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ABSTRACT Anomaly detection for non-linear dynamical system plays an important role in ensuring the
system stability. However, it is usually complex and has to be solved by large-scale simulation which requires
extensive computing resources. In this paper, we propose a novel anomaly detection scheme in non-linear
dynamical system based on Long Short-Term Memory (LSTM) to capture complex temporal changes of
the time sequence and make multi-step predictions. Specifically, we first present the framework of LSTM-
based anomaly detection in non-linear dynamical system, including data preprocessing, multi-step prediction
and anomaly detection. According to the prediction requirement, two types of training modes are explored
in multi-step prediction, where samples in a wall shear stress dataset are collected by an adaptive sliding
window. On the basis of the multi-step prediction result, a Local Average with Adaptive Parameters (LAAP)
algorithm is proposed to extract local numerical features of the time sequence and estimate the upcoming
anomaly. The experimental results show that our proposed multi-step prediction method can achieve a higher
prediction accuracy than traditional method in wall shear stress dataset, and the LAAP algorithm performs
better than the absolute value-based method in anomaly detection task.

INDEX TERMS LSTM, anomaly detection, non-linear dynamical system, multi-step prediction, time series.

I. INTRODUCTION
Dynamical system is the basic framework for modeling and
control of an enormous variety of complicated systems,
including fluid dynamics, signal propagation and interfer-
ence in electronic circuits, heat transfer, biological systems,
chemically reacting flows, etc. [1]. Nonlinearity is an impor-
tant feature of these complex dynamical systems, as a result
of a rich diversity of observed dynamical behaviors across
the physical, biological, and engineering sciences. Modern
non-linear dynamical systems are becoming more and more
complex, where a variety of complicated phenomena make
them vulnerable to software and hardware problems, causing
anomalies in various emerging applications. It is necessary to
predict and recover anomalies in time. However, in practice,
this task is still manually solved. It is essential to provide

The associate editor coordinating the review of this manuscript and

approving it for publication was Hamid Mohammad-Sedighi .

automatic anomaly predictionmethods for non-linear dynam-
ical systems.

As time goes by, a large amount of time series data are
produced by non-linear dynamical system. Some of them
can be obtained by non-linear mapping and derivation of
differential equations [2]. During the past few decades,
some techniques, such as Large-Eddy Simulation (LES) and
Reynolds-averaged Navier–Stokes (RANS), were proposed
to predict turbulent flow in grid-resolved scales accurately.
However, LES requires a dedicated model for the effect on
grid-resolved quantities [3], [4]. RANS also need to model
the turbulence first in a temporally averaged sense [5], [6].
To raise the advance anomaly alerts, non-linear dynamical
systems should be continuously monitored.

Although the non-linear governing equations are usually
known, simulations have to take extended periods of time
and become computationally expensive, and time resolution
with a certain accuracy is needed [7]. Deep learning is a
useful method for modeling analysis and achieves a good
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result in many tasks including video classification, speech
recognition, and natural language processing [8], [9]. Deep
learning methods also obtain results with high accuracy in
complex prediction problems. However, there are few results
based on deep learning methods in the field of non-linear
dynamical system modeling.

We propose an LSTM-based method to the anomaly pre-
diction task for non-linear dynamical system. Compared
with traditional prediction methods, the LSTM-based method
achieves a higher prediction accuracy for different zones of
the time series. In particular, by incorporating LSTM into
the developed anomaly detection algorithm, the temporal
features of time series data are extracted in order to predict
multi-step wall shear stress value of non-linear system. The
main contributions of this paper lie in the following aspects.

• We identify the problem of predicting multi-step wall
shear stress and conduct experiments in a non-linear
dynamical system. An LSTM-based anomaly detection
method is proposed to solve this prediction problem.
The proposed scheme employs a multi-layer network
based on LSTM units, which captures complex temporal
influences and pickup-drop-off interactions effectively.

• The anomaly points that reflect the latent danger to the
system are identified. An effective anomaly detection
algorithm, named Local Average with Adaptive Param-
eters (LAAP), is developed to exploit the anomalous
period on predicted data. This algorithm is easily incor-
porated into the prediction model, to boost the perfor-
mance of anomaly detection.

• Extensive experiments are conducted to evaluate the per-
formance of the proposed methods. The dataset contains
time series value of wall shear stress collected from a
fluid non-linear dynamical system. The results show that
ourmethod achieves a higher prediction accuracy in both
multi-step prediction and anomaly detection than a typi-
cal inference algorithm called Autoregressive Integrated
Moving Average (ARIMA).

The remainder of this paper is organized as follows.
Section II introduces the related work on LSTM-based time
series prediction and anomaly detection. Section III presents
a detailed description of the proposed prediction methods and
anomaly detection algorithm. In Section IV, the experimental
results and analysis depending on the proposed approach are
presented. Finally, conclusions are given in Section V.

II. RELATED WORK
Time series prediction and anomaly detection have been
widely studied and applied to a variety of real-world projects.
In this section, related works on anomaly detection are
reviewed. Related approaches on neural network for predic-
tion are discussed.

A. ANOMALY DETECTION METHODS
Anomaly detection is a proactive method that raises alerts
when the system is still in the normal state but progressing to

an anomaly state [10]. To prevent the anomaly or reduce the
damage, anomaly detection is of great significance in many
fields, such as geology, meteorology, and medicine.

For anomaly detection, the Markov model-based
approaches are widely used. A Markov model is a stochastic
model used to model randomly changing systems. It can
be used to predict the state in the future using previous
information. It is able to establish the transition probabilities
relationship between states. In Markov chain model, the
pattern of different metric values can be recognized and the
next state of these values is predicted by the model. For
example, Gu et al. presented a stream-basedmining algorithm
by combining Markov models and Bayesian classification
methods for online anomaly prediction. Their anomaly pre-
diction scheme can raise alerts for impending system anoma-
lies in advance and suggests possible anomaly causes [11].
Sendi et al. proposed a framework to predict multi-step
attacks before they pose a serious security risk. They used
Hidden Markov Model (HMM) to extract the interactions
between attackers and networks [12]. Paulo et al. applied a
Markov chains-basedmethod to characterize the stochasticity
of droughts and predict the transition probability from one
class of severity to another up to 3months ahead [13]. In [14],
Zhou et al. employed the Evidential Markov chain for the
anomaly prediction of PlanetLab. A Belief Markov chain is
proposed to extend the Evidential Markov chain and cope
with noisy data stream.

Also, there are many anomaly detection approaches based
on regression methods. In these approaches, the detection
problems are converted into normal regression problems, then
machine learning-based regression algorithms and models
can be applied to anomaly detection. For instance, Hong et.al
proposed a new anomaly detection approach based on prin-
cipal component analysis (PCA), information entropy theory
and support vector regression (SVR). It can be used in credit
card fraud detection as well as intrusion detection in cyber-
security [15]. In [16], Huang et al. presented a Recurrent
Neural Networks (RNN) model for the anomaly prediction
of component-based enterprise systems. Their RNN-based
method has shown high prediction accuracy and time effi-
ciency for large-scale systems.

B. LSTM FOR PREDICTION
In recent years, neural network-based deep learning
approaches are widely applied to the prediction prob-
lems [10]. Among them, Recurrent Neural Network (RNN)
and its advanced variants have shown a higher performance
for prediction tasks than traditional methods. RNN is a type of
artificial neural networks. It can capture the feature of input
time series data by remembering its historical information.
LSTM Network is a special RNN. LSTM is proved to out-
perform many other types of RNN in modeling sequential
data and widely used in prediction tasks [17].

RNN is suitable for learning patterns, relationships and
interconnections hidden in time series as well as modeling
the temporal sequences. In [18], Zio et al. employed Infinite
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FIGURE 1. The framework of LSTM-based anomaly detection approach.

Impulse Response Locally Recurrent Neural Networks (IIR-
LRNN) to forecast failures and make reliability prediction for
systems’ components. It is innovative to use such dynamic
modeling technique in reliability prediction tasks.

Especially, LSTM, which was proposed by Hochreiter and
Schmidhuber [19], has emerged to be an effective and scal-
able type of RNNs for several learning problems related to
sequential data [20]. By utilizing multiplicative gates that
enforce constant error flow through the internal states of cells,
LSTMs overcome the vanishing gradient problem in original
RNNs [21].

Due to their superior ability for processing time-series data,
LSTMs are widely applied to prediction tasks. In [22], an
LSTM-based deep learningmethod is explored for travel time
prediction on the dataset provided by Highways England.
They have achieved high prediction accuracy for 1-step ahead
travel time prediction error. In [23], an LSTM-based spatio-
temporal learning framework is proposed for land cover
prediction. The authors design a dual-memory structure to
capture both long-term and short-term patterns in temporal
sequences. Based on LSTM, the authors in [24] proposed an
improved model to learn tweet representation from weakly-
labeled data and make tweet classification with higher accu-
racy. In [17], LSTM network is first used to predict the
performance of web servers as the URL requests are always
sequential data. The logs of Nginx web servers are analyzed
before the performance of web server is predicted.

Besides, Chen et al. utilized LSTM for the prediction
task for China stock [25]. Altche et al. addressed a highway
trajectory prediction approach based on LSTM network [26].
Qu et al. applied an approach based on PCA and LSTM to
the field of wind power prediction [27].

III. LSTM-BASED ANOMALY DETECTION
In this section, LSTM-based multi-step prediction for non-
linear dynamic system is presented in detail. Then, we
propose an adaptive anomaly detection method and a local
average algorithm with adaptive parameters.

In our proposed method, the first and last LSTM layers
are followed by a dropout layer, which helps prevent overfit-
ting. The last dropout layer is followed by a fully connected
layer, as shown in Fig. 1. In the framework of the LSTM-
based anomaly detection approach, the first segment is the
data preprocessing procedure. After preprocessing, the mean
value and threshold are calculated for the following parts. The
raw data are transformed into normalized data. The second
segment is the network architecture for multi-step prediction.
It is composed of three kinds of network layers which include
LSTM layer, dropout layer, and a fully connected layer. The
seven-layer network outputs multi-step prediction results of
the future time series values. In the third segment, the predic-
tion results produced in the second segment are used as input
and anomaly detection results are generated according to the
local average algorithm with adaptive parameters.

A. LSTM-BASED MULTI-STEP PREDICTION
LSTM layer receives a time sequence of the same length
N as input and outputs them to dropout layer to prevent
overfitting. To collect samples for training, there are two
different modes according to the requirement of prediction
demand. As is shown in Fig. 2, there are two types of training
modes according to the requirement of prediction demand. T
refers to the length of the input time series and t means the
prediction of the t th point after the current point.

In mode a, only the next point of current input time
sequence is predicted in each prediction, as is illustrated in
Fig. 2(a). A sample used for training is obtained by current
state window. It contains the time sequence of fixed length
and the value of the next timestep. By sliding over the long
time series used for training, all samples are gathered into
the training set. Mode b, as shown in Fig. 2(b), meets the
requirement of muti-timestep prediction. For the sliding win-
dow in mode b, it equals to T + t which contains the time
sequence and a time interval between current value and the
value to predict. In this mode, a training sample consists of
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FIGURE 2. Two types of training modes.

time sequence of fixed length and the value of the t th timestep
after the current value.

When all training samples are gathered into the training
set, the training process begins. It randomly selects from
the training set to remove correlations in the sequence and
smooths the changes in data distribution.

Irrespective of different training modes, the Root Mean
Square Error (RMSE) is utlized to evaluate the prediction
performance of the proposed method,

RMSE =

√
1

Q− T − t + 1

Q−T−t+1∑
i=1

(
yi − ŷi

)2
, (1)

where yi and ŷi are the predicted value and the ground truth
for timestep i, respectively, and Q is the total length of non-
linear dynamical dataset used for training. Traditional mod-
els that be used for multi-timestep prediction include Auto
Regressive Integrated Moving Average (ARIMA), eXtreme
Gradient Boosting (XGBoost), Logistic Regression (LR), etc.
Among them, ARIMA is used as our baseline model for
comparison in this paper.

B. ADAPTIVE ANOMALY DETECTION
Another important module in the architecture of LSTM-based
anomaly detection method is the following anomaly detec-
tion. An algorithm, named Local Average with Adaptive
Parameters (LAAP), is put forward. This algorithm uses
adaptive parameters to compute local numerical features
including average, standard deviation and slope. The thresh-
old for determining anomaly depends on those features of
predicted timestep.

As the sliding window moves forward, the predicted time
series can be obtained. The length of the predicted future
timesteps is assumed to be d . The predicted time series can
be denoted as D : s1, s2, . . . , sd . The window length and
parameter adaptive rate are set to be W and α respectively.
The value of W is usually determined by the pattern of
most anomaly. The parameter adaptive rate can be adjusted
according to how sensitive the detection system should be. It
ranges from 0 to 1. If the parameter adaptive rate is relatively

high, the anomaly detection system is more sensitive to the
upcoming anomaly. Otherwise, the system may reduce the
probability for predicting an upcoming anomaly.

In each window length of W , the local average µi is
computed as

µi =
1
W

i+W
2∑

l=i−W
2

sl, (2)

and the local standard deviation σi is computed as

σi =

√√√√√√ 1
W

i+W
2∑

k=i−W
2

(
(sk − µi)2

)
. (3)

Then, a local slope ki is computed to discriminate different
kinds of potential anomalies. Generally, there are two kinds
of potential anomalies in the non-linear dynamical system.

One kind of anomalies appears to be a local maximum
while another kind of anomalies appears to be a local min-
imum. According to these two different situations, the result
of anomaly detection yi is obtained and output by algo-
rithm LAAP. To summarize the above procedure of our
proposed method, the pseudocode of LAAP is shown in
Algorithm 1.

Algorithm 1 Local Average With Adaptive Parameters
Input:
the predicted time series, D : s1, s2, . . . , sd
window length, W
parameter adaptive rate, α
Process:
1: Compute the local average µi in a window of length W

for every point in the predicted time series by (2)
2: Compute the local standard deviation σi in a window of

length W for every point in the predicted time series by
(3)

3: Compute the local slope ki in a window of length
W for every point in the predicted time series, ki =
1
W

(
s
(
i+ W

2

)
− s

(
i− W

2

))
4: if k(i) < 0 then

5: yi =
{
1 if si < µi − α · σi
0 otherwise

6: else
7: yi =

{
1 if si > µi + α · σi
0 otherwise

8: end if
Output: yi

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, experiments on the basis of non-linear dynam-
ical data are carried out to demonstrate the effectiveness of
our proposed method.
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A. DATASET
To test and verify the LSTM-based multi-step prediction and
the following anomaly detection, the data is generated by
the temporal evolution of an incompressible Newtonian fluid
in the plane Poiseuille (channel) geometry where the flow
is driven by a constant volumetric flux, Q, at a Reynolds
number of Re = 1800. The x, y, and z coordinates are
aligned in the streamwise, wall-normal, and spanwise direc-
tions, respectively. Periodic boundary conditions are imposed
in the x and z direction with fundamental periods of Lx
and Lz. No-slip boundary conditions are imposed at the top
and bottom walls y = ±h, where h = Ly/2 is the half-
channel height. Such a boundary condition necessitates that
streamwise velocity is zero at both walls. In this study, the so-
called minimal flow unit methodology is used with a domain
size of Lx × Ly × Lz = 2π × 2 × π [28]. A numerical grid
system is generated on Nx ×Ny×Nz meshes, where Fourier-
Chebyshev-Fourier spectral spatial discretization is applied to
all variables. With a mesh convergence study, the resolution
used is

(
Nx ,Ny,Nz

)
= (48, 81, 48). The time step used for

forward integration of the system is 1t = 0.02. Given these
temporal and spatial resolutions, the corresponding errors are
O
(
10−6

)
and O

(
10−4

)
, respectively. For more details, the

reader is referred to [29]–[31].
For this study, the one-dimensional data used for our exper-

iments is the time series of the wall shear stress τ = µ∂u/∂y,
where µ is the dynamic viscosity of the fluid and u is the
streamwise velocity. The wall shear stress is a measure of the
resistance of fluid experiences and is a qualitative measure of
the state of nonlinear dynamical system.

A segment of the raw data is visualized in Fig. 3. The data
fluctuates around a certain value and has a definite boundary
in normal state. According to the value, time series can be
divided into four zones: those below 90% of the mean value
(zone 1), those between 90% of the mean value and the mean
value (zone 2), those between the mean value and 110% of
the mean value (zone 3), and those over 110% of the mean
value (zone 4). Data in zone 4 should be recognized because
there is a great probability of a turbulence. Usually, there
is a high transition probability from zone 1 to zone 4, and
anomalies are more likely to appear in zone 1 and zone 4.
Hence, the main objective of the anomaly detection is to
predict the data in zone 1 and zone 4. Accurate prediction
of these anomalies can effectively prevent some potential
accidents from happening.

B. RESULTS AND ANALYSIS
In this part, the experimental results are given and analyzed
from two aspects: multi-step prediction and anomaly detec-
tion.

1) MULTI-STEP PREDICTION
The length of the input time sequence is 50 and the predicted
timestep is set to be 4, 6, 8, 10 respectively. A segment of
the test result consisting of 800 points is shown in Fig. 4.

FIGURE 3. A segment of the raw data.

TABLE 1. Prediction accuracy of zone 1 and zone 4.

The blue line refers to true data while the orange line refers
to multi-step prediction result. As is shown in the four sub-
figures in Fig. 4, the prediction error becomes larger and
the fluctuation becomes more obvious when the predicted
timestep increases.

Different LSTM network models are trained to predict the
points of different step sizes. The whole data are split into two
parts, i.e., training set and test set. The ratio of these two sets
is 0.8. In this way, about 4000 samples are used for training
and 1000 samples for testing. Table 1 shows the precision of
zone 1 and zone 4 prediction. The mean value of the data set
is 4.042179. The upper threshold is 4.446397 and the lower
threshold is 3.637961. LSTM has achieved a high precision
rate in both zone 1 and zone 4 prediction. Table 1 shows the
prediction accuracy of zone 1 and zone 4 as the prediction
timestep ranges from 1 to 10.

The prediction result of the LSTM-based method is com-
pared with the ARIMA.When the predicted step size is larger
than 2, LSTM performs better than ARIMA as the RMSE
of LSTM predicted results is lower than that of the ARIMA.
Furthermore, LSTM shows a stable growth, which means that
different requirements of accuracy can be met by adjusting
the predicted step size. The parameters for the ARIMAmodel
ar and ma are both set to be 2 in our experiment. Then, the
maximum likelihood estimation is used to fit our return rate to
the ARIMAmodel. However, it should be noted that there are
some irregular points in the ARIMA model. That is because
the ARIMAmodel relies on the stability of temporal data and
more stable data leads to better performance in prediction.
However, the prediction of dynamical system contains one
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FIGURE 4. LSTM-based multi-step prediction result.

or more unstable factors. The ARIMA cannot capture such a
change in time like LSTM.

2) ANOMALY DETECTION
We aim to raise alerts before anomalies occur. So, the
anomaly detection results are acquired based on the multi-
step prediction results. In order to prevent anomalies in
advance, the anomaly detection model should be efficient and
accurate. In comparison with absolute value-based anomaly
detection, the accuracy of our proposed algorithm LAAP is
evaluated by an error distribution function.

Fig. 6(a) and Fig. 6(b) illustrate the error distribution of
absolute value-based anomaly detection algorithm and the
LAAP algorithm, respectively. The horizontal axis represents
the time interval error between the nearest true anomaly and
predicted anomaly and the vertical axis refers to the total
amount of anomalies of a certain predictive error. In Fig. 6(a),
zero error occurs 14 times, and the time interval error ranges
from around−175 to 75. While in Fig. 6(b), zero error occurs
more than 20 times, and the time interval error ranges from
around −130 to 5.

FIGURE 5. RMSE of different predicted step size.

According to the error distribution results, the frequency of
zero error by LAAP algorithm is larger than that computed
by the absolute value-based anomaly detection algorithm.
Moreover, the error range of LAAP is smaller than the abso-
lute value-based anomaly detection algorithm. Therefore,
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FIGURE 6. Error distribution of anomaly detection algorithm.

it is more likely to accurately predict when an anomaly occurs
by LAAP algorithm, and it can be concluded that LAAP per-
forms better than the absolute value-based anomaly detection
algorithm.

V. CONCLUSION
In this paper, we have proposed an LSTM-based anomaly
detection method for non-linear dynamical system. A slid-
ing window scheme is used to collect training samples for
multi-step prediction. Then, an LAAP algorithm is developed
to make anomaly detection based on the LSTM prediction
result. Experiments have been conducted to evaluate the per-
formance of the proposed methods. The results indicate that
our proposedmulti-step prediction has achieved lower RMSE
and higher prediction accuracy compared with ARIMA on
wall shear stress dataset, and the LAAP algorithm outper-
forms the absolute value-based anomaly detection algorithm.
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