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ABSTRACT With the increase of network scale and the complexity of network structure, the problems of
traditional Internet have emerged. At the same time, the appearance of network function virtualization (NFV)
and network virtualization technologies has largely solved this problem, they can effectively split the network
according to the application requirements, and flexibly provide network functions when needed. During
the development of virtual network, how to improve network performance, including reducing the cost
of embedding process and shortening the embedding time, has been widely concerned by the academia.
Combining genetic algorithm with virtual network embedding problem, this paper proposes a genetic
correlation multi-domain virtual network embedding algorithm (GCMD-VNE). The algorithm improves the
natural selection stage and crossover stage of genetic algorithm, adds more accurate selection formula and
crossover conditions, and improves the performance of the algorithm. Simulation results show that, compared
with the existing algorithms, the algorithm has better performance in terms of embedding cost and embedding
time.

INDEX TERMS Network virtualization, network function virtualization, virtual network embedding, future
internet, cross-domain mapping algorithm, genetic algorithm.

I. INTRODUCTION
In recent years, the Internet plays a more and more important
role in people’s lives and creates great value for the devel-
opment of society. At present, a variety of innovative busi-
ness and applications have high demands for the quality of
network services, the traditional ‘‘best-effort’’ Internet archi-
tectures are difficult to meet those demands. The emergence
of network function virtualization (NFV) and virtualization
technology provides a new way to solve the traditional Inter-
net problems. NFV uses network virtualization technology to
divide the function of network hierarchy into several software
function blocks. Network virtualization technologies aim to
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abstract the various business requirements of users into an
isolated virtual network, and multiple virtual networks share
the hardware resources of the substrate network [1]. NFV
and virtualization technologies allow efficient partitioning of
networks based on application requirements, thereby provid-
ing applications with high bandwidth traffic and low latency.
How to efficiently map the virtual networks to the substrate
networks that satisfying the constraints is the research topic
of this paper [2].

In the future network architecture, the role of traditional
network service providers will be divided into two parts:
the service providers (SP) and infrastructure providers (InP).
SP can create and manage virtual networks for end users, InP
can deploy and unify the available resources of the substrate
network flexibly according to different business needs of
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users. So far, the single domain embedding problem of virtual
networks has been effectively solved. Many literatures have
proposed many methods to solve the single domain embed-
ding problem of virtual networks [3]–[5]. However, for future
network models, single domain embedding can not solve
practical problems and meet the needs of users, so deploying
virtual networks between multiple domains becomes the key
to the problem [6].

In the cross-domain embedding process of virtual net-
works, many users constantly request the substrate networks
to use its underlying resources. How to improve the efficiency
of the substrate network and deploy the virtual network nodes
and links reasonably is the most important issue at present.
In literature [7], the authors prove that the partitioning process
of virtual network requests in cross-domain virtual network
mapping is NP problem, that is, it is impossible to find the
optimal solution under limited time cost and resource cost.
However, in recent years, many scholars have studied this
issue [8], hoping to find a better solution for cross-domain
embedding.

The goal of VNE problem is to find a better embed-
ding scheme under resource constraints, which maps as
many virtual request networks as possible to the substrate
networks and occupies as few substrate resources as possi-
ble. For this reason, this paper proposed a Genetic Correla-
tion Multi-Domain Virtual Network Embedding Algorithm:
GCMD. The improved genetic algorithm is used to improve
the efficiency of VNE in this method. The experimental
results show that the proposed GCMD-VNE has better per-
formance compared with other algorithms, the main reason
is that compared with the traditional embedding algorithm,
the genetic algorithm can carry on the variation, so it is not
easy to fall into the local optimal, thus can find the optimal
scheme in a larger solution plane, and keep the reasonable
part of these schemes for iterative optimization. In terms of
average embedding cost and execution time, the PSO-VNE
proposed in literature [9] and HTF-VNE, HCDCF-VNE pro-
posed in literature [10] are selected to compare. The proposed
GCMD-VNE not only guarantees the minimum embedding
cost, but also optimizes the execution time of the algorithm,
which greatly improves the efficiency of the VNE process.

The main contributions and the main ideas of this paper are
summarized as follows.

(1) In this paper, a genetic correlation multi-domain VNE
algorithm is designed. The algorithm encodes the partition
and embedding scheme of virtual networks in the form of
matrix, and searches iteratively frommultiple initial solutions
to get the best embedding scheme.

(2) In the natural selection stage, the best half of the
parents are directly selected into the offspring in the tra-
ditional genetic algorithm. In the GCMD-VNE proposed
in this paper, the natural selection for parents to enter the
next generation is based on specific probability formulas.
In the crossover stage, the detection of candidate parents and
the restriction of crossover conditions are added. Because
crossover is the exchange of alleles between parents, if the

parents are identical, crossover will produce the same off-
spring as the parents. Therefore, the algorithm proposed in
this paper increases the detection of crossover parental. If the
two parents are completely same, no cross operation will be
carried out and the opportunity will be given to other parental
combinations.

(3) This paper designs and implements the simulation
experiment of VNE algorithm, verifies the advantages of the
algorithm from the aspects of cost and time, and summarizes
the principle of setting parameters in the algorithm.

The remainder of this paper is organized as follows.
Section 2 reviews the existing methods for VN. Section 3
introduces the network model and problem statement.
Section 4 describes our proposed algorithm GCMD-VNE in
detail. The performance of our method and other methods is
evaluated in Section 5. Section 6 concludes this paper.

II. RELATED WORKS
This part mainly reviews some existing literature on virtual
network mapping. The virtual network mapping algorithms
can be divided into centralized multi-domain algorithms and
distributedmulti-domain algorithms according to whether the
infrastructure provider is needed as a middleman [11]–[13].
In the existing work, there are not only traditional solutions,
such as various heuristic algorithms [14], [15], but also the
latest methods combined with artificial intelligence [14],
[16], [17].

A. THE DISTRIBUTED VNE ALGORITHMS
The authors of [18] proposed a strategy called PloyViNE,
which is proposed to map the adjacent substrate network
domains of virtual network parts that could not be mapped
by a single domain in the process of VNE. It introduces
a distributed protocol that coordinates the VN embedding
process, ensures competitive pricing for service providers
(SPs), and proposes a location-aware VN request forwarding
mechanism for faster embedding. For the bidding problem of
the substrate network, the authors of [19] proposed a v-mart
bidding model. For InPs, it provides a level playing field
for them to compete on VN resources, for SPs, it provides
a customer-driven virtual resources partition and contract
engine. Meanwhile, it adopts the two-stage Vickrey auction
model, which is highly flexible to different InPs pricing
models and can play a unique role in the heterogeneous
multi-commodity market with VNE characteristics. In order
to optimize the network resources, maximize the throughput
and reduce the network delay, the authors of literature [20]
applied the genetic algorithm to the cloud environment, which
makes the cloud environment more optimized and has less
cost. The authors of [7] divided virtual network embedding
technology into two parts: virtual network segmentation pro-
cess and virtual network embedding process. In this paper,
the time delay and cost of splitting VN requests between sub-
domains are evaluated and compared. In the topology-based
abstraction mapping method, the authors of [21] proposed a
mechanism to abstract the substrate network providers into
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nodes. In this mechanism, multiple cloud provider sites are
connected through a multi-domain network that supports vir-
tual network technologies. When a user submits a request for
a virtual topology, the system will plan a low-cost embedding
and orchestrate the request to multiple cloud providers and
network transport providers to instantiate the virtual topol-
ogy according to the plan. Fair allocation of resources in
the network is very complex [22], and how to solve this
problem is also facing challenges. The authors of litera-
ture [23] proposed a resource allocation scheme based on
blockchain, which can manage users’ resources in a secure
environment and make the network environment highly reli-
able. The authors of [24] carried out priority analysis of node
embedding with the improved markov random walk model,
and used ILP model to optimize the embedding process. The
authors of [25] proposed a method to measure the proxim-
ity centrality in the priority analysis of node embedding in
the virtual network embedding process. The authors of [26]
proposed to sort the priority of node embedding by using
the degree value and aggregation coefficient of nodes, but
did not consider the relationship between node topologies
and resource attributes. Aiming at reducing network power
consumption and transmission delay, the authors of [27] pro-
posed a cross-domain network virtualization scheme based
on LTE.

B. THE CENTRALIZED VNE ALGORITHMS
Since the introduction of network virtualization technologies
[28], there have been many studies on virtual network single
domain mapping [29], but later people found that single
domain mapping can hardly meet the users’ needs, because
users want to enjoy cross-domain embedding service. For
the problem of multi-domain embedding, the authors of [30]
proposed an estimation scheme to deal with the unknown
intra-domain topologies and generated an augmented net-
work graph to coordinate node embedding and link mapping,
so as to solve the virtual network request in polynomial
time. The authors of [31] used traffic matrix to describe the
virtual network, which relaxed the integer limit in the virtual
network request decomposition, thus reducing the time com-
plexity and running time. The authors of reference [32] used
the blockchain technology to improve the data distribution
problem in the network, which is to realize the load balance
of the network, and reduce the resource management cost
and transmission delay. The authors of document [33] used
the virtual network technology in the IoT, which transforms
the resource allocation in the IoT into the virtual network
embedding problem, and reasonably solves the resource allo-
cation. The authors of [34] inherited the idea of [31], and
adopted a heuristic virtual network request decomposition
method based on particle swarm optimization algorithm. The
authors of [35] proposed the cross-domain embedding algo-
rithm of virtual network based on genetic algorithm which
is a meta-heuristic algorithm. The purpose of the algorithm
is to make a reasonable plan for the substrate resources of
the substrate network and to embed more virtual networks

FIGURE 1. The model of domain view transformation.

on the substrate network. Compared with single-domain
embedding, cross-domain virtual network embedding can
provide better substrate resource allocation for users’
business. However, cross-domain virtual network embed-
ding needs to optimize the additional costs brought by
cross-domain embedding. In addition, how to meet the greed
and selfishness of the basic setup service providers should
also be considered. In order to solve this problem, a vir-
tual network cross-domain embedding strategy is proposed.
The transformation model for the domain view is shown in
FIGURE.1.

III. NETWORK MODEL AND PROBLEM STATEMENT
The intra-domain VNE problem is well-defined in lit-
erature [36]. In this section, we formally defined the
inter-domain virtual network embedding problem. First, we
will describe the substrate network model, and then, we will
introduce the virtual network request model, third, we will
state the multi-domain VNE problem.

A. SUBSTRATE NETWORK MODEL
The entire substrate network can be modeled as an undirected
graphGs = (Ns,Ls), whereNs and Ls represent the set of sub-
strate nodes and substrate links respectively. Gs is composed
of N domains managed by N InPs, which are interconnected
by multiple inter-domain links. We assume that the infras-
tructure providers are composed of N domains managed by
different InPs. The k-th substrate domain can be defined as
Gs,k = (Ns,k ,Ls,k ), where Ns,k and Ls,k represent the set
of substrate nodes and substrate links which are managed
by k-th InP. In addition, we define the set of inter-domain
substrate links as Es,I . Thus, Gs can be formulated as:

Gs = Gs,1 ∪ Gs,2 ∪ . . . ∪ Gs,N ∪ Es,I , (1)

Vs = Vs,1 ∪ Vs,2 ∪ Vs,3 . . . ∪ Vs,N , (2)

Ls = Ls,1 ∪ Ls,2 ∪ . . . ∪ Ls,N ∪ Es,I . (3)

In FIGURE.2, the entire substrate network is comprised
of three domains and three inter-domain substrate links.
As shown in FIGURE.2, ellipses represent different domains,
circles represent substrate nodes, and lines represent substrate
links. The substrate network (a) is divided into three domains
containing 13 substrate nodes, each of which has a corre-
sponding CPU capacity (the number in the circle), and con-
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FIGURE 2. The multi-domain substrate infrastructure.

tains 19 links, including inter-domain links and intra-domain
links, black links represent intra-domain links and blue links
represent inter-domain links.

B. VIRTUAL NETWORK REQUEST MODEL
Similar to the substrate network, we define virtual network
requests (VNR) as a weighted undirected graph represented
by Gv = (Nv,Lv). Each virtual node in a VNR has a CPU
capacity requirement, and each virtual link from a VNR has
a bandwidth resource requirement. As shown in FIGURE.2,
squares represent virtual nodes, and lines represent virtual
links. The virtual network request (b) contains 5 virtual nodes,
each of which has a corresponding CPU capacity (the number
in the square), and contains 5 virtual links.

C. MULTI-DOMAIN VIRTUAL NETWORK EMBEDDING
PROBLEM
The embedding process of single domain virtual network
means that virtual nodes and links are embedded into the
corresponding substrate network meanwhile satisfying the
constraints of CPU capacity on nodes and bandwidth resource
on links. Different from the single domain VNE process,
the multi-domain VNE problem is associated with more than
one substrate networks, and thereby causing the decomposi-
tion and composition of virtual network requests. A multi-
domain VNE instance is shown in FIGURE.3.

As shown in the figure, InP publishes the virtual resource
types and corresponding resource information that can be
provided by the autonomous domain to the system, and
then it is used to support the embedding algorithm and
partition algorithm. In addition, the process can also obtain
the topology information and connection cost information
between boundary nodes from Internet exchange points.
In the resource matching algorithm, the matching of virtual
nodes is to find the type of virtual nodes that meet the
mapping constraints, the matching of virtual links is to find
a substrate path, so that each substrate link on the path can
meet the mapping constraints of the virtual link. The whole
substrate network consists of three autonomous domains and
their interconnections. The squares in each domain represent
the bottom substrate nodes, the hexagons represent the edge
substrate nodes, and the lines between the regular pentagons
represent the connection relationship between the boundary
nodes.

IV. GENETIC CORRELATION MULTI-DOMAIN VIRTUAL
NETWORK EMBEDDING ALGORITHM
This section mainly describes the algorithms in detail. In the
first part, we introduce the genetic algorithm. In the sec-
ond part, based on the existing genetic algorithm and the
cross-domain embedding algorithm, we propose a genetic
correlation multi-domain virtual network embedding algo-
rithm (GCMD-VNE), the main steps of our algorithm are as
follows.

A. GENETIC ALGORITHM
Genetic algorithm originates from the theory of heredity put
forward by Darwin. It is a computer simulation study on the
biological evolution process of natural selection and genetic
evolution. Genetic algorithm is an efficient global search
method based on natural evolution, which simulates biolog-
ical gene transfer process. Genetic algorithm can directly
optimize structural objects without the constraint of deriva-
tive and continuity of functions. The implicit parallelism and
excellent global optimization performance are welcomed by
algorithm workers. The genetic evolution algorithm starts
from the solving set of problems to be solved, which is
composed of a certain number of individuals who complete
the genetic coding. The genes of each individual are the entity
with its unique characteristics. The randomization technique
is used to explore each individual efficiently.

B. GENETIC CORRELATION MULTI-DOMAIN VIRTUAL
NETWORK EMBEDDING ALGORITHM
In literature [37], a virtual network model based on genetic
algorithm is proposed, which applies the genetic algorithm
to the problem of virtual network embedding and maps the
virtual network requests to the infrastructure providers man-
aging the substrate network. The GCMD-VNE algorithm
proposed in this paper has many improvements compared
with the original algorithm.

First of all, in the natural selection stage, in the original
algorithm, the best performing half of the parents are directly
selected into the offspring. In the algorithm proposed in this
paper, natural selection of parents into the next generation is
carried out according to the probability formula(4).

P (Xi) =

{
1, i = 0
1− (i− 1)/(N− 2), 1 ≤ i < N ,

(4)

where N is the total number of individuals in each generation,
i ∈ {0, 1, . . . ,N − 1} is the descending order of fitness func-
tion of parental individual Xi, in this paper, it is the ascending
order of mapping cost, i = 0 is the best individual, i = N − 1
is the worst individual. The calculation of probability formula
is mainly based on the following two considerations.

(1) P(X0) = P(X1) = 1, that is, the optimal two individuals
in the parental generation will definitely enter the offspring
generation. Since the crossover must be carried out between
the two parents, this can ensure that the crossover operation
can be carried out.
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FIGURE 3. The virtual network cross-domain mapping instance.

(2)
∑N−1

i=0 P(Xi) = (N + 1)/2, the mathematical expecta-
tion for the number of individuals entering the next generation
is (N + 1)/2, about half the number of parents.
Secondly, in the crossover stage, the detection of crossover

parents and the restriction of crossover conditions are
added. Since the crossover operation is the exchange of
alleles between two parents, if two parents are identical,
the crossover operation will definitely yield the same off-
springs as the parents, which is of no significance to the
optimization of solutions. In the small network embedding
process, the probability of this situation is high. Therefore,
the algorithm proposed in this paper increases the detection
of cross parental. If the two parents are completely the same,
no cross operation will be carried out and the opportunity will
be given to other parental combinations.

However, in the simulation experiments, the execution
efficiency of the algorithm with detection is low. After ana-
lyzing, it is found that most individuals will find the optimal
solution after several iterations when the solution plane is
small, which results in that most parents are the same and
the optimal. Because the crossover algorithm starts from the
optimal parental combination, it often falls into a long cycle in
the crossover section, and even cannot converge. Therefore,
in addition to parental detection, this algorithm also adds
a restriction on crossover conditions. If a specified number
of cross-operations have been performed (including those
abandoned because the parents are the same), subsequent
cross-operations will no longer be limited by parental differ-
ences, preventing the algorithm from falling into an endless
loop.

The main steps of the proposed algorithm are as follows.
• Chromosome Construction
The total number of mid-locus genes in a chromosome is

equal to the number of substrate networks that can be used

to service multiple virtual network requests. The size of each
allele in the chromosome remains the same as the largest of
all substrate networks serving VN requests, the one with the
largest number of nodes. The values in each allele are again
filled in a random manner, and VN requests the VN vertex
to fill the random position of the allele, representing the
particular substrate network.
• Cross Operation
After the random initial population is generated, the

parental chromosomes are crossed.
• Feasibility Checking
The solutions of operations are rarely invalid. Therefore,

feasibility tests are needed for future generations.
• Mutation Operation
After crossover, mutation is carried out to make the genetic

algorithm overcome local optimization and introduce new
genes into the population. During the mutation phase, indi-
vidual elements of each suballele are disrupted, and mutation
probabilities are further discussed in the performance evalu-
ation section.
• Selection Operation
Selection is the selection of parental chromosomes for the

reproduction of offspring. Selected chromosomes are allo-
cated to reproductive opportunities. There are several types
of parental selection methods, such as roulette, random selec-
tion, rank selection, elitist selection, tournament selection,
etc. In this work, selection is done by sequencing, inwhich the
best half chromosome associatedwith fitness score is selected
as the parent chromosome.

Because the virtual network node and link embedding to
each substrate node and link requires a certain cost, and in
general, the cost of inter domain link is higher than that of
intra domain link, so themain consideration in the embedding
is the embedding cost. The objective of the proposed scheme
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is to minimize the cost of multi domain VNE, and the objec-
tive function can be expressed by the following formula.

minCost =
∑

num(Nv)

C(Nv)C(Ns)+
∑

num(Lv)

Bw(Lv)Bw(Ls).

(5)

wherein, num(Nv) represents the number of virtual nodes in
the VNR, num(Lv) represents the number of virtual links in
the VNR, the first summation on the right represents the
product of the CPU demand of each virtual network node and
the CPU unit price of its corresponding substrate node, that
is, the node mapping cost of the mapping scheme. The second
summation term is the product of the bandwidth requirement
of each virtual link and the total bandwidth of the correspond-
ing substrate link. Therefore, minimizing the embedding cost
is to minimize the sum of node embedding cost and link
embedding cost.

The Algorithm 1 describes the detailed steps of
GCMD-VNE.

Algorithm 1Genetic Correlation Multi-Domain Virtual Net-
work Embedding Algorithm
1: Get substrate network and VN requests;
2: Initialize the parents and children;
3: Calculate the adaptive value of individual;
4: Select the parents to next generation;
5: Cross the parents according to crossover probability;
6: Mutate children based on the mutation probability;
7: Find the optimal solution;
8: Calculate substrate resources and embedding cost;
9: Return embedding result.

V. SIMULATION EXPERIMENTS AND ANALYSIS
In this section, we describe the setup of the simulation envi-
ronment in detail in the first part, and give the simulation
results in the second part. In the following experiments,
we compared the GCMD-VNE proposed in this paper with
the existing methods including PSO-VNE, HTF-VNE and
HCDCF-VNE, respectively showing the average embedding
cost and average embedding time of the four algorithms with
different node numbers in normal and abnormal network
environments.

A. EXPERIMENTAL ENVIRONMENT SETTINGS
The simulation process of cross-domain virtual networkmap-
ping was completed on a computer with 8GB memory and
64-bit win10 operating system. The network topology used in
the simulation experiment was generated randomly by code
in Visual Studio 2012. The code was written by C++ pro-
gramming language and compiled byVisual Studio 2012. The
analysis of experimental results and the drawing of line chart
were completed by OriginLab OriginPro 8.5. The parameters
of the simulation experiment are set as follows.

TABLE 1. The settings of parameters.

B. EXPERIMENTAL RESULTS AND ANALYSIS
In this part, there are altogether four experiments, which are
divided into two parts. The first part includes two experi-
ments, respectively comparing the average embedding cost of
four algorithms in normal network environment and abnor-
mal network environment. The second part consists of two
experiments, respectively comparing the average embedding
time of four algorithms in normal network environment and
one field network environment.
Experiment 1: Comparison of average embedding costs

under normal network.
In order to compare the average embedding costs of the

three algorithms under normal network environment when
the number of virtual nodes is different, simulation exper-
iments are carried out on the simulation platform, and the
experimental results are shown in FIGURE. 4. As can be
seen from the FIGURE. 4, with the increase of the num-
ber of virtual network nodes, the average embedding cost
showed a steady upward trend. The average embedding cost
of GCMD-VNE algorithm proposed in this paper is much
lower than PSO-VNE algorithm and slightly lower than the
original HTF-VNE and HCDCF-VNE algorithm. Therefore,
the GCMD-VNE algorithm proposed in this paper has certain
advantages.
Experiment 2: Comparison of average embedding costs

under poor network.
Because some links are easily affected by some uncertain

factors, the cost is too high. Therefore, we designed the
comparative experiments of four algorithms in the abnor-
mal network environment, compared the average mapping
cost when the number of virtual nodes is different, and car-
ried out the simulation experiments on the simulation plat-
form. The experimental results are shown in FIGURE. 5.
As can be seen from the FIGURE. 5, with the increase of
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FIGURE 4. Comparison of average embedding costs under normal
network.

FIGURE 5. Comparison of average embedding costs under poor network.

the number of virtual network nodes, the average embed-
ding cost shows an increasing trend. The average embedding
cost of GCMD-VNE algorithm proposed in this paper is
much lower than PSO-VNE algorithm and slightly lower
than the HTF-VNE and HCDCF-VNE algorithm. Therefore,
the GCMD-VNE algorithm proposed in this paper has lower
cost and better performance in abnormal network environ-
ment.

From the average embedding cost diagram, it can be
seen that the GCMD-VNE algorithm proposed in this paper
is more optimized than the particle PSO-VNE in terms
of embedding cost. The main reason is that compared
with the traditional embedding algorithm, genetic algorithm
can simultaneously compare a large number of embedding
schemes and retain the reasonable parts of these schemes
for iterative optimization. Compared with PSO-VNE, genetic
algorithm is not easy to fall into local optimal due to mutation
and can search for optimal solution in a larger solution plane.
Experiment 3: Comparison of average embedding time

under normal network.
Experiment 3 is the comparison of average embedding time

of the four algorithms for the same group of virtual network
requests under normal network conditions. As can be seen
from FIGURE. 6, the average embedding time of the four
algorithms increases steadily with the increase of VN scale.

FIGURE 6. Comparison of average embedding time under normal
network.

FIGURE 7. Comparison of average embedding time under poor network.

Among them, the GCMD-VNE proposed in this paper has
the shortest embedding time, and PSO-VNE has the longest.
It can be seen that the modified algorithm in this paper has
a great improvement in embedding time compared with the
previous genetic algorithm, and the effect is significant.
Experiment 4: Comparison of average embedding time

under poor network.
Similar to Experiment 3, Experiment 4 compares the aver-

age embedding time of the four algorithms for the same
group of virtual network requests in the case of abnormal
network. As shown in FIGURE. 7, four algorithms of the
average run time along with the growth of the virtual network
scale is more stable, among them, the embedding time of
GCMD-VNE significantly shorter than the other three algo-
rithms, thus, under the condition of the network extension,
in this paper, the improved algorithm has a great improve-
ment on embedding time compared with the previous genetic
algorithm.

This is because genetic algorithm and particle swarm
optimization can share information between chromosomes,
which can make the whole population move to the optimal
region more evenly, so it has faster convergence time. At the
same time, genetic algorithm has a mature convergence anal-
ysis method in the aspect of convergence, while PSO and
traditional methods are relatively weak in this aspect, so the
speed of genetic algorithm is faster.
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VI. CONCLUSION
Aiming at the problem of cross-domain VNE, this paper
further studies the application of genetic algorithm in VNE,
and proposes a genetic correlation multi-domain virtual net-
work embedding algorithm (GCMD-VNE). Firstly, this paper
briefly introduces the research status of virtual network
cross-domain embedding and its significance to future net-
work theory. Then the key steps in solving the cross-domain
embedding problem are introduced emphatically. In order to
better prove the performance of the algorithm, the GCMD-
VNE algorithm proposed in this paper is compared with the
existing PSO-VNE,HTF-VNE andHCDCF-VNE algorithms
through simulation experiments, and the simulation results
are analyzed. Simulation results show that GCMD-VNE
algorithm proposed in this paper has better performance than
other two algorithms in average mapping cost, no matter in
normal or abnormal network environment. And in terms of
average mapping time, it has a more prominent performance
and significant advantages. In the future work, we will con-
sider more network embedding indicators, such as network
security, fluency and so on. This will be the direction of our
future efforts.

REFERENCES
[1] N. Feamster, L. Gao, and J. Rexford, ‘‘How to lease the Internet in your

spare time,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 37, no. 1,
pp. 61–64, Jan. 2007.

[2] P. Zhang, S. Wu, M. Wang, H. Yao, and Y. Liu, ‘‘Topology based reliable
virtual network embedding from a QoE perspective,’’ China Commun.,
vol. 15, no. 10, pp. 38–50, Oct. 2018, doi: 10.1109/CC.2018.8485467.

[3] A. Jarray and A. Karmouch, ‘‘Decomposition approaches for virtual net-
work embeddingwith one-shot node and linkmapping,’’ IEEE/ACMTrans.
Netw., vol. 23, no. 3, pp. 1012–1025, Jun. 2015.

[4] M. Chowdhury, M. R. Rahman, and R. Boutaba, ‘‘ViNEYard: Virtual
network embedding algorithms with coordinated node and link
mapping,’’ IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219,
Feb. 2012.

[5] A. Fischer and H. de Meer, ‘‘Generating virtual network embedding prob-
lems with guaranteed solutions,’’ IEEE Trans. Netw. Service Manage.,
vol. 13, no. 3, pp. 504–517, Sep. 2016.

[6] P. Zhang, C. Wang, C. Jiang, and A. Benslimane, ‘‘Security-aware
virtual network embedding algorithm based on reinforcement learn-
ing,’’ IEEE Trans. Netw. Sci. Eng., early access, May 19, 2020, doi:
10.1109/TNSE.2020.2995863.

[7] I. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, ‘‘Virtual network
provisioning across multiple substrate networks,’’ Comput. Netw., vol. 55,
no. 4, pp. 1011–1023, Mar. 2011.

[8] P. Zhang, X. Pang, Y. Bi, H. Yao, H. Pan, and N. Kumar, ‘‘DSCD:
Delay sensitive cross-domain virtual network embedding algorithm,’’
IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 2913–2925, Oct. 2020, doi:
10.1109/TNSE.2020.3005570.

[9] R. Geng and H. Lu, ‘‘Multi-domain SDN virtual network mapping algo-
rithm,’’ Small Microcomput. Syst., vol. 37, no. 12, pp. 2593–2597, 2016.

[10] S. Hong, J. P. Jue, Q. Zhang, X. Wang, H. C. Cankaya, C. She, and
M. Sekiya, ‘‘Virtual optical network embedding in multi-domain optical
networks,’’ in Proc. IEEE Global Commun. Conf., Austin, TX, USA,
Dec. 2014, pp. 2042–2047, doi: 10.1109/GLOCOM.2014.7037108.

[11] P. Zhang, H. Yao, and Y. Liu, ‘‘Virtual network embedding based
on computing, network, and storage resource constraints,’’ IEEE
Internet Things J., vol. 5, no. 5, pp. 3298–3304, Oct. 2018, doi:
10.1109/JIOT.2017.2726120.

[12] P. Jayalaxmi, R. Saha, G. Kumar, N. Kumar, and T.-H. Kim, ‘‘A taxonomy
of security issues in industrial Internet-of-Things: Scoping review for
existing solutions, future implications, and research challenges,’’ IEEE
Access, vol. 9, pp. 25344–25359, 2021.

[13] P. Zhang, C. Wang, G. S. Aujla, N. Kumar, and M. Guizani, ‘‘IoV sce-
nario: Implementation of a bandwidth aware algorithm in wireless net-
work communication mode,’’ IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 15774–15785, Dec. 2020, doi: 10.1109/TVT.2020.3035341.

[14] H. Yao, S. Ma, J. Wang, P. Zhang, C. Jiang, and S. Guo, ‘‘A continuous-
decision virtual network embedding scheme relying on reinforcement
learning,’’ IEEE Trans. Netw. ServiceManage., vol. 17, no. 2, pp. 864–875,
Jun. 2020, doi: 10.1109/TNSM.2020.2971543.

[15] P. Zhang, Y. Hong, X. Pang, and C. Jiang, ‘‘VNE-HPSO: Vir-
tual network embedding algorithm based on hybrid particle swarm
optimization,’’ IEEE Access, vol. 8, pp. 213389–213400, 2020, doi:
10.1109/ACCESS.2020.3040335.

[16] H. Yao, H. Liu, P. Zhang, S. Wu, C. Jiang, and S. Guo, ‘‘A learning-based
approach to intra-domainQoS routing,’’ IEEE Trans. Veh. Technol., vol. 69,
no. 6, pp. 6718–6730, Jun. 2020, doi: 10.1109/TVT.2020.2986769.

[17] P. Zhang, C. Wang, C. Jiang, N. Kumar, and Q. Lu, ‘‘Resource man-
agement and security scheme of ICPSs and IoT based on VNE algo-
rithm,’’ IEEE Internet Things J., early access, Mar. 23, 2021, doi:
10.1109/JIOT.2021.3068158.

[18] F. Samuel, M. Chowdhury, and R. Boutaba, ‘‘Polyvine: Policy-based vir-
tual network embedding across multiple domains,’’ J. Internet Services
Appl., vol. 4, no. 1, pp. 1–23, 2013.

[19] F.-E. Zaheer, J. Xiao, and R. Boutaba, ‘‘Multi-provider service negotiation
and contracting in network virtualization,’’ in Proc. IEEE Netw. Oper.
Manage. Symp. (NOMS), Apr. 2010, pp. 471–478.

[20] S. Swarnakar, N. Kumar, A. Kumar, and C. Banerjee, ‘‘Modified genetic
based algorithm for load balancing in cloud computing,’’ in Proc. IEEE 1st
Int. Conf. Converg. Eng. (ICCE), Sep. 2020, pp. 255–259.

[21] Y. Xin, I. Baldine, A.Mandal, C. Heermann, J. Chase, and A. Yumerefendi,
‘‘Embedding virtual topologies in networked clouds,’’ in Proc. 6th Int.
Conf. Future Internet Technol. (CFI), 2011, pp. 26–29.

[22] P. Zhang, X. Pang, N. Kumar, G. S. Aujla, and H. Cao, ‘‘A reli-
able data-transmission mechanism using blockchain in edge computing
scenarios,’’ IEEE Internet Things J., early access, Sep. 3, 2020, doi:
10.1109/JIOT.2020.3021457.

[23] A. Shukla, R. Gupta, S. Tanwar, N. Kumar, and J. J. P. C. Rodrigues,
‘‘Block-RAS: A P2P resource allocation scheme in 6G environment with
public blockchains,’’ in Proc. IEEE Global Commun. Conf. (GLOBE-
COM), Dec. 2020, pp. 1–6.

[24] X. Cheng, Z.-B. Zhang, S. Su, and F.-C. Yang, ‘‘Virtual network embed-
ding based on particle swarm optimization,’’Dianzi Xuebao Acta Electron.
Sinica, vol. 39, no. 10, pp. 2240–2244, 2011.

[25] Z. Wang, Y. Han, T. Lin, Y. Xu, S. Ci, and H. Tang, ‘‘Topology-aware vir-
tual network embedding based on closeness centrality,’’ Frontiers Comput.
Sci., vol. 7, no. 3, pp. 446–457, Jun. 2013.

[26] P. Zhang, H. Yao, and Y. Liu, ‘‘Virtual network embedding based on
the degree and clustering coefficient information,’’ IEEE Access, vol. 4,
pp. 8572–8580, 2016.

[27] A. Tzanakaki, M. P. Anastasopoulos, G. S. Zervas, B. R. Rofoee,
R. Nejabati, and D. Simeonidou, ‘‘Virtualization of heterogeneous
wireless-optical network and IT infrastructures in support of cloud and
mobile cloud services,’’ IEEE Commun. Mag., vol. 51, no. 8, pp. 155–161,
Aug. 2013.

[28] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
‘‘Virtual network embedding: A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 15, no. 4, pp. 1888–1906, Feb. 2013.

[29] P. Zhang, C. Jiang, X. Pang, and Y. Qian, ‘‘STEC-IoT: A security tactic
by virtualizing edge computing on IoT,’’ IEEE Internet Things J., vol. 8,
no. 4, pp. 2459–2467, Feb. 2021, doi: 10.1109/JIOT.2020.3017742.

[30] M. Shen, K. Xu, K. Yang, and H. Chen, ‘‘Towards efficient virtual network
embedding across multiple network domains,’’ in Proc. IEEE 22nd Int.
Symp. Qual. Service (IWQoS). Hong Kong: IEEE, 2014, pp. 61–70, doi:
10.1109/IWQoS.2014.6914301.

[31] D. Dietrich, A. Rizk, and P. Papadimitriou, ‘‘Multi-provider
virtual network embedding with limited information disclosure,’’
IEEE Trans. Netw. Service Manage., vol. 12, no. 2, pp. 188–201,
Jun. 2015.

[32] A. Kumari, S. Tanwar, S. Tyagi, and N. Kumar, ‘‘Blockchain-based
massive data dissemination handling in IIoT environment,’’ IEEE Netw.,
vol. 35, no. 1, pp. 318–325, Jan. 2021.

[33] P. Zhang, C. Wang, C. Jiang, and Z. Han, ‘‘Deep reinforcement
learning assisted federated learning algorithm for data management of
IIoT,’’ IEEE Trans. Ind. Informat., early access, Mar. 8, 2021, doi:
10.1109/TII.2021.3064351.

67174 VOLUME 9, 2021

http://dx.doi.org/10.1109/CC.2018.8485467
http://dx.doi.org/10.1109/TNSE.2020.2995863
http://dx.doi.org/10.1109/TNSE.2020.3005570
http://dx.doi.org/10.1109/GLOCOM.2014.7037108
http://dx.doi.org/10.1109/JIOT.2017.2726120
http://dx.doi.org/10.1109/TVT.2020.3035341
http://dx.doi.org/10.1109/TNSM.2020.2971543
http://dx.doi.org/10.1109/ACCESS.2020.3040335
http://dx.doi.org/10.1109/TVT.2020.2986769
http://dx.doi.org/10.1109/JIOT.2021.3068158
http://dx.doi.org/10.1109/JIOT.2020.3021457
http://dx.doi.org/10.1109/JIOT.2020.3017742
http://dx.doi.org/10.1109/IWQoS.2014.6914301
http://dx.doi.org/10.1109/TII.2021.3064351


P. Zhang et al.: GCMD Virtual Network Embedding Algorithm

[34] K. Guo, Y.Wang, X. Qiu,W. Li, andA.Xiao, ‘‘Particle swarm optimization
based multi-domain virtual network embedding,’’ in Proc. IFIP/IEEE
Int. Symp. Integr. Netw. Manage. (IM), Ottawa, ON, Canada, May 2015,
pp. 798–801.

[35] Y. Jiang, H.Ma, Y. Bu, J. Shen, and L. He, ‘‘A virtual network cross-domain
mapping strategy for profit maximization,’’ Eng. Sci. Technol., vol. 50,
no. 2, pp. 118–125, 2018.

[36] N.M.M. K. Chowdhury,M. R. Rahman, and R. Boutaba, ‘‘Virtual network
embedding with coordinated node and link mapping,’’ in Proc. IEEE
28th Conf. Comput. Commun. (INFOCOM), vol. 20, no. 1, Apr. 2009,
pp. 783–791.

[37] I. Pathak and D. P. Vidyarthi, ‘‘A model for virtual network embedding
across multiple infrastructure providers using genetic algorithm,’’ Sci.
China Inf. Sci., vol. 60, no. 4, Apr. 2017, Art. no. 040308.

PEIYING ZHANG received the Ph.D. degree
from the School of Information and Communi-
cation Engineering, Beijing University of Posts
and Telecommunications, in 2019. He is cur-
rently an Associate Professor with the College of
Computer Science and Technology, China Uni-
versity of Petroleum (East China). Since 2016,
he has been publishing multiple IEEE/ACM trans-
action/journal/magazine articles, such as IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, IEEE TRANSACTIONS

ON VEHICULAR TECHNOLOGY, IEEE TRANSACTIONS ON NETWORK SCIENCE AND

ENGINEERING, IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT,
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, IEEE Network, IEEE
ACCESS, IEEE INTERNET OF THINGS JOURNAL, ACM TALLIP, Computer Com-
munications, and IEEE Communications Magazine. His research interests
include semantic computing, future Internet architecture, network virtualiza-
tion, and artificial intelligence for networking. He served as a Technical Pro-
gram Committee Member for ISCIT 2016, ISCIT 2017, ISCIT 2018, ISCIT
2019, GLOBECOM2019, COMNETSAT 2020, SoftIoT 2021, CBIoT 2021,
IWCMC-Satellite 2019, and IWCMC-Satellite 2020.

XUE PANG is currently pursuing the master’s
degree with the College of Computer Science and
Technology, China University of Petroleum (East
China). Her research interests include network vir-
tualization, future Internet architecture, and artifi-
cial intelligence for networking.

GODFREY KIBALYA received the B.Sc. degree in
telecommunications engineering from Makerere
University, Uganda, in 2010, and the M.Sc. degree
in telecommunications engineering from the Uni-
versity of Trento, Italy. He is currently pursuing
the Ph.D. degree with the Department of Net-
work Engineering, Technical University of Catalo-
nia (UPC). His research interests include network
function virtualization and application of artificial
intelligence in network management.

NEERAJ KUMAR (Senior Member, IEEE)
received the Ph.D. degree in computer science and
engineering from Shri Mata Vaishno Devi Uni-
versity, Katra, India, in 2009. He was a Postdoc-
toral Research Fellow with Coventry University,
Coventry, U.K. He is currently a Full Professor
with the Department of Computer Science and
Engineering, Thapar Institute of Engineering and
Technology (Deemed to be University), Patiala,
India. He is also a Visiting Research Fellow

with Coventry University and Newcastle University, U.K. He has guided
many research scholars leading to Ph.D. and M.E./M.Tech. His research
is supported by funding from UGC, DST, CSIR, and TCS. He has more
than 6200 citations to his credit with current H-index of 42. He has
edited more than ten journals’ special issues of repute and published four
books from CRC, Springer, IET U.K., and BPB Publications. He has
published more than 300 technical research articles in top-cited journals,
such as IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE TRANSACTIONS ONDEPENDABLE

AND SECURE COMPUTING, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION

SYSTEMS, IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, IEEE TRANSACTIONS

ON INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY,
IEEE Intelligent Transportation Systems Magazine, IEEE TRANSACTIONS

ON SMART GRID, IEEE Network, IEEE Communications Magazine, IEEE
Wireless Communications, IEEE INTERNET OF THINGS JOURNAL, IEEE SYSTEMS

JOURNAL, Computer Networks, Information Sciences, FGCS, JNCA, JPDC,
and Computer Communications. He has won the Best Paper Award from
IEEE SYSTEMS JOURNAL and ICC 2018, Kansas, in 2018. He has been the
Workshop Chair of IEEE GLOBECOM 2018 and IEEE ICC 2019, and
the TPC chair and a member of various International conferences. He is
also an Associate Technical Editor of IEEE Communications Magazine
and IEEE Network Magazine, and an Associate Editor of IJCS (Wiley),
JNCA (Elsevier), Computer Communications (Elsevier), and Security and
Communication Networks (Wiley). He has been a Guest Editor of various
International journals of repute, such as IEEE ACCESS, IEEE Communica-
tions Magazine, IEEE Network Magazine, Computer Networks (Elsevier),
Future Generation Computer Systems (Elsevier), Journal ofMedical Systems
(Springer),Computers & Electrical Engineering (Elsevier),Mobile Informa-
tion Systems, the International Journal of Ad hoc andUbiquitous Computing,
Telecommunication Systems (Springer), and Journal of Supercomputing
(Springer).

SHUQING HE received the M.S. degree in com-
puter application technology from the China Uni-
versity of Petroleum (East China), China, in 2006.
He is currently pursuing the Ph.D. degree with the
State Key Laboratory of Networking and Switch-
ing Technology, Beijing University of Posts and
Telecommunications. He is also a Teacher with
the School of Information Science and Technol-
ogy, Linyi University. His main research inter-
ests include service-oriented computing, edge

computing, and data analysis and processing.

BIN ZHAO received the Ph.D. degree from the
School of Software Engineering, Beijing Univer-
sity of Technology, China. He is currently a Pro-
fessor with the College of Information Science
and Engineering, Linyi University, China. He has
published over 50 research articles and holds over
ten patents in China. His main research interests
include information security, network measure-
ment, wireless ad hoc, mesh, and sensor network
security, and digital forensics.

VOLUME 9, 2021 67175


