128 research outputs found

    GCMD: Genetic Correlation Multi-Domain Virtual Network Embedding algorithm

    Get PDF
    With the increase of network scale and the complexity of network structure, the problems of traditional Internet have emerged. At the same time, the appearance of network function virtualization (NFV) and network virtualization technologies has largely solved this problem, they can effectively split the network according to the application requirements, and flexibly provide network functions when needed. During the development of virtual network, how to improve network performance, including reducing the cost of embedding process and shortening the embedding time, has been widely concerned by the academia. Combining genetic algorithm with virtual network embedding problem, this paper proposes a genetic correlation multi-domain virtual network embedding algorithm (GCMD-VNE). The algorithm improves the natural selection stage and crossover stage of genetic algorithm, adds more accurate selection formula and crossover conditions, and improves the performance of the algorithm. Simulation results show that, compared with the existing algorithms, the algorithm has better performance in terms of embedding cost and embedding time.Postprint (published version

    LogEvent2vec : LogEvent-to-vector based anomaly detection for large-scale logs in internet of things

    Get PDF
    Funding: This work was funded by the National Natural Science Foundation of China (Nos. 61802030), the Research Foundation of Education Bureau of Hunan Province, China (No. 19B005), and the International Cooperative Project for “Double First-Class”, CSUST (No. 2018IC24), the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology (Nanjing University of Posts and Telecommunications), Ministry of Education (No. JZNY201905), the Open Research Fund of the Hunan Provincial Key Laboratory of Network Investigational Technology (No. 2018WLZC003). This work was funded by the Researchers Supporting Project No. (RSP-2019/102) King Saud University, Riyadh, Saudi Arabia. Acknowledgments: We thank Researchers Supporting Project No. (RSP-2019/102) King Saud University, Riyadh, Saudi Arabia, for funding this research. We thank Francesco Cauteruccio for proofreading this paper.Peer reviewedPublisher PD

    LSTM-based Anomaly Detection for Non-linear Dynamical System

    Get PDF
    Anomaly detection for non-linear dynamical system plays an important role in ensuring the system stability. However, it is usually complex and has to be solved by large-scale simulation which requires extensive computing resources. In this paper, we propose a novel anomaly detection scheme in non-linear dynamical system based on Long Short-Term Memory (LSTM) to capture complex temporal changes of the time sequence and make multi-step predictions. Specifically, we first present the framework of LSTM-based anomaly detection in non-linear dynamical system, including data preprocessing, multi-step prediction and anomaly detection. According to the prediction requirement, two types of training modes are explored in multi-step prediction, where samples in a wall shear stress dataset are collected by an adaptive sliding window. On the basis of the multi-step prediction result, a Local Average with Adaptive Parameters (LAAP) algorithm is proposed to extract local numerical features of the time sequence and estimate the upcoming anomaly. The experimental results show that our proposed multi-step prediction method can achieve a higher prediction accuracy than traditional method in wall shear stress dataset, and the LAAP algorithm performs better than the absolute value-based method in anomaly detection task.Comment: 8 pages, 6 figure

    Efficient Routing Protection Algorithm Based on Optimized Network Topology

    Get PDF
    Network failures are unavoidable and occur frequently. When the network fails, intra-domain routing protocols deploying on the Internet need to undergo a long convergence process. During this period, a large number of messages are discarded, which results in a decline in the user experience and severely affects the quality of service of Internet Service Providers (ISP). Therefore, improving the availability of intra-domain routing is a trending research question to be solved. Industry usually employs routing protection algorithms to improve intra-domain routing availability. However, existing routing protection schemes compute as many backup paths as possible to reduce message loss due to network failures, which increases the cost of the network and impedes the methods deployed in practice. To address the issues, this study proposes an efficient routing protection algorithm based on optimized network topology (ERPBONT). ERPBONT adopts the optimized network topology to calculate a backup path with the minimum path coincidence degree with the shortest path for all source purposes. Firstly, the backup path with the minimum path coincidence with the shortest path is described as an integer programming problem. Then the simulated annealing algorithm ERPBONT is used to find the optimal solution. Finally, the algorithm is tested on the simulated topology and the real topology. The experimental results show that ERPBONT effectively reduces the path coincidence between the shortest path and the backup path, and significantly improves the routing availability

    Geographic routing in duty-cycled industrial wireless sensor networks with radio irregularity

    Get PDF
    Industrial wireless sensor networks (IWSNs) are required to provide highly reliable and real-time transmission. Moreover, for connected K-neighborhood (CKN) sleep scheduling-based duty-cycled IWSNs in which the network lifetime of IWSNs can be prolonged, the two-phase geographic greedy forwarding (TPGF) geographic routing algorithm has attracted attention due to its unique transmission features: multi path, shortest path, and hole bypassing. However, the performance of TPGF in CKN-based duty-cycled IWSNs with radio irregularity is not well investigated in the literature. In this paper, we first evaluate the impact of radio irregularity on CKN-based duty-cycled IWSNs. Furthermore, we investigate the routing performance of TPGF in CKN-based duty-cycled IWSNs with radio irregularity, in terms of the number of explored routing paths as well as the lengths of the average and shortest routing paths. Particularly, we establish the upper bound on the number of explored routing paths. The upper bound is slightly relaxed with radio irregularity compared with without radio irregularity; however, it is bounded by the number of average 1-hop neighbors in always-on IWSNs. With extensive simulations, we observe that the cross-layer optimized version of TPGF (i.e., TPFGPlus) finds reliable transmission paths with low end-to-end delay, even in CKN-based duty-cycled IWSNs with radio irregularity

    Effective Feature Selection for 5G IM Applications Traffic Classification

    Get PDF

    Measurement and Analysis of the Swarm Social Network With Tens of Millions of Nodes

    Get PDF
    Social graphs have been widely used for representing the relationship among users in online social networks (OSNs). As crawling an entire OSN is resource-and time-consuming, most of the existing works only pick a sampled subgraph for study. However, this may introduce serious inaccuracy into the analytic results, not to mention that some important metrics cannot even be calculated. In this paper, we crawl the entire social network of Swarm, a leading mobile social app with more than 60 million users, using a distributed approach. Based on the crawled massive user data, we conduct a data-driven study to get a comprehensive picture of the whole Swarm social network. This paper provides a deep analysis of social interactions between Swarm users, and reveals the relationship between social connectivity and check-in activities.Peer reviewe

    Load-balancing rendezvous approach for mobility-enabled adaptive energy-efficient data collection in WSNs

    Get PDF
    Copyright © 2020 KSII The tradeoff between energy conservation and traffic balancing is a dilemma problem in Wireless Sensor Networks (WSNs). By analyzing the intrinsic relationship between cluster properties and long distance transmission energy consumption, we characterize three node sets of the cluster as a theoretical foundation to enhance high performance of WSNs, and propose optimal solutions by introducing rendezvous and Mobile Elements (MEs) to optimize energy consumption for prolonging the lifetime of WSNs. First, we exploit an approximate method based on the transmission distance from the different node to an ME to select suboptimal Rendezvous Point (RP) on the trajectory for ME to collect data. Then, we define data transmission routing sequence and model rendezvous planning for the cluster. In order to achieve optimization of energy consumption, we specifically apply the economic theory called Diminishing Marginal Utility Rule (DMUR) and create the utility function with regard to energy to develop an adaptive energy consumption optimization framework to achieve energy efficiency for data collection. At last, Rendezvous Transmission Algorithm (RTA) is proposed to better tradeoff between energy conservation and traffic balancing. Furthermore, via collaborations among multiple MEs, we design Two-Orbit Back-Propagation Algorithm (TOBPA) which concurrently handles load imbalance phenomenon to improve the efficiency of data collection. The simulation results show that our solutions can improve energy efficiency of the whole network and reduce the energy consumption of sensor nodes, which in turn prolong the lifetime of WSNs
    corecore