://doi.acm.org/10.1145/1808266.1808280

[50] ——, “Automating unit and integration testing with partial
oracles,” Software Quality Journal, vol. 19, no. 4, pp. 753–
769, 2011. [Online]. Available: http://dx.doi.org/10.1007/
s11219-011-9151-x

[51] X. Xie, J. Tu, T. Y. Chen, and B. Xu, “Bottom-up integration testing
with the technique of metamorphic testing,” in 14th International
Conference on Quality Software (QSIC), 2014, Oct 2014, pp. 73–78.

[52] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S.
Yau, “Integration testing of context-sensitive middleware-based
applications: a metamorphic approach.” International Journal of
Software Engineering and Knowledge Engineering, vol. 16, no. 5, pp.
677–704, 2006. [Online]. Available: http://dblp.uni-trier.de/db/
journals/ijseke/ijseke16.html#ChanCLTY06

[53] Z. Hui and S. Huang, “A formal model for metamorphic relation
decomposition,” in Fourth World Congress on Software Engineering
(WCSE), 2013, Dec 2013, pp. 64–68.

[54] H. Liu, X. Liu, and T. Y. Chen, “A new method for constructing
metamorphic relations,” in 12th International Conference on Quality
Software (QSIC), 2012, Aug 2012, pp. 59–68.

[55] G. Dong, B. Xu, L. Chen, C. Nie, and L. Wang, “Case studies
on testing with compositional metamorphic relations,” Journal of
Southeast University (English Edition), vol. 24, no. 4, pp. 437–443,
2008.

[56] U. Kanewala and J. M. Bieman, “Using machine learning tech-
niques to detect metamorphic relations for programs without
test oracles,” in IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE), 2013, Nov 2013, pp. 1–10.

[57] U. Kanewala, “Techniques for automatic detection of meta-
morphic relations,” in IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops (ICSTW),
2014, March 2014, pp. 237–238.

[58] C. Murphy, G. Kaiser, and L. Hu, “Properties of machine learning
applications for use in metamorphic testing,” Department of
Computer Science, Columbia University, New York NY, Tech.
Rep., 2008.

[59] U. Kanewala, J. M. Bieman, and A. Ben-Hur, “Predicting
metamorphic relations for testing scientific software: a machine
learning approach using graph kernels,” Software Testing,
Verification and Reliability, 2015. [Online]. Available: http:
//dx.doi.org/10.1002/stvr.1594

[60] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and
H. Mei, “Search-based inference of polynomial metamorphic
relations,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’14. New
York, NY, USA: ACM, 2014, pp. 701–712. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2642994

[61] A. Carzaniga, A. Goffi, A. Gorla, A. Mattavelli, and
M. Pezzè, “Cross-checking oracles from intrinsic software
redundancy,” in Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE 2014. New York, NY,
USA: ACM, 2014, pp. 931–942. [Online]. Available: http:
//doi.acm.org/10.1145/2568225.2568287

[62] A. Goffi, A. Gorla, A. Mattavelli, M. Pezze, and P. Tonella,
“Search-based synthesis of equivalent method sequences,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 366–376. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635888

[63] A. Goffi, “Automatic generation of cost-effective test oracles,”
in Companion Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE Companion 2014. New
York, NY, USA: ACM, 2014, pp. 678–681. [Online]. Available:
http://doi.acm.org/10.1145/2591062.2591078

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1016/j.jss.2010.11.920
http://dx.doi.org/10.1007/978-3-642-22386-0_19
http://doi.acm.org/10.1145/1982185.1982502
http://doi.acm.org/10.1145/1188895.1188901
http://www.biomedcentral.com/1471-2105/10/24
http://dx.doi.org/10.1007/978-3-642-19423-8_19
http://dx.doi.org/10.1007/978-3-642-19423-8_19
http://doi.acm.org/10.1145/1808266.1808280
http://dx.doi.org/10.1007/s11219-011-9151-x
http://dx.doi.org/10.1007/s11219-011-9151-x
http://dblp.uni-trier.de/db/journals/ijseke/ijseke16.html#ChanCLTY06
http://dblp.uni-trier.de/db/journals/ijseke/ijseke16.html#ChanCLTY06
http://dx.doi.org/10.1002/stvr.1594
http://dx.doi.org/10.1002/stvr.1594
http://doi.acm.org/10.1145/2642937.2642994
http://doi.acm.org/10.1145/2568225.2568287
http://doi.acm.org/10.1145/2568225.2568287
http://doi.acm.org/10.1145/2635868.2635888
http://doi.acm.org/10.1145/2591062.2591078

18

[64] F. Su, J. Bell, C. Murphy, and G. Kaiser, “Dynamic inference
of likely metamorphic properties to support differential
testing,” in Proceedings of the 10th International Workshop
on Automation of Software Test, ser. AST ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 55–59. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2819261.2819279

[65] T. Y. Chen, P. Poon, and X. Xie, “METRIC: METamorphic Relation
Identification based on the Category-choice framework,” Journal
of Systems and Software, 2015. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0164121215001624

[66] T. Y. Chen, P.-L. Poon, S.-F. Tang, and T. H. Tse, “Dessert:
a divide-and-conquer methodology for identifying categories,
choices, and choice relations for test case generation,” Software
Engineering, IEEE Transactions on, vol. 38, no. 4, pp. 794–809, July
2012.

[67] A. Gotlieb and B. Botella, “Automated metamorphic testing,” in
Proceedings of the 27th Annual International Conference on Computer
Software and Applications, ser. COMPSAC ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 34–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=950785.950794

[68] P. Wu, X. Shi, J. Tang, H. Lin, and T. Y. Chen, “Metamorphic
testing and special case testing: A case study,” Journal of Software,
vol. 16, pp. 1210–1220, 2005.

[69] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés,
“Automated metamorphic testing on the analyses of feature
models,” Information and Software Technology, vol. 53, no. 3, pp.
245 – 258, 2011. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0950584910001904

[70] P. Wu, “Iterative metamorphic testing,” in 29th Annual In-
ternational Computer Software and Applications Conference, 2005.
COMPSAC 2005, vol. 1, July 2005, pp. 19–24.

[71] G. Dong, C. Nie, B. Xu, and L. Wang, “An effective iterative
metamorphic testing algorithm based on program path analysis,”
in eventh International Conference on Quality Software, 2007. QSIC
’07, Oct 2007, pp. 292–297.

[72] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortes,
“Automated test data generation on the analyses of feature
models: A metamorphic testing approach,” in Third International
Conference on Software Testing, Verification and Validation (ICST),
2010, April 2010, pp. 35–44.

[73] S. Segura, A. Durán, A. B. Sánchez, D. L. Berre, E. Lonca,
and A. Ruiz-Cortés, “Automated metamorphic testing of
variability analysis tools,” Software Testing, Verification and
Reliability, vol. 25, no. 2, pp. 138–163, 2015. [Online]. Available:
http://dx.doi.org/10.1002/stvr.1566

[74] R. Guderlei and J. Mayer, “Statistical metamorphic testing: Test-
ing programs with random output by means of statistical hy-
pothesis tests and metamorphic testing,” in Seventh International
Conference on Quality Software, 2007. QSIC ’07, Oct 2007, pp. 404–
409.

[75] C. Murphy and G. Kaiser, “Empirical evaluation of approaches to
testing applications without test oracles,” Columbia University
Computer Science Technical Reports, Tech. Rep. CUCS-039-10,
2010. [Online]. Available: http://hdl.handle.net/10022/AC:P:
10525

[76] C. Murphy, M. S. Raunak, A. King, S. Chen, C. Imbriano,
G. Kaiser, I. Lee, O. Sokolsky, L. Clarke, and L. Osterweil,
“On effective testing of health care simulation software,” in
Proceedings of the 3rd Workshop on Software Engineering in Health
Care, ser. SEHC ’11. New York, NY, USA: ACM, 2011, pp.
40–47. [Online]. Available: http://doi.acm.org/10.1145/1987993.
1988003

[77] C. Murphy, “Using runtime testing to detect defects in
applications without test oracles,” in Proceedings of the
2008 Foundations of Software Engineering Doctoral Symposium, ser.
FSEDS ’08. New York, NY, USA: ACM, 2008, pp. 21–24. [Online].
Available: http://doi.acm.org/10.1145/1496653.1496659

[78] C. Murphy, K. Shen, and G. Kaiser, “Using JML runtime asser-
tion checking to automate metamorphic testing in applications
without test oracles,” in Second International Conference on Software
Testing Verification and Validation, ICST 2009, 2009.

[79] “Java Modeling Language (JML). http://www.eecs.ucf.edu/
∼leavens/JML//index.shtml,” accessed on May 2015.

[80] C. Murphy, G. Kaiser, L. Hu, and L. Wu, “Properties of machine
learning applications for use in metamorphic testing.” in Interna-
tional conference on software engineering and knowledge engineering,
2008, pp. 867—-872.

[81] C. Murphy, K. Shen, and G. Kaiser, “Automatic system
testing of programs without test oracles,” in Proceedings of
the Eighteenth International Symposium on Software Testing and
Analysis, ser. ISSTA ’09. New York, NY, USA: ACM, 2009,
pp. 189–200. [Online]. Available: http://doi.acm.org/10.1145/
1572272.1572295

[82] H. Zhu, “Jfuzz: A tool for automated java unit testing based on
data mutation and metamorphic testing methods,” in Trustworthy
Systems and Their Applications (TSA), 2015 Second International
Conference on, July 2015, pp. 8–15.

[83] W. K. Chan, S. C. Cheung, and K. R. P. Leung, “Towards a
metamorphic testing methodology for service-oriented software
applications,” in Fifth International Conference on Quality Software,
2005. (QSIC 2005), Sept 2005, pp. 470–476.

[84] W. K. Chan, S. C. Cheung, and K. R. P. H. Leung, “A metamorphic
testing approach for online testing of service-oriented software
applications.” International Journal of Web Services Research,
vol. 4, no. 2, pp. 61–81, 2007. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/jwsr/jwsr4.html#ChanCL07

[85] C. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y.
Chen, “A metamorphic relation-based approach to testing web
services without oracles,” International Journal of Web Services
Research, vol. 9, no. 1, pp. 51–73, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.4018/jwsr.2012010103

[86] C. Castro-Cabrera and I. Medina-Bulo, “An approach to meta-
morphic testing for ws-bpel compositions,” in Proceedings of the
International Conference on e-Business (ICE-B), 2011, July 2011, pp.
1–6.

[87] ——, “Application of metamorphic testing to a case study in web
services compositions,” in E-Business and Telecommunications,
ser. Communications in Computer and Information Science,
M. Obaidat, J. Sevillano, and J. Filipe, Eds. Springer Berlin
Heidelberg, 2012, vol. 314, pp. 168–181. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-35755-8 13

[88] “OASIS: Web Services Business Process Execution Language 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.
html,” accessed on May 2015.

[89] Z. Q. Zhou, T. H. Tse, F.-C. Kuo, and T. Y. Chen, “Automated
functional testing of web search engines in the absence of an
oracle,” Department of Computer Science, The University of
Hong Kong, Tech. Rep. TR-2007-06, 2007.

[90] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for
software quality assessment: A study of search engines,” Software
Engineering, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[91] J. Mayer and R. Guderlei, “On random testing of image pro-
cessing applications,” in Sixth International Conference on Quality
Software, 2006. QSIC 2006, Oct 2006, pp. 85–92.

[92] R. Guderlei and J. Mayer, “Towards automatic testing of
imaging software by means of random and metamorphic
testing,” International Journal of Software Engineering and
Knowledge Engineering, vol. 17, no. 06, pp. 757–781, 2007.
[Online]. Available: http://www.worldscientific.com/doi/abs/
10.1142/S0218194007003471

[93] W. K. Chan, J. C. F. Ho, and T. H. Tse, “Piping classification to
metamorphic testing: An empirical study towards better effect-
iveness for the identification of failures in mesh simplification
programs,” in 31st Annual International Computer Software and
Applications Conference, 2007. COMPSAC 2007, vol. 1, July 2007,
pp. 397–404.

[94] ——, “Finding failures from passed test cases: Improving
the pattern classification approach to the testing of mesh
simplification programs,” Software Testing, Verification and
Reliability Journal, vol. 20, no. 2, pp. 89–120, Jun. 2010. [Online].
Available: http://dx.doi.org/10.1002/stvr.v20:2

[95] R. Just and F. Schweiggert, “Evaluating testing strategies for
imaging software by means of mutation analysis,” in International
Conference on Software Testing, Verification and Validation Workshops,
2009. ICSTW ’09, April 2009, pp. 205–209.

[96] T. Jameel, L. Mengxiang, and C. Liu, “Test oracles based on
metamorphic relations for image processing applications,” in
Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD), 2015 16th IEEE/ACIS Interna-
tional Conference on, June 2015, pp. 1–6.

[97] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen, “Testing
context-sensitive middleware-based software applications,” in
Computer Software and Applications Conference, 2004. COMPSAC
2004. Proceedings of the 28th Annual International, Sept 2004, pp.
458–466 vol.1.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dl.acm.org/citation.cfm?id=2819261.2819279
http://www.sciencedirect.com/science/article/pii/S0164121215001624
http://www.sciencedirect.com/science/article/pii/S0164121215001624
http://dl.acm.org/citation.cfm?id=950785.950794
http://www.sciencedirect.com/science/article/pii/S0950584910001904
http://www.sciencedirect.com/science/article/pii/S0950584910001904
http://dx.doi.org/10.1002/stvr.1566
http://hdl.handle.net/10022/AC:P:10525
http://hdl.handle.net/10022/AC:P:10525
http://doi.acm.org/10.1145/1987993.1988003
http://doi.acm.org/10.1145/1987993.1988003
http://doi.acm.org/10.1145/1496653.1496659
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
http://doi.acm.org/10.1145/1572272.1572295
http://doi.acm.org/10.1145/1572272.1572295
http://dblp.uni-trier.de/db/journals/jwsr/jwsr4.html#ChanCL07
http://dblp.uni-trier.de/db/journals/jwsr/jwsr4.html#ChanCL07
http://dx.doi.org/10.4018/jwsr.2012010103
http://dx.doi.org/10.1007/978-3-642-35755-8_13
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.worldscientific.com/doi/abs/10.1142/S0218194007003471
http://www.worldscientific.com/doi/abs/10.1142/S0218194007003471
http://dx.doi.org/10.1002/stvr.v20:2

19

[98] W. K. Chan, T. Y. Chen, H. Lu, T. H. Tse, and S. S. Yau, “A
metamorphic approach to integration testing of context-sensitive
middleware-based applications,” in Fifth International Conference
on Quality Software, 2005. (QSIC 2005), Sept 2005, pp. 241–249.

[99] W. K. Chan, T. Y. Chen, S. C. Cheung, T. H. Tse, and
Z. Zhang, “Towards the testing of power-aware software
applications for wireless sensor networks,” in Ada Europe 2007
- Reliable Software Technologies, ser. Lecture Notes in Computer
Science, N. Abdennadher and F. Kordon, Eds. Springer Berlin
Heidelberg, 2007, vol. 4498, pp. 84–99. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-73230-3 7

[100] F.-C. Kuo, T. Y. Chen, and W. K. Tam, “Testing embedded soft-
ware by metamorphic testing: A wireless metering system case
study,” in IEEE 36th Conference on Local Computer Networks (LCN),
2011, Oct 2011, pp. 291–294.

[101] M. Jiang, T. Y. Chen, F.-C. Kuo, and Z. Ding, “Testing central pro-
cessing unit scheduling algorithms using metamorphic testing,”
in 4th IEEE International Conference on Software Engineering and
Service Science (ICSESS), 2013, May 2013, pp. 530–536.

[102] K. Y. Sim, W. K. S. Pao, and C. Lin, “Metamorphic testing
using geometric interrogation technique and its application,”
in Proceedings of the 2nd International Conference of Electrical En-
gineering/Electronics, Computer, Telecommunications, and Information
Technology, 2005, pp. 91–95.

[103] T. Y. Chen, F.-C. Kuo, H. Liu, and S. Wang, “Conformance
testing of network simulators based on metamorphic testing
technique,” in Formal Techniques for Distributed Systems, ser.
Lecture Notes in Computer Science, D. Lee, A. Lopes,
and A. Poetzsch-Heffter, Eds. Springer Berlin Heidelberg,
2009, vol. 5522, pp. 243–248. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-02138-1 19

[104] “OMNeT++ system. http://www.omnetpp.org,” accessed on
April 2015.

[105] J. Ding, T. Wu, D. Xu, J. Q. Lu, and X. Hu, “Metamorphic testing
of a monte carlo modeling program,” in Proceedings of the 6th
International Workshop on Automation of Software Test, ser. AST ’11.
New York, NY, USA: ACM, 2011, pp. 1–7. [Online]. Available:
http://doi.acm.org/10.1145/1982595.1982597

[106] A. Nuñez and R. M. Hierons, “A methodology for validating
cloud models using metamorphic testing,” annals of telecommu-
nications - annales des télécommunications, pp. 1–9, 2014. [Online].
Available: http://dx.doi.org/10.1007/s12243-014-0442-7

[107] A. Nuñez, J. L. Vazquez-Poletti, A. C. Caminero, G. G.
Castañe, J. Carretero, and I. M. Llorente, “icancloud: A flexible
and scalable cloud infrastructure simulator,” Journal of Grid
Computing, vol. 10, no. 1, pp. 185–209, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10723-012-9208-5

[108] P. C. Cañizares, A. Núñez, M. Núñez, and J. J. Pardo,
“A methodology for designing energy-aware systems for
computational science,” Procedia Computer Science, vol. 51, pp.
2804 – 2808, 2015, international Conference On Computational
Science, {ICCS} 2015Computational Science at the Gates
of Nature. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1877050915012466

[109] X. Xie, J. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen,
“Application of metamorphic testing to supervised classifiers,”
in 9th International Conference on Quality Software, 2009. QSIC ’09.,
Aug 2009, pp. 135–144.

[110] J. E. Gewehr, M. Szugat, and R. Zimmer, “Bioweka—extending
the weka framework for bioinformatics,” Bioinformatics, vol. 23,
no. 5, pp. 651–653, Feb. 2007. [Online]. Available: http:
//dx.doi.org/10.1093/bioinformatics/btl671

[111] Z. Jing, H. Xuegang, and Z. Bin, “An evaluation approach for the
program of association rules algorithm based on metamorphic
relations,” Journal of Electronics (China), vol. 28, no. 4-6, pp.
623–631, 2011. [Online]. Available: http://dx.doi.org/10.1007/
s11767-012-0743-9

[112] L. L. Pullum and O. Ozmen, “Early results from metamorphic
testing of epidemiological models,” in ASE/IEEE International
Conference on BioMedical Computing (BioMedCom), 2012, Dec 2012,
pp. 62–67.

[113] A. Ramanathan, C. A. Steed, and L. L. Pullum, “Verification
of compartmental epidemiological models using metamorphic
testing, model checking and visual analytics,” in ASE/IEEE In-
ternational Conference on BioMedical Computing (BioMedCom), 2012,
Dec 2012, pp. 68–73.

[114] S. Beydeda, “Self-metamorphic-testing components,” in 30th An-
nual International Computer Software and Applications Conference,
2006. COMPSAC ’06, vol. 2, Sept 2006, pp. 265–272.

[115] X. Lu, Y. Dong, and C. Luo, “Testing of component-based
software: A metamorphic testing methodology,” in International
Conference on Ubiquitous Intelligence Computing and International
Conference on Autonomic Trusted Computing, Oct 2010, pp. 272–276.

[116] T. Y. Chen, J. Feng, and T. H. Tse, “Metamorphic testing
of programs on partial differential equations: A case study,”
in Proceedings of the 26th International Computer Software and
Applications Conference on Prolonging Software Life: Development
and Redevelopment, ser. COMPSAC ’02. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 327–333. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645984.675903

[117] C. Aruna and R. S. R. Prasad, “Metamorphic relations to im-
prove the test accuracy of multi precision arithmetic software
applications,” in International Conference on Advances in Comput-
ing, Communications and Informatics (ICACCI, 2014, Sept 2014, pp.
2244–2248.

[118] Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing
approach for compiler based on metamorphic testing technique,”
in 17th Asia Pacific Software Engineering Conference (APSEC), 2010,
Nov 2010, pp. 270–279.

[119] V. Le, M. Afshari, and Z. Su, “Compiler validation via
equivalence modulo inputs,” in Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’14. New York, NY, USA: ACM, 2014,
pp. 216–226. [Online]. Available: http://doi.acm.org/10.1145/
2594291.2594334

[120] T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou, “An effective testing
method for end-user programmers,” in Proceedings of the First
Workshop on End-user Software Engineering, ser. WEUSE I. New
York, NY, USA: ACM, 2005, pp. 1–5. [Online]. Available:
http://doi.acm.org/10.1145/1082983.1083236

[121] K. Y. Sim, C. S. Low, and F.-C. Kuo, “Detecting faults in tech-
nical indicator computations for financial market analysis,” in
2nd International Conference on Information Science and Engineering
(ICISE), 2010, Dec 2010, pp. 2749–2754.

[122] “MetaTrader 4 Trading Terminal. http://www.metaquotes.net/
en/metatrader4/trading terminal,” accessed April 2015.

[123] S. Yoo, “Metamorphic testing of stochastic optimisation,” in
Third International Conference on Software Testing, Verification, and
Validation Workshops (ICSTW), 2010, April 2010, pp. 192–201.

[124] Y. Yao, S. Huang, and M. Ji, “Research on metamorphic
testing for oracle problem of integer bugs,” in Fourth
International Conference on Advances in Computer Science and
Information Engineering, ser. Advances in Intelligent and
Soft Computing, D. Jin and S. Lin, Eds. Springer Berlin
Heidelberg, 2012, vol. 168, pp. 95–100. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30126-1 16

[125] Y. Yao, C. Zheng, S. Huang, and Z. Ren, “Research on meta-
morphic testing: A case study in integer bugs detection,” in
Fourth International Conference on Intelligent Systems Design and
Engineering Applications, 2013, Nov 2013, pp. 488–493.

[126] Z. Hui, S. Huang, Z. Ren, and Y. Yao, “Metamorphic testing
integer overflow faults of mission critical program: A case study,”
Mathematical Problems in Engineering, vol. 2013, 2013.

[127] G. Batra and G. Singh, “An automated metamorphic testing
technique for designing effective metamorphic relations,” in
Contemporary Computing, ser. Communications in Computer
and Information Science, M. Parashar, D. Kaushik, O. Rana,
R. Samtaney, Y. Yang, and A. Zomaya, Eds. Springer Berlin
Heidelberg, 2012, vol. 306, pp. 152–163. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32129-0 20

[128] C. Sun, Z. Wang, and G. Wang, “A property-based testing
framework for encryption programs,” Frontiers of Computer
Science, vol. 8, no. 3, pp. 478–489, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11704-014-3040-y

[129] C. Aruna and R. S. R. Prasad, “Adopting metamorphic relations
to verify non-testable graph theory algorithms,” in Advances in
Computing and Communication Engineering (ICACCE), 2015 Second
International Conference on, May 2015, pp. 673–678.

[130] M. Lindvall, D. Ganesan, R. Ardal, and R. Wiegand, “Meta-
morphic model-based testing applied on nasa dat – an experience
report,” in Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on, vol. 2, May 2015, pp. 129–138.

[131] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing in the
absence of an oracle,” in Proceedings of the 25th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC
2001). IEEE Computer Society Press, 2001, pp. 172–178.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1007/978-3-540-73230-3_7
http://dx.doi.org/10.1007/978-3-642-02138-1_19
http://dx.doi.org/10.1007/978-3-642-02138-1_19
http://www.omnetpp.org
http://doi.acm.org/10.1145/1982595.1982597
http://dx.doi.org/10.1007/s12243-014-0442-7
http://dx.doi.org/10.1007/s10723-012-9208-5
http://www.sciencedirect.com/science/article/pii/S1877050915012466
http://www.sciencedirect.com/science/article/pii/S1877050915012466
http://dx.doi.org/10.1093/bioinformatics/btl671
http://dx.doi.org/10.1093/bioinformatics/btl671
http://dx.doi.org/10.1007/s11767-012-0743-9
http://dx.doi.org/10.1007/s11767-012-0743-9
http://dl.acm.org/citation.cfm?id=645984.675903
http://doi.acm.org/10.1145/2594291.2594334
http://doi.acm.org/10.1145/2594291.2594334
http://doi.acm.org/10.1145/1082983.1083236
http://www.metaquotes.net/en/metatrader4/trading_terminal
http://www.metaquotes.net/en/metatrader4/trading_terminal
http://dx.doi.org/10.1007/978-3-642-30126-1_16
http://dx.doi.org/10.1007/978-3-642-32129-0_20
http://dx.doi.org/10.1007/s11704-014-3040-y

20

[132] C. Cadar and K. Sen, “Symbolic execution for software
testing: Three decades later,” Communications of the ACM,
vol. 56, no. 2, pp. 82–90, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2408776.2408795

[133] I. Erete and A. Orso, “Optimizing constraint solving to better
support symbolic execution,” in Workshop on Constraints in Soft-
ware Testing, Verification, and Analysis, 2011.

[134] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Semi-proving: An
integrated method based on global symbolic evaluation and
metamorphic testing,” in Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser.
ISSTA ’02. New York, NY, USA: ACM, 2002, pp. 191–195.
[Online]. Available: http://doi.acm.org/10.1145/566172.566202

[135] G. Dong, S. Wu, G. Wang, T. Guo, and Y. Huang, “Security
assurance with metamorphic testing and genetic algorithm,”
in IEEE/WIC/ACM International Conference onWeb Intelligence and
Intelligent Agent Technology (WI-IAT), 2010, vol. 3, Aug 2010, pp.
397–401.

[136] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu, “Spectrum-based fault
localization: Testing oracles are no longer mandatory,” in 11th
International Conference on Quality Software (QSIC), 2011, July 2011,
pp. 1–10.

[137] ——, “Metamorphic slice: An application in spectrum-based
fault localization,” Information and Software Technology, vol. 55,
no. 5, pp. 866 – 879, 2013. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0950584912001759

[138] “Siemens Suite. http://sir.unl.edu/portal/bios/tcas.php#
siemens,” accessed May 2015.

[139] Y. Lei, X. Mao, and T. Y. Chen, “Backward-slice-based statistical
fault localization without test oracles,” in 13th International Con-
ference on Quality Software (QSIC), 2013, July 2013, pp. 212–221.

[140] Y. Lei, X. Mao, Z. Dai, and C. Wang, “Effective statistical fault
localization using program slices,” in Computer Software and Ap-
plications Conference, July 2012, pp. 1–10.

[141] P. Rao, Z. Zheng, T. Y. Chen, N. Wang, and K. Cai, “Impacts of
test suite’s class imbalance on spectrum-based fault localization
techniques,” in 13th International Conference on Quality Software
(QSIC), 2013, July 2013, pp. 260–267.

[142] C. Aruna and R. S. R. Prasad, “Testing approach for dynamic
web applications based on automated test strategies,” in ICT and
Critical Infrastructure: Proceedings of the 48th Annual Convention
of Computer Society of India- Vol II, ser. Advances in Intelligent
Systems and Computing, S. C. Satapathy, P. S. Avadhani, S. K.
Udgata, and S. Lakshminarayana, Eds. Springer International
Publishing, 2014, vol. 249, pp. 399–410. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-03095-1 43

[143] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M. D. Ernst, “Finding bugs in dynamic web applications,”
in International Symposium on Software Testing and Analysis,
ser. ISSTA ’08. New York, NY, USA: ACM, 2008, pp. 261–
272. [Online]. Available: http://doi.acm.org/10.1145/1390630.
1390662

[144] H. Liu, I. I. Yusuf, H. W. Schmidt, and T. Y. Chen,
“Metamorphic fault tolerance: An automated and systematic
methodology for fault tolerance in the absence of test oracle,”
in Companion Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE Companion 2014. New
York, NY, USA: ACM, 2014, pp. 420–423. [Online]. Available:
http://doi.acm.org/10.1145/2591062.2591109

[145] H. Jin, Y. Jiang, N. Liu, C. Xu, X. Ma, and J. Lu, “Concolic
metamorphic debugging,” in Computer Software and Applications
Conference (COMPSAC), 2015 IEEE 39th Annual, vol. 2, July 2015,
pp. 232–241.

[146] H. Liu, F.-C. Kuo, and T. Y. Chen, “Teaching an end-user testing
methodology,” in 23rd IEEE Conference on Software Engineering
Education and Training (CSEE T), March 2010, pp. 81–88.

[147] S. Yoo and M. Harman, “Regression testing minimization,
selection and prioritization: a survey,” Software Testing,
Verification and Reliability, vol. 22, no. 2, pp. 67–120, 2012.
[Online]. Available: http://dx.doi.org/10.1002/stvr.430

[148] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to support
program evolution,” in Proceedings of the 21st International
Conference on Software Engineering, ser. ICSE ’99. New York,
NY, USA: ACM, 1999, pp. 213–224. [Online]. Available:
http://doi.acm.org/10.1145/302405.302467

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2532875

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://doi.acm.org/10.1145/2408776.2408795
http://doi.acm.org/10.1145/566172.566202
http://www.sciencedirect.com/science/article/pii/S0950584912001759
http://www.sciencedirect.com/science/article/pii/S0950584912001759
http://sir.unl.edu/portal/bios/tcas.php#siemens
http://sir.unl.edu/portal/bios/tcas.php#siemens
http://dx.doi.org/10.1007/978-3-319-03095-1_43
http://doi.acm.org/10.1145/1390630.1390662
http://doi.acm.org/10.1145/1390630.1390662
http://doi.acm.org/10.1145/2591062.2591109
http://dx.doi.org/10.1002/stvr.430
http://doi.acm.org/10.1145/302405.302467

